CN112194096A - 基于mems的压电式仿生耳蜗纤毛感受器及其加工方法 - Google Patents

基于mems的压电式仿生耳蜗纤毛感受器及其加工方法 Download PDF

Info

Publication number
CN112194096A
CN112194096A CN202011131772.0A CN202011131772A CN112194096A CN 112194096 A CN112194096 A CN 112194096A CN 202011131772 A CN202011131772 A CN 202011131772A CN 112194096 A CN112194096 A CN 112194096A
Authority
CN
China
Prior art keywords
cochlear
metal
mems
cilium
polyvinylidene fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011131772.0A
Other languages
English (en)
Other versions
CN112194096B (zh
Inventor
王任鑫
刘骁
朱晓航
张国军
张文栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN202011131772.0A priority Critical patent/CN112194096B/zh
Publication of CN112194096A publication Critical patent/CN112194096A/zh
Application granted granted Critical
Publication of CN112194096B publication Critical patent/CN112194096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/02Microstructural systems; Auxiliary parts of microstructural devices or systems containing distinct electrical or optical devices of particular relevance for their function, e.g. microelectro-mechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0264Pressure sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Prostheses (AREA)

Abstract

本发明公开了一种基于MEMS的压电式仿生耳蜗纤毛感受器及其加工方法,涉及MEMS在助听方面的应用技术领域,压电式仿生耳蜗纤毛感受器,包括基底和聚丙烯纤毛,基底包括金属铜上电极、聚偏氟乙烯薄膜与金属铝下电极,聚偏氟乙烯薄膜位于金属铜上电极与金属铝下电极之间,三者固定连接且***呈方框状,***的方框内部其中一对相对的边之间为波浪形状的纤毛固定梁,聚丙烯纤毛垂直固定于纤毛固定梁的中心处。本发明通过刻蚀以及腐蚀等工艺在上下具有金属电极铜和铝的PVDF薄膜上进行蚀刻,可以有效提高传感器的电压信号输出并且在体积更小,功耗更低的基础上实现耳蜗基底膜的频率分选功能,而且加工工艺简单,加工成本低廉。

Description

基于MEMS的压电式仿生耳蜗纤毛感受器及其加工方法
技术领域
本发明涉及MEMS在助听方面的应用技术领域,具体为一种基于MEMS的压电式仿生耳蜗纤毛感受器及其加工方法。
背景技术
在全球范围内,听力损失的社会和经济影响相当大。据世界卫生组织(WHO)估计,全世界有3.6亿人患有致残性听力损失(成人听力较好的耳朵听力损失大于40分贝(dB),儿童(0-14岁)听力损失大于30分贝(dB),这一比例超过了5%世界人口。南亚、亚太和撒哈拉以南非洲地区的患病率相对较高,尽管数据大多不完整,来源不同,标准不同,然而,根据一些欧洲国家的研究,这些数字可能被低估了,因为实际数字可能徘徊在人口的15%至17%左右。正如美国的情况一样,根据多年来的一些资料来源,估计这一数字约占人口的10-20%。参考2016年的人口普查,美国人口在3200万到6400万之间。在欧洲,大约占人口的16%。有7000多万人患有不同程度和类型的听力损失,其中超过5500万人在欧盟。根据RNID,在英国,大约有1100万人需要治疗听力损失。在德国,粗略估计有1300万到1400万人需要治疗听力损失。在西班牙,这一数字很可能被低估(200万人或人口的5.5%),官方数据显示,由此导致的普遍残疾人数为961348人(26/1000常住人口)。在临床实践中,只有1/2的听力损失病例能通过普通手段(手术、助听器等)得到满意的治疗。然而,其余的3500万位于欧洲的患者,2700万位于欧盟的患者,以及100万在西班牙等国患者,代表着一个庞大的病人群体。由此产生的经济问题也相当严重。例如,在欧盟,未经治疗的听力障碍的年费用为1680亿欧元,个人每年的援助费用取决于损失程度:轻度,2200欧元;中度,6600欧元;严重,11000欧元。
在哺乳动物的听觉***中,耳蜗是一个关键的听觉器官。它是一种将传入的声压转换成刺激听觉神经元的生物电信号的换能器。除了传导外,由于基底膜的硬度不同,耳蜗还具有频率选择性功能。不方便的大尺寸植入物传感器和昂贵的设备成本制约着病人群体的衰减。因此,研究和开发小尺寸、低成本的新型换能器似乎是未来中耳植入物发展的必然趋势。
面对所有这些,今天的机械听觉植入物或中耳植入物(MEI)正试图解决这些问题,并覆盖几乎所有的听力损失变体(传导性、混合性、感音神经性、中度和重度等)。因此,本发明提供了一种基于MEMS的仿生耳蜗纤毛感受器。
发明内容
本发明为了解决哺乳动物的听力损失变体目前还无替代品修复的问题,提供了一种基于MEMS的压电式仿生耳蜗纤毛感受器及其加工方法。
本发明是通过如下技术方案来实现的:一种基于MEMS的压电式仿生耳蜗纤毛感受器,包括基底和聚丙烯纤毛,所述基底包括金属铜上电极、聚偏氟乙烯薄膜与金属铝下电极,所述聚偏氟乙烯薄膜位于金属铜上电极与金属铝下电极之间,所述金属铜上电极、聚偏氟乙烯薄膜与金属铝下电极均固定连接且***呈方框状,所述***的方框内部其中一对相对的边之间为波浪形状的纤毛固定梁,所述聚丙烯纤毛垂直固定于纤毛固定梁的中心处。
本发明提供的一种基于MEMS的压电式仿生耳蜗纤毛感受器及其加工方法,耳蜗纤毛感受器包括基底和聚丙烯纤毛,基底包括金属铜上电极、聚偏氟乙烯薄膜与金属铝下电极,聚偏氟乙烯薄膜位于金属铜上电极与金属铝下电极之间,三者固定连接,且***呈方框状,***的方框内部其中一对相对的边之间为波浪形状的纤毛固定梁,聚丙烯纤毛垂直固定于纤毛固定梁的中心处,也就是位于金属铜上电极的上部中心处,即位于整个感受器的中心。该传感器从上至下使用聚丙烯纤毛、金属铜上电极、PVDF(聚偏氟乙烯)薄膜及金属铝下电极搭建,采用不同频率声波激发不同的纤毛传感器,信号处理后刺激特定位置神经元产生响应,PVDF薄膜作为振动薄膜,可实现声感受器微型化、降低功耗,纤毛固定梁所形成的梁式结构加大了受力的不均匀程度,进一步提高了电压信号的数值。制备上述压电式仿生耳蜗纤毛感受器的工艺步骤为:
①将表面带有金属层的聚偏氟乙烯薄膜贴在四寸片上,光刻,厚胶(光刻和厚胶都是常规工艺);
②腐蚀聚偏氟乙烯薄膜上表面的金属,接下来采用等离子体刻蚀聚偏氟乙烯薄膜到金属铝下电极;
③聚偏氟乙烯薄膜上部的光刻胶结余,以在接下来的腐蚀过程中保护金属铜上电极;
④在金属铝下电极的背面沾蓝膜,用以保护金属铝下电极;
⑤最后腐蚀金属铜上电极形成波浪形的纤毛固定梁的形状,去除光刻胶和蓝膜。
进一步的,所述金属铜上电极的厚度为1-15um。
进一步的,所述聚偏氟乙烯薄膜的厚度为10-100um,长宽为800um*800um。
进一步的,所述金属铝下电极的厚度为1-15um。
进一步的,所述聚丙烯纤毛的高度为600um-950um,半径为25-50um。
进一步的,所述纤毛固定梁的宽度在80um-120um之间,纵向位移长度为600um。
与现有技术相比本发明具有以下有益效果:本发明所提出的一种基于MEMS的压电式仿生耳蜗纤毛感受器及其加工方法:(1)得益于MEMS技术和SOI工艺,本发明器件尺寸可以做到很小,便于后续的封装和使用;(2)与常用的压电材料相比,PVDF(聚偏氟乙烯)在氟塑料中具有最强韧性、低摩擦系数、耐腐蚀性强、耐老化性、耐气候,与此同时,其对耳蜗上表皮细胞无生物毒性;(3)纤毛的设计起到了增大压电梁上受力不均匀的作用,很大程度上提高了传感器输出电压值的大小,通过改变纤毛的长度可以扩展压电式仿生耳蜗纤毛感受器的适用范围;(4)本发明的加工工艺整个过程仅需一块掩模版,在可以批量生产的前提下,兼顾成本低廉。所得到的产品具有结构尺寸小,工艺流程简单,功耗低,能独立完成频率分选的优点;(5)与传统人工耳蜗中的麦克风加硬件电路方能实现的频率分选功能对比该传感器单元可以独立实现频率分选的功能,且具备体积小功耗低的优势,作为无源器件,它的信号输出灵敏度以及抗干扰能力也进一步增强。
附图说明
图1为本发明基于MEMS的压电式仿生耳蜗纤毛感受器的三维结构示意图。
图2为本发明基于MEMS的压电式仿生耳蜗纤毛感受器的左视图。
图3为本发明基于MEMS技术的压电式仿生耳蜗纤毛感受器的俯视图以及尺寸图。
图4~图12为本发明基于MEMS技术的压电式仿生耳蜗纤毛感受器的仿真结果图。
图13为仿生耳蜗纤毛感受器的一阶模态图。
图14为仿生耳蜗纤毛感受器的二阶模态图。
图15为仿生耳蜗纤毛感受器的三阶模态图。
图16为仿生耳蜗纤毛感受器的四阶模态图。
图中标记如下:1-聚丙烯纤毛,2-金属铜上电极,3-聚偏氟乙烯薄膜,4-金属铝下电极,5-纤毛固定梁。
具体实施方式
以下结合具体实施例对本发明作进一步说明。
一种基于MEMS的压电式仿生耳蜗纤毛感受器,如图1~图2所示:包括基底和聚丙烯纤毛1,所述基底包括金属铜上电极2、聚偏氟乙烯薄膜3与金属铝下电极4,所述聚偏氟乙烯薄膜3位于金属铜上电极2与金属铝下电极4之间,所述金属铜上电极2、聚偏氟乙烯薄膜3与金属铝下电极4均固定连接且***呈方框状,所述***的方框内部其中一对相对的边之间为波浪形状的纤毛固定梁5,所述聚丙烯纤毛1垂直固定于纤毛固定梁5的中心处。
一般来说,所述金属铜上电极2的厚度为1-15um;所述聚偏氟乙烯薄膜3的厚度为10-100um,长宽为800um*800um;所述金属铝下电极4的厚度为1-15um;所述聚丙烯纤毛1高度为600um-950um,半径为25-50um;所述纤毛固定梁5的宽度在80um-120um之间,纵向位移长度为600um。
本实施例中,金属铜上电极2,综合考虑电极厚度、大小和相对振动薄膜的位置对于传感器电压信号的和灵敏度的影响,将电极厚度设计为10um,全覆盖于PVDF(聚偏氟乙烯)薄膜上,厚度为50um的PVDF薄膜为了实现电压信号的增幅在800um*800um的平面上进行刻蚀,所以设计了纤毛固定梁5,所形成的梁式结构加大了受力的不均匀程度,进一步提高了电压信号的数值,其中纤毛固定梁5的宽度在80um-120um之间,本实施例中为100um,纵向位移长度为600um,如图3所示;金属铝下电极4也全覆盖于PVDF薄膜之上,厚度为10um。图13~图16为基于MEMS的压电式仿生耳蜗纤毛感受器的一至四阶模态图。
上述基于MEMS的压电式仿生耳蜗纤毛感受器的加工方法,包括如下步骤:
①将表面带有金属层的聚偏氟乙烯薄膜3贴在四寸片上,光刻,厚胶;
②腐蚀聚偏氟乙烯薄膜3上表面的金属,接下来采用等离子体刻蚀聚偏氟乙烯薄膜3到金属铝下电极4;
③聚偏氟乙烯薄膜3上部的光刻胶结余,以在接下来的腐蚀过程中保护金属铜上电极2;
④在金属铝下电极4的背面沾蓝膜,用以保护金属铝下电极4;
⑤最后腐蚀金属铜上电极2形成波浪形的纤毛固定梁5的形状,去除光刻胶和蓝膜。
如图4~图12,利用Comsol软件对所述的传感器进行建模和仿真,模型如图4所示,根据单向极化的PVDF薄膜沿三个方向的电位移D3的一般公式(在没有外部施加电场的情况下):
Figure BDA0002735393910000051
其中,d3为压电应变常数左下标为内部电场方向,右下标为应力方向,对于沿着三个方向的纯压缩模式,该式简化为D3=d33σ3,而对于沿一个方向的纯拉伸模式,方程简化为D3=d31σ1,PVDF的d33和d31的规定值分别为-33×10-12和23×10-12C/N。通常,要在弯曲下生成σ1,需要将PVDF膜粘贴在较厚的材料上,以使中性轴位于PVDF膜的外部。整个PVDF薄膜(VPVDF)产生的总电压由下式给出:
Figure BDA0002735393910000052
其中CPVDF是每单位面积的电容,∈PVDF是PVDF的相对介电常数,tPVDF是PVDF薄膜的厚度,∈0是自由空间的介电常数。
本发明要求保护的范围不限于以上具体实施方式,而且对于本领域技术人员而言,本发明可以有多种变形和更改,凡在本发明的构思与原则之内所作的任何修改、改进和等同替换都应包含在本发明的保护范围之内。

Claims (7)

1.一种基于MEMS的压电式仿生耳蜗纤毛感受器,其特征在于:包括基底和聚丙烯纤毛(1),所述基底包括金属铜上电极(2)、聚偏氟乙烯薄膜(3)与金属铝下电极(4),所述聚偏氟乙烯薄膜(3)位于金属铜上电极(2)与金属铝下电极(4)之间,所述金属铜上电极(2)、聚偏氟乙烯薄膜(3)与金属铝下电极(4)均固定连接且***呈方框状,所述***的方框内部其中一对相对的边之间为波浪形状的纤毛固定梁(5),所述聚丙烯纤毛(1)垂直固定于纤毛固定梁(5)的中心处。
2.根据权利要求1所述的一种基于MEMS的压电式仿生耳蜗纤毛感受器,其特征在于:所述金属铜上电极(2)的厚度为1-15um。
3.根据权利要求1所述的一种基于MEMS的压电式仿生耳蜗纤毛感受器,其特征在于:所述聚偏氟乙烯薄膜(3)的厚度为10-100um,长宽为800um*800um。
4.根据权利要求1所述的一种基于MEMS的压电式仿生耳蜗纤毛感受器,其特征在于:所述金属铝下电极(4)的厚度为1-15um。
5.根据权利要求1所述的一种基于MEMS的压电式仿生耳蜗纤毛感受器,其特征在于:所述聚丙烯纤毛(1)的高度为600um-950um,半径为25-50um。
6.根据权利要求1所述的一种基于MEMS的压电式仿生耳蜗纤毛感受器,其特征在于:所述纤毛固定梁(5)的宽度在80um-120um之间,纵向位移长度为600um。
7.权利要求1所述的一种基于MEMS的压电式仿生耳蜗纤毛感受器的加工方法,其特征在于:包括如下步骤:
①将表面带有金属层的聚偏氟乙烯薄膜(3)贴在四寸片上,光刻,厚胶;
②腐蚀聚偏氟乙烯薄膜(3)上表面的金属,接下来采用等离子体刻蚀聚偏氟乙烯薄膜(3)到金属铝下电极(4);
③聚偏氟乙烯薄膜(3)上部的光刻胶结余,以在接下来的腐蚀过程中保护金属铜上电极(2);
④在金属铝下电极(4)的背面沾蓝膜,用以保护金属铝下电极(4);
⑤最后腐蚀金属铜上电极(2)形成波浪形的纤毛固定梁(5)的形状,去除光刻胶和蓝膜。
CN202011131772.0A 2020-10-21 2020-10-21 基于mems的压电式仿生耳蜗纤毛感受器及其加工方法 Active CN112194096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011131772.0A CN112194096B (zh) 2020-10-21 2020-10-21 基于mems的压电式仿生耳蜗纤毛感受器及其加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011131772.0A CN112194096B (zh) 2020-10-21 2020-10-21 基于mems的压电式仿生耳蜗纤毛感受器及其加工方法

Publications (2)

Publication Number Publication Date
CN112194096A true CN112194096A (zh) 2021-01-08
CN112194096B CN112194096B (zh) 2024-07-05

Family

ID=74010491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011131772.0A Active CN112194096B (zh) 2020-10-21 2020-10-21 基于mems的压电式仿生耳蜗纤毛感受器及其加工方法

Country Status (1)

Country Link
CN (1) CN112194096B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978670A (zh) * 2021-02-19 2021-06-18 上海交通大学 扭转式仿生纤毛流速传感器装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135144A1 (en) * 2001-05-11 2004-07-15 Tetsuo Yamada Film bulk acoustic resonator
CN102522496A (zh) * 2011-12-21 2012-06-27 大连理工大学 柔性弧面聚偏氟乙烯压电传感器及制作方法
CN103759809A (zh) * 2014-01-15 2014-04-30 北京航空航天大学 一种三维压电矢量水听器微结构
CN104121984A (zh) * 2014-08-16 2014-10-29 中北大学 一种高灵敏度谐振式mems矢量水听器结构
US20170155036A1 (en) * 2015-11-27 2017-06-01 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator and electronic instrument using the same
CN107063438A (zh) * 2017-03-10 2017-08-18 中北大学 基于压电效应的mems三维同振型矢量水听器
CN108968929A (zh) * 2018-08-01 2018-12-11 中国科学院深圳先进技术研究院 脉搏检测装置及其制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135144A1 (en) * 2001-05-11 2004-07-15 Tetsuo Yamada Film bulk acoustic resonator
CN102522496A (zh) * 2011-12-21 2012-06-27 大连理工大学 柔性弧面聚偏氟乙烯压电传感器及制作方法
CN103759809A (zh) * 2014-01-15 2014-04-30 北京航空航天大学 一种三维压电矢量水听器微结构
CN104121984A (zh) * 2014-08-16 2014-10-29 中北大学 一种高灵敏度谐振式mems矢量水听器结构
US20170155036A1 (en) * 2015-11-27 2017-06-01 Canon Kabushiki Kaisha Piezoelectric element, piezoelectric actuator and electronic instrument using the same
CN107063438A (zh) * 2017-03-10 2017-08-18 中北大学 基于压电效应的mems三维同振型矢量水听器
CN108968929A (zh) * 2018-08-01 2018-12-11 中国科学院深圳先进技术研究院 脉搏检测装置及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张国军;陈尚;薛晨阳;张斌珍;张开瑞;: "纤毛式MEMS矢量水声传感器的仿生组装", 纳米技术与精密工程, no. 03, pages 35 - 41 *
赵东升;: "PVDF压电薄膜传感器的研制", 物理测试, no. 01, pages 85 - 89 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112978670A (zh) * 2021-02-19 2021-06-18 上海交通大学 扭转式仿生纤毛流速传感器装置
CN112978670B (zh) * 2021-02-19 2023-12-26 上海交通大学 扭转式仿生纤毛流速传感器装置

Also Published As

Publication number Publication date
CN112194096B (zh) 2024-07-05

Similar Documents

Publication Publication Date Title
EP1042822B1 (en) Piezoelectric transducer and method of use
KR101520070B1 (ko) 압전형 마이크로 스피커 및 그 제조 방법
JP6071285B2 (ja) 静電容量型トランスデューサ
DK2362686T3 (en) Sound transducer for insertion into an ear
US9888328B2 (en) Hearing assistive device
EP1542499A2 (en) Acoustic vibration generating element
EP2320678A1 (en) Microphone device with accelerometer for vibration compensation
CN102111702B (zh) 一种陶瓷片呈分布式排列的压电平板扬声器
JP2001503573A (ja) 埋込み可能な補聴器用改良マイクロフォン
US20140291787A1 (en) Structure of mems electroacoustic transducer
CN112194096A (zh) 基于mems的压电式仿生耳蜗纤毛感受器及其加工方法
Kim et al. Improvement of low-frequency characteristics of piezoelectric speakers based on acoustic diaphragms
JP6029056B2 (ja) 人工感覚上皮
US10306385B2 (en) Passive vibration cancellation system for microphone assembly
US8855350B2 (en) Patterned implantable electret microphone
US20140194673A1 (en) Piezoelectric-based, self-sustaining artificial cochlea
Yi et al. Micromachined piezoelectric microspeaker
US20110243350A1 (en) Low noise electret microphone
KR101936805B1 (ko) 하이브리드 이식형 마이크로폰 및 제어 방법
KR20060127013A (ko) 압전형 초소형 스피커 및 그 제조 방법
WO2022110420A1 (zh) 压电mems麦克风及其阵列和制备方法
US8107647B2 (en) Ring transducers for sonic, ultrasonic hearing
WO2015062138A1 (zh) 一种压电式受话器
US20190100429A1 (en) Mems devices and processes
US20170112614A1 (en) Self-sustaining artificial cochlea

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant