CN112187119B - 一种用于带lcl输出滤波器的永磁电机双环电流控制方法 - Google Patents

一种用于带lcl输出滤波器的永磁电机双环电流控制方法 Download PDF

Info

Publication number
CN112187119B
CN112187119B CN202010947136.9A CN202010947136A CN112187119B CN 112187119 B CN112187119 B CN 112187119B CN 202010947136 A CN202010947136 A CN 202010947136A CN 112187119 B CN112187119 B CN 112187119B
Authority
CN
China
Prior art keywords
control
controller
capacitor voltage
motor current
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010947136.9A
Other languages
English (en)
Other versions
CN112187119A (zh
Inventor
黄允凯
姚宇
彭飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202010947136.9A priority Critical patent/CN112187119B/zh
Publication of CN112187119A publication Critical patent/CN112187119A/zh
Application granted granted Critical
Publication of CN112187119B publication Critical patent/CN112187119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P23/0009Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/0004Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P23/0022Model reference adaptation, e.g. MRAS or MRAC, useful for control or parameter estimation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/28Controlling the motor by varying the switching frequency of switches connected to a DC supply and the motor phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开了一种用于带LCL输出滤波器的永磁电机双环电流控制方法,包括电容电压控制内环和电机电流控制外环。其中,电容电压内环设计为无差拍控制,并且其控制频率设定为外环控制器的两倍。电容电压内环控制器包括前馈补偿、反馈控制及状态反馈矩阵,前馈补偿的作用使得电容电压内环控制的动态响应达到无差拍效果;反馈控制以消除参数摄动带来的稳态误差;状态反馈矩阵为***提供阻尼,削弱LC振荡。本发明解决了带LCL输出滤波器的永磁电机驱动中电流控制器结构复杂、设计难度大等问题,且传统的电机电流控制算法均可用于该方法中的外环电流控制,只需要设计降阶的电容电压内环控制器,较大程度上减少了带LCL输出滤波的永磁电机电流控制器设计难度。

Description

一种用于带LCL输出滤波器的永磁电机双环电流控制方法
技术领域
本发明涉及一种用于带LCL输出滤波器的永磁电机双环电流控制方法,属于永磁电机控制技术领域。
背景技术
在传统的永磁同步电机驱动中,通常将电机与基于脉冲宽度调制(Pulse WidthModulation,PWM)的逆变器直接相连,而对于电感相对较小的永磁电机,逆变器的开关斩波动作会造成较大的谐波电流,导致电机驱动效率下降、发热严重。
为了解决上述问题,引入LCL输出滤波器,负责连接于电机和逆变器,可将谐波电流滤除,增加电机电流的正弦度。但是引入LCL输出滤波器会使得***阶数升高,出现不稳定谐振,使得传统的电流控制器难以适用,因此大大增加了带LCL输出滤波器的永磁电机电流控制的难度。如何实现简便且有效的电流控制是目前研究中的重点内容。
发明内容
本发明所要解决的技术问题是:提供一种用于带LCL输出滤波器的永磁电机双环电流控制方法,解决了现有带LCL输出滤波器的永磁电机电流控制中存在的问题,实现了简便有效的电机电流控制,较大地提高了电机***的控制性能。
本发明为解决上述技术问题采用以下技术方案:
一种用于带LCL输出滤波器的永磁电机双环电流控制方法,所述双环电流控制方法包括电容电压内环控制和电机电流外环控制,且电容电压内环控制的控制频率为电机电流外环控制的控制频率的两倍;
所述电容电压内环控制包括前馈补偿、反馈控制和状态反馈矩阵,其中前馈补偿的输入为电容电压给定值和电机电流反馈值,反馈控制的输入为电容电压给定值和电容电压反馈值,状态反馈矩阵的输入为电容电压反馈值和逆变器输出电流,前馈补偿的输出为逆变器调制电压的第一部分,反馈控制的输出为逆变器调制电压的第二部分,状态反馈矩阵的输出为逆变器调制电压的第三部分,逆变器调制电压的第一、第二和第三部分之和为电容电压内环控制的输出;
所述反馈控制的控制器表示如下:
Figure GDA0003458122710000021
其中,k表示时刻;
Figure GDA0003458122710000022
为反馈控制器输出电压;Q为收敛矩阵;s(k)为滑模面函数;ρ为符号函数的增益,ρ为正常数;sgn为符号函数;i1dq为逆变器输出电流;ucdq为电容电压;xr为电机电流误差的积分;i2ref为电机电流给定值;
Figure GDA0003458122710000023
G41、G42、G43、G44、sr均为系数矩阵;
电机电流外环控制的输入为电机电流给定值和电机电流反馈值,输出为电容电压给定值。
作为本发明的一种优选方案,所述电机电流外环控制采用永磁电机电流控制器,永磁电机电流控制器包括比例积分控制器、状态反馈控制器、滑模控制器或自适应控制器。
作为本发明的一种优选方案,所述电容电压内环控制为无差拍控制,其闭环传递函数为z-2,z为离散域运算符。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:
1、本发明双环电流控制方法中的外环电流控制器可为传统的永磁电机电流控制器,极大地简便了带LCL输出滤波的永磁电机电流控制器设计。
2、本发明双环电流控制方法中的电容电压内环控制对象为纯LC谐振***,控制器参数只与LCL滤波器参数相关,与电机参数无关,因此本发明中的电容电压内环具有一定的通用性。
附图说明
图1是本发明带LCL输出滤波器的永磁电机驱动等效电路。
图2是本发明一种用于带LCL输出滤波器的永磁电机双环电流控制方法的控制结构框图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
如图2所示,本发明提供了一种用于带LCL输出滤波器的永磁电机双环电流控制方法,双控制环分别为电容电压控制内环和电机电流控制外环。带LCL输出滤波器的高速永磁电机分立连续模型如下所示:
Figure GDA0003458122710000031
其中,i1αβ为逆变器输出电流复矢量;i2αβ为电机输入电流复矢量;ucαβ为电容电压复矢量;uαβ为逆变器输出电压复矢量;eαβ为电机反电势复矢量;R为电机电阻;L1为滤波器的逆变器侧电感;L2=L1o+Ls,L1o为滤波器的电机侧电感,Ls为电机绕组电感。
高速永磁电机转速较高,因而电流基波频率较高,但是逆变器的开关频率受开关损耗限制,为了实现低载波比下的带LCL输出滤波器的高速永磁电机控制,采用零阶保持的离散方法,得到精确离散化的分立数学模型,并旋转坐标变换后,如下所示:
Figure GDA0003458122710000032
其中,
Figure GDA0003458122710000041
为了便于电容电压内环设计,上述离散数学模型进一步细化,并考虑差一拍数字延时,如下所示:
Figure GDA0003458122710000042
其中,
Figure GDA0003458122710000043
为逆变器调制电压;H2i2dq(k)为已知扰动项,可以直接前馈补偿;由于状态矩阵含有谐振极点,可通过状态反馈阻尼谐振,使内环***开环稳定;由于扰动观测器和状态反馈均为传统控制方法,本发明不再赘述其设计过程。对于***反馈控制器,为了消除稳态误差,引入电流误差的积分项,如下所示:
xr(k+1)=xr(k)+i2ref-i2dq(k) (5)
因此带误差积分项的扩张内环模型,如下所示:
Figure GDA0003458122710000044
基于上述扩张,设计滑模面,如下所示:
s(k)=si1i1dq(k)+sucucdq(k)+srxr(k)+suudq(k) (7)
为了获取滑动模态的动态方程,引入坐标变换,如下所示:
Figure GDA0003458122710000045
经过上述坐标变换并且前馈补偿后,带误差积分项的扩张内环模型如下所示,
Figure GDA0003458122710000046
因此,滑动模态的动态方程为
Figure GDA0003458122710000055
采用传统的滑模趋近率,如下所示:
s(k+1)=Qs(k)-ρsgn(s(k)) (11)
综上所述,得到最终的用于电容电压内环反馈控制中的滑模控制器,如下所示:
Figure GDA0003458122710000051
其中,Q为收敛矩阵,特征根小于1;ρ为符号函数的增益,为正常数;sgn为符号函数;
Figure GDA0003458122710000052
G41,G42,G43,G44,sr均为系数矩阵;i2ref为电机电流给定值;
Figure GDA0003458122710000053
为反馈控制器输出电压;i1dq为逆变器输出电流;ucdq为电容电压;xr为电机电流误差的积分;s(k)为滑模面函数。
电机电流外环可为传统的永磁电机电流控制算法,包括但不限于比例积分控制器,状态反馈控制器,滑模控制器和自适应控制器等。因此具体设计过程也不再赘述。本发明提供一种电机电流外环控制器结构仅作为参考,如下所示:
Figure GDA0003458122710000054
本发明双环电流控制方法的流程如下:
S1:中断开始,进入算法主程序,中断频率与电容电压内环控制频率相同。
S2:根据外环工作标志位,判断外环是否工作:
S21:若外环工作标志位为1,电机电流外环控制器工作,输入为电机电流给定值和电机电流反馈值,输出为电容电压给定值,外环工作标志位清零。
S22:若外环工作标志位为0,电机电流外环控制器不工作,电容电压给定值保持不变,外环工作标志位置位。
S3:电容电压内环控制器工作,输入为电容电压给定值和电容电压反馈值,输出为逆变器调制电压。
S4:进入PWM调制器,更新PWM占空比,调试方式可为SPWM(Sinusoidal PulseWidth Modulation,正弦脉宽调制)或者SVPWM(Space Vector Pulse Width Modulation,空间矢量脉宽调制)。
S5:中断结束,等待下次中断触发。
以上实施例仅为说明本发明的技术思想,不能以此限定本发明的保护范围,凡是按照本发明提出的技术思想,在技术方案基础上所做的任何改动,均落入本发明保护范围之内。

Claims (3)

1.一种用于带LCL输出滤波器的永磁电机双环电流控制方法,其特征在于,所述双环电流控制方法包括电容电压内环控制和电机电流外环控制,且电容电压内环控制的控制频率为电机电流外环控制的控制频率的两倍;
所述电容电压内环控制包括前馈补偿、反馈控制和状态反馈矩阵,其中前馈补偿的输入为电容电压给定值和电机电流反馈值,反馈控制的输入为电容电压给定值和电容电压反馈值,状态反馈矩阵的输入为电容电压反馈值和逆变器输出电流,前馈补偿的输出为逆变器调制电压的第一部分,反馈控制的输出为逆变器调制电压的第二部分,状态反馈矩阵的输出为逆变器调制电压的第三部分,逆变器调制电压的第一、第二和第三部分之和为电容电压内环控制的输出;
所述反馈控制的控制器表示如下:
Figure FDA0003458122700000011
其中,k表示时刻;
Figure FDA0003458122700000012
为反馈控制器输出电压;Q为收敛矩阵;s(k)为滑模面函数;ρ为符号函数的增益,ρ为正常数;sgn为符号函数;i1dq为逆变器输出电流;ucdq为电容电压;xr为电机电流误差的积分;i2ref为电机电流给定值;
Figure FDA0003458122700000013
G41、G42、G43、G44、sr均为系数矩阵;
电机电流外环控制的输入为电机电流给定值和电机电流反馈值,输出为电容电压给定值。
2.根据权利要求1所述用于带LCL输出滤波器的永磁电机双环电流控制方法,其特征在于,所述电机电流外环控制采用永磁电机电流控制器,永磁电机电流控制器包括比例积分控制器、状态反馈控制器、滑模控制器或自适应控制器。
3.根据权利要求1所述用于带LCL输出滤波器的永磁电机双环电流控制方法,其特征在于,所述电容电压内环控制为无差拍控制,其闭环传递函数为z-2,z为离散域运算符。
CN202010947136.9A 2020-09-10 2020-09-10 一种用于带lcl输出滤波器的永磁电机双环电流控制方法 Active CN112187119B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010947136.9A CN112187119B (zh) 2020-09-10 2020-09-10 一种用于带lcl输出滤波器的永磁电机双环电流控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010947136.9A CN112187119B (zh) 2020-09-10 2020-09-10 一种用于带lcl输出滤波器的永磁电机双环电流控制方法

Publications (2)

Publication Number Publication Date
CN112187119A CN112187119A (zh) 2021-01-05
CN112187119B true CN112187119B (zh) 2022-03-11

Family

ID=73921698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010947136.9A Active CN112187119B (zh) 2020-09-10 2020-09-10 一种用于带lcl输出滤波器的永磁电机双环电流控制方法

Country Status (1)

Country Link
CN (1) CN112187119B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118028B (zh) * 2011-01-27 2013-01-23 华中科技大学 一种三相lcl型并网逆变器电流谐波抑制控制方法
CN105449818B (zh) * 2015-12-28 2018-04-20 国电南瑞科技股份有限公司 一种用于有轨电车超级电容的充电装置及充电方法
CN106532701B (zh) * 2016-11-16 2019-01-18 西安交通大学 Lcl型有源电力滤波器及其控制方法
CN107134936A (zh) * 2017-05-22 2017-09-05 天津威瀚电气股份有限公司 一种基于全状态反馈的逆变器有源阻尼控制方法
CN111293715A (zh) * 2019-07-10 2020-06-16 西安交通大学 一种三相并网逆变器不同工况下的控制方法
CN110635707B (zh) * 2019-09-18 2020-10-30 华中科技大学 基于谐波干扰观测器的三相lcl型逆变器控制方法及装置
CN110752603B (zh) * 2019-09-23 2021-03-19 中国科学院电工研究所 一种串联逆变器的复合控制方法、存储介质及设备
CN111245017B (zh) * 2020-03-06 2023-04-25 河南理工大学 一种弱电网下并网逆变器电容电压前馈控制方法

Also Published As

Publication number Publication date
CN112187119A (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
Huang et al. Torque ripple suppression of PMSM using fractional-order vector resonant and robust internal model control
Li et al. Multiple-loop digital control method for a 400-Hz inverter system based on phase feedback
CN110299728B (zh) 一种电压控制型逆变器的主导动态消除控制***及控制方法
CN107302219B (zh) 一种有源电力滤波器电网角度的闭环控制方法
Hu et al. Improved current dynamics of proportional-integral-resonant controller for a dual three-phase FSPM machine
CN112701720A (zh) 一种交流微网带恒功率负载的混合控制策略
Cai et al. Active-damping disturbance-rejection control strategy of LCL grid-connected inverter based on inverter-side-current feedback
Zhang et al. Model predictive current control with optimal duty cycle for three-phase grid-connected AC/DC converters
CN112510761A (zh) 级联h桥光伏逆变器功率自适应谐波补偿策略
Wang et al. Generalized predictive DC-link voltage control for grid-connected converter
Zhang et al. A current harmonic suppression method for PMSM based on harmonic prediction adaptive notch filter
CN112187119B (zh) 一种用于带lcl输出滤波器的永磁电机双环电流控制方法
Bhanuchandar et al. A new single modulating and single carrier‐based predictive current control technique for single‐phase quadruple boost multilevel inverter topology
Yuan et al. Performance improvement for PMSM control system based on composite controller used adaptive internal model controller
Li et al. Active disturbance rejection control of three-phase grid-connected photovoltaic systems
CN114531087B (zh) 一种基于电流源逆变器的高速永磁同步电机优化控制方法
CN111064380A (zh) 一种并网逆变器***
CN113964837B (zh) 适用于lcl型并联有源电力滤波器的复合控制方法和***
Pan et al. DC-link voltage disturbance rejection strategy of PWM rectifiers based on reduced-order LESO
CN105896591A (zh) 光伏并网逆变器自适应控制方法
Zeng et al. Modified linear active disturbance rejection control for microgrid inverters: Design, analysis, and hardware implementation
Deng et al. A harmonic current suppression method for single-phase pwm rectifier based on feedback linearization
Hu et al. A generic multicell network control for three-phase grid-connected inverters
Huang et al. Design of IDA-PBC Controller for LCL-Filtered Grid-Connected Inverter
Fang et al. An nonlinear control strategy for single-phase quasi-Z-source grid-connected inverter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant