CN112094864A - 利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法 - Google Patents

利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法 Download PDF

Info

Publication number
CN112094864A
CN112094864A CN202011032661.4A CN202011032661A CN112094864A CN 112094864 A CN112094864 A CN 112094864A CN 202011032661 A CN202011032661 A CN 202011032661A CN 112094864 A CN112094864 A CN 112094864A
Authority
CN
China
Prior art keywords
tobacco
gene
ntcyp94b3s
plants
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011032661.4A
Other languages
English (en)
Inventor
杨大海
王蕾
杨飞
汤金香
白戈
李勇
逄涛
姚恒
谢贺
陈学军
肖炳光
费明亮
张谊寒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Academy of Tobacco Agricultural Sciences
Original Assignee
Yunnan Academy of Tobacco Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Academy of Tobacco Agricultural Sciences filed Critical Yunnan Academy of Tobacco Agricultural Sciences
Priority to CN202011032661.4A priority Critical patent/CN112094864A/zh
Publication of CN112094864A publication Critical patent/CN112094864A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Nutrition Science (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法,所述烟草细胞色素C基因NtCYP94B3s的核苷酸序列如序列表SEQ ID NO:1所示,方法是先构建植物RNAi载体。然后鉴定农杆菌介导的烟草转化及转基因植株,之后提取野生型植株和25株转pHellsgate12的RNA基因T0代植株的总RNA,进行Real time‑PCR分析,内参基因为26s,分析不同株系的表达情况,选取表达量最低的2株植株。本发明中,在烟草植株内抑制烟草内源基因NtCYP94B3s的表达会使烟草叶片数及生物量明显提高。该方法具有广阔的应用前景,经济效益潜力巨大。

Description

利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物 量的方法
技术领域
本发明属于遗传工程技术领域,具体涉及一种烟草细胞色素C基因NtCYP94B3s应用。
背景技术
烟草是重要的经济作物,烟草中含生物碱约1%~9%及芸香苷、有机酸、脂肪、树脂、蛋白质、糖、香料等物质。在化工、农药和医药等领域有十分广泛的用途。烟草具有很强的生理活性,我国传统医药有许多利用烟草治病的记载。现代科技对烟草的研究已取得许多成果。烟碱可用适当的方法和剂量制成戒烟制剂,如无烟的烟草、尼古丁口香糖、尼古丁贴剂、尼古丁喷雾剂等。在疾病防治方面,利用烟碱对中枢神经***的广泛作用,通过对脑内神经元烟碱受体亚型结构和功能的鉴别,利用烟碱受体亚型激动剂和拮抗剂的有利作用,为某些中枢疾病防治开辟了一条新途径。烟碱可制成植物源杀虫剂,是防治蔬菜害虫的理想药剂,对各类害虫触杀、熏蒸或胃毒效果都很好,由于是天然物质,最大特点是没有残毒,不造成二次污染,不产生耐药性,是保护生态环境的生物活性农药。转基因烟草可作为生物反应器生产药物,全球有六家生物技术公司利用不同的技术路线将人类基因导入烟草中,以使烟草生产出人类需要的蛋白质、抗体和酶。烟草中的蛋白质可提取加工成食用和工业用蛋白质,烟草中的香料物质可以作为食品添加剂。
烟草的经济价值主要体现在烟叶部分,烟叶的产量决定了烟农的收益。而烟叶产量主要取决于叶片数量及生物量多少。叶片数多并且株型较好则单位种植面积烟叶的产量越高。
目前提高烟草叶片数与生物量的方法主要还是通过常规育种筛选具有优良株型及叶片的品种,常规育种筛选手段主要是通过品种与资源的反复杂交,回交最终获得优异的品种,但其存在育种周期较长,而且资源狭窄的问题。
发明内容
本发明的目的是提供一种育种周期短、易于扩展资源的利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法。
本发明采取的技术方案如下:
利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法,其特征在于,所述的烟草细胞色素C基因NtCYP94B3s的核苷酸序列如序列表SEQ ID NO:1所示,氨基酸序列如序列表SEQ ID NO:2所示,方法如下:
(1)构建植物RNAi载体:以Nicotiana attenuata的cDNA为模板,用含有gateway接头序列的引物进行PCR扩增,扩增产物经PCR产物纯化后,经过BP反应***到invitrogen公司pdonr-zeo载体中,将构件好的BP反应载体通过LR反应将NtCYP94B3s片段置换到PHellsgate12 RNAi干扰载体中;所述gateway反应引物的核苷酸序列如序列表SEQ ID NO:3和SEQ ID NO:4;
(2)鉴定农杆菌介导的烟草转化及转基因植株:先采用冻融法转化农杆菌,再用叶盘法转化烟草Nicotiana attenuata,得到稳定的转基因株系,采用Qiagen公司DNA提取试剂盒,提取转基因株系幼苗的基因组DNA,设计Kan抗性基因引物进行PCR扩增,筛选阳性植株,检测到25株阳性植株;所述Kan抗性基因引物的核苷酸序列如序列表SEQ ID NO:5和SEQID NO:6;
(3)提取野生型植株和25株转pHellsgate12的RNA基因T0代植株的总RNA,进行Real time-PCR分析,内参基因为26s,分析不同株系的表达情况,选取表达量最低的2株植株。
进一步地,所述的烟草细胞色素C基因NtCYP94B3s的核苷酸序列为与序列表SEQID No:1限定的DNA序列杂交的核苷酸序列,或者与序列表SEQ ID No:1限定的DNA序列具有70%以上同源性,且编码相同功能蛋白质的DNA序列。
本发明通过在烟草植株体内抑制所述NtCYP94B3s基因的表达,可明显提高烟草中JA及JA-IIe的含量,从而提高烟草叶片数与生物量,具有广阔的应用前景,经济效益潜力巨大。
附图说明
图1为NtCYP94B3s基因的RNAi片段PCR产物电泳图;
其中,M-分子量标记;1-PCR产物;
图2为中间载体Pdonr-zeo图;
图3为NtCYP94B3s基因植物RNAi干扰载体pHellsgate12图;
图4为NtCYP94B3s基因RNAi干扰烟草植株的JA及JA-IIe含量示意图;
其中,Nicotiana attenuata对照;NtCYP94B3s-7和NtCYP94B3s-22为转基因烟株。
具体实施方式
下面结合实施例和附图对本发明作进一步的说明,但不以任何方式对本发明加以限制,基于本发明教导所作的任何变换或替换,均属于本发明的保护范围。
利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法,其特征在于,所述的烟草细胞色素C基因NtCYP94B3s的核苷酸序列如序列表SEQ ID NO:1所示,或者与序列表SEQ ID No:1限定的DNA序列杂交的核苷酸序列,或者与序列表SEQ ID No:1限定的DNA序列具有70%以上同源性,且编码相同功能蛋白质的DNA序列。所述烟草细胞色素C基因NtCYP94B3s编码的氨基酸序列如序列表SEQ ID NO:2所示。
本发明方法是在烟草植株体内抑制所述NtCYP94B3s基因的表达,可提高烟草JA含量,进而提高烟草叶片数与生物量。可通过由RNA介导的多种方法抑制NtCYP94B3s基因的表达,如:植物病毒载体介导基因沉默的方法、农杆菌介导转化RNAi干扰载体、优化修改基因编码匡、优化基因启动子等方法,但并不限于上述几种方法,只要能抑制NtCYP94B3s表达即可。
下面的实施例中所有的植物组织材料取自渐狭叶烟草。烟草植株的生长和发育阶段都是在人工气候室中,并保持生长温度在22-25℃之间,以尽量减少外界环境因素的影响。实验选取的烟草材料为6-7叶期,发育表型相近的非转基因烟株及转基因烟株。采取非转基因烟株及转基因烟株的相同叶位叶片进行采样,将这些烟草材料测定JA(茉莉酸)含量。
本发明方法具体如下:
1、植物RNAi载体的构建
以Nicotiana attenuata的cDNA为模板,用含有gateway接头序列的引物进行PCR扩增(图1),扩增产物经PCR产物纯化后,经过BP反应***到invitrogen公司pdonr-zeo载体(见图2)中,将构件好的BP反应载体通过LR反应将NtCYP94B3s片段置换到PHellsgate12RNAi干扰载体(见图3)中。
(1)gateway反应引物的核苷酸序列如序列表SEQ ID NO:3和SEQ ID NO:4,具体如下:
SEQ ID NO:3
3NtCYP94B3s_F
5’-AAA AAG CAG GCT CGA TGG AAC ACA CAG CGC AAA TT-3’;
SEQ ID NO:4
NtCYP94B3s_R
5’-A GAA AGC TGG G GAT CTC GTT AAT ACA ACA GTG AAC ACG-3’。
(2)PCR反应均采用Phusion高保真聚合酶进行PCR克隆。
(3)BP反应:
(a)在200μL离心管中准备8μL的反应体系,包括:1-7μL的attB-PCR产物(约15~150ng,质量浓度≥10ng/μL)、1μL 150ng/μL的pdonr-zeo载体和适量的TE缓冲液(pH 8.0),在室温下混匀;
(b)将BP ClonaseTM II酶混合物在冰上静置2min融化,轻轻震荡2次,混匀待用;
(c)向(1)准备的样品中加入2μL的BP ClonaseTM II酶混合物,轻轻地将体系混匀;
(d)将BP ClonaseTM II酶混合物放回到-20℃或者-80℃保存;
(e)将反应体系放在25℃温浴1h;
(f)向反应体系中加入1μL的蛋白酶K溶液,轻轻震荡,然后将样品放在37℃温浴10min,以便终止BP反应;
(g)将混合液转化大肠杆菌后,取转化菌液涂在含Zeacin抗性的LB平板上,挑取菌落至含相应抗生素培养基溶液中摇菌培养,提取阳性克隆的pDONR-Zeocin质粒(图2)备用。
(4)LR反应:
(a)在200μL离心管中准备8μL的反应物,包括:1-7μL的获得的pDONR-Zeocin质粒(50-150ng)、1μL150 ng/μL的目的载体和适量的TE缓冲液(pH 8.0),在室温下混匀;
(b)将LR ClonaseTM II酶混合物静置在冰上2min融化,轻轻震荡2次以混匀;
(c)加入2μL的LR ClonaseTM II酶混合物,轻轻震荡将体系混匀;
(d)将LR ClonaseTM II酶混合物放回到-20℃或者-80℃冰箱保存;
(e)将反应体系放在25℃温浴反应1h;
(f)向反应体系中加入1μL的蛋白酶K溶液以终止LR反应,轻轻震荡后,将样品放在37℃静置10min;经过摇菌扩繁后得到pHellsgate12 RNAi干扰载体。
2、农杆菌介导的烟草转化及转基因植株的鉴定
(1)冻融法转化农杆菌:将1μg(200ng/μL)pHellsgate12重组载体加入到100μL感受态农杆菌LBA4404中,混匀后在冰上静置5min,放入液氮中冷冻5min,然后从液氮中取出,放入37℃水浴锅中水浴5min,再在冰上静置5min后,加入500μL LB溶液,在28℃、充分震荡条件下恢复培养4h,最后将菌液均匀涂抹于选择性平板培养基上,28℃下培养48h。
(2)叶盘法转化烟草Nicotiana attenuata,具体方法如下:
(a)无菌条件下,将烟草Nicotiana attenuata种子放入EP管中用无菌水冲洗2-3次;
(b)于75%的酒精中浸泡30-60s;
(c)再用0.1%的升汞处理5min,最后用无菌水冲洗5次;
(d)播种于MS培养基上,培养在云南烟草农业科学研究院组织培养室中,暗培养4d,25℃光照培养20-30d;
(e)待烟草苗长至3-5cm时(20-30d),取顶芽放于MS+BA 0.2mg/L(壮芽,使其快速成长)培养基上,继代培养;
(f)继代培养14天后(有小叶片即可),取叶片,大小1cm×1cm,切去叶柄,叶片表面及叶边缘划伤,放入MS+BA1.0mg/L pH 6.0-6.5的预培养培养基上,正面朝下紧贴培养基放置,于黑暗条件下预培养2-3d;
(g)然后取出预培养的叶片或茎段,放入农杆菌侵染液中进行侵染。侵染前一天晚上,摇菌农杆菌2瓶。将2mL离心管装满菌液,4000r/min离心5min,用悬菌液清洗两次。以1:10比例(10mL悬菌液放1管1.5mL菌体)放入悬菌液,加入As 25mg/L(40mL中加40μL As)不断摇晃侵染液,使其与叶片及茎段切口处充分接触,10min后,取出,放于灭过菌的干燥滤纸上吸干菌液;
其中,农杆菌侵染液的制备方法如下:
1)取-80℃冰箱保存的已被转化的农杆菌,划平板培养,LB固体平板中加入50mg/Lspec和50mg/L Rif;
2)挑取单菌斑到含50mg/L spec和50mg/L Rif的5mL LB液体培养基中,放入摇床中28℃、200r/min培养过夜(12-16h);
3)保存菌种,750μL菌液加入灭过菌的甘油250μL,-80℃冰箱保存备用;
4)摇菌,LB液体培养基10mL加spec(所需浓度50mg/L)10μL、Rif(所需浓度50mg/L)10μL及菌液10μL,28℃、200r/min过夜培养(12-16h);
5)当菌液浓度达到OD600=1.5左右时,取2mL菌液加入到离心管中,4000r/min离心5min;
6)倒掉上清液,吸1mL新的MS液体培养基,重悬农杆菌,4000r/min离心5min;
7)重复步骤(6)1次;
8)用1mL的MS液体培养基重悬菌后,再加入到40mL的MS的液体培养基中(含40ul25mg/L的As),即为侵染液。放置2h以上,再侵染;
200mL悬菌液的配制如下:
20×大量元素10mL,
200×有机元素1ml,
200×铁盐1mL,
200×微量元素1mL,
蔗糖5.6g;
(h)将叶片及茎段放回到预培养基上,28℃黑暗条件下共培养2-3天,至叶片切口周围有微菌斑形成;
(i)洗菌,取出共培养的烟草叶片及茎段,用添加500mg/L Cef的无菌水冲洗5次,第一次放置于摇床摇30min,后面每次5min,以洗去外植体表面的农杆菌;
(j)取出后,用滤纸吸干,转移到烟草诱芽培养基上,诱芽培养基为MS+BA1.0mg/L+Kan 25mg/L+Cef 500mg/L pH 5.8;过2周观察,如果发现不长菌,则降低Cef浓度。如果长菌,则继续保持Cef浓度;
(k)每2周更换1次培养基,直至长出不定芽(一般情况为2周)。切下再生的小苗(1cm左右),转入继代培养基MS+BA 0.2-0.1mg/L+Kan 25mg/L+Cef500mg/L pH 5.8;
(l)至小苗长至2cm长时(有小芽即可),转接入生根培养基MS+NAA0.2-0.1mg/L上,24±1℃、12h光照、1500lx培养3周左右,长出粗壮根系;
(m)待根生长至2-3cm。苗高7-10cm左右时,移出三角瓶洗去根部培养基,移栽于花盆中,温室培养;
(3)得到稳定的转基因株系:采用Qiagen公司DNA提取试剂盒,提取转基因株系烟草幼苗的基因组DNA,设计Kan抗性基因引物进行PCR扩增,筛选阳性植株,检测到25株阳性植株。Kan抗性基因引物的核苷酸序列如序列表SEQ ID NO:5和SEQ ID NO:6,具体如下:
SEQ ID NO:5
Kan F:5’-TCTGGACGAAGAGCATCAGG-3’
SEQ ID NO:6
Kan R:5’-ATGAATCCAGAAAAGCGGCC-3’
3、提取野生型植株和25株转pHellsgate12的RNA基因T0代植株的总RNA,进行Realtime-PCR分析,内参基因为26s,分析不同株系的表达情况。选取表达量最低的2株植株。
4、选择野生型和转基因植物,在田间各种植20棵植物,并测量了植物开花时的高度。转基因植物平均高度比野生型植物低1-2厘米(图4)。8周后,干燥植物叶片并测量其重量和叶片数,与WT相比,转基因植物叶片的总重量分别增加了155.1g,135.8g和叶片数也分别增加了66、60(图4)。这些结果表明,沉默NtCYP94B3s会稍微阻碍植物的高度,但会增加叶片及生物量。
序列表
<110> 云南省烟草农业科学研究院
<120> 利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法
<141> 2020-09-27
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1509
<212> DNA
<213> 烟草植物(Nicotiana attenuata)
<400> 1
atgtttcttt ccctcttact ttccttcatt ttagggtttc tttccttctc ttttttgtct 60
ttctccaaaa aacttcatct caaattccga agaatcactc ccatctatgg cccttcctct 120
tacccaatcc ttggctgtct tatttccttt tacaaaaatc gtcaccgtct attggattgg 180
tacactggac ttttggctga gtcacctaca caaaccattc tagttcaacg ttttggcgca 240
cctcgaacta taatcacagc caatgcgaat aacgtcgagc acattctcaa aacgaacttt 300
attaattatc cgaaaggcca gccatttaca gagatattag gcgattttct cgggatgggg 360
atcttcaacg tggacggcga gcgatggaac acacagcgca aattggcgag ccacgagttc 420
agcacaaagt cattgaggga atttgtggtc aaaactttag aagaagtagt tgagacgaga 480
ctgattccat tgcttgacca agctgcaaaa tctaccaaag ttgtggactt gcaggacgtg 540
cttaggcgtt ttgcattcga cactatttgc aaggtgtcac tcggcactga cccacattgc 600
ttggatgatc tttcgcacgt gccagttctc gttgaagcgt ttgacaacgc ttcacaagcg 660
tgtgccatgc gtgggatggc gcctatatac gcggtctgga aaagcaagag agcgctcaat 720
ttaggatccg agaagaagct gaaagaaaac gtgaaacgtg ttcactgttg tattaacgag 780
atcatagaga aaaagaaaca aaagatcaat gaaaatgagg atcacaaaaa catggatctc 840
ctctcgaggt tattaattgc tggccacgag gatgaagtgg tgagagatat ggtcataagt 900
tttttaatgg caggaagaga tactacttct tcagccttga cttggctttt ttggttaact 960
accaaacatc acaaagtcaa aagcgaaatg atcaatgaaa taacgtctat caacaatggc 1020
gataaggcac tcgaattcga cgacttgaaa gagatgaagt atttacaagc atgcttgaat 1080
gaatcaatga ggctttatcc gccagtggca tgggactcaa agcatgcggc taaagatgac 1140
attttacccg acggtacaag aattcaaaaa gggaatagag tgacttattt tcagtacgga 1200
atgggtagaa tggaggagat atggggaaaa gaccgacttg aatttaaacc ggatcgttgg 1260
ttggatgaaa atggagtgtc gaaaagtgtt tgtccatata aatttccagt gtttcaagca 1320
ggtccaaggg tgtgtttggg aaaagaaatg gcattcacac agatgaagta tgtgttggct 1380
tcagtattaa ggcggttcga gattaaaccg gttaatgtag ataagccggt ttttgtgcct 1440
cttttaactg cacatatggc aggtggtttt aatgtgcgaa tttatcaccg tgcatcgaat 1500
gaaatgtaa 1509
<210> 2
<211> 502
<212> PRT
<213> 烟草植物(Nicotiana attenuata)
<400> 2
Met Phe Leu Ser Leu Leu Leu Ser Phe Ile Leu Gly Phe Leu Ser Phe
1 5 10 15
Ser Phe Leu Ser Phe Ser Lys Lys Leu His Leu Lys Phe Arg Arg Ile
20 25 30
Thr Pro Ile Tyr Gly Pro Ser Ser Tyr Pro Ile Leu Gly Cys Leu Ile
35 40 45
Ser Phe Tyr Lys Asn Arg His Arg Leu Leu Asp Trp Tyr Thr Gly Leu
50 55 60
Leu Ala Glu Ser Pro Thr Gln Thr Ile Leu Val Gln Arg Phe Gly Ala
65 70 75 80
Pro Arg Thr Ile Ile Thr Ala Asn Ala Asn Asn Val Glu His Ile Leu
85 90 95
Lys Thr Asn Phe Ile Asn Tyr Pro Lys Gly Gln Pro Phe Thr Glu Ile
100 105 110
Leu Gly Asp Phe Leu Gly Met Gly Ile Phe Asn Val Asp Gly Glu Arg
115 120 125
Trp Asn Thr Gln Arg Lys Leu Ala Ser His Glu Phe Ser Thr Lys Ser
130 135 140
Leu Arg Glu Phe Val Val Lys Thr Leu Glu Glu Val Val Glu Thr Arg
145 150 155 160
Leu Ile Pro Leu Leu Asp Gln Ala Ala Lys Ser Thr Lys Val Val Asp
165 170 175
Leu Gln Asp Val Leu Arg Arg Phe Ala Phe Asp Thr Ile Cys Lys Val
180 185 190
Ser Leu Gly Thr Asp Pro His Cys Leu Asp Asp Leu Ser His Val Pro
195 200 205
Val Leu Val Glu Ala Phe Asp Asn Ala Ser Gln Ala Cys Ala Met Arg
210 215 220
Gly Met Ala Pro Ile Tyr Ala Val Trp Lys Ser Lys Arg Ala Leu Asn
225 230 235 240
Leu Gly Ser Glu Lys Lys Leu Lys Glu Asn Val Lys Arg Val His Cys
245 250 255
Cys Ile Asn Glu Ile Ile Glu Lys Lys Lys Gln Lys Ile Asn Glu Asn
260 265 270
Glu Asp His Lys Asn Met Asp Leu Leu Ser Arg Leu Leu Ile Ala Gly
275 280 285
His Glu Asp Glu Val Val Arg Asp Met Val Ile Ser Phe Leu Met Ala
290 295 300
Gly Arg Asp Thr Thr Ser Ser Ala Leu Thr Trp Leu Phe Trp Leu Thr
305 310 315 320
Thr Lys His His Lys Val Lys Ser Glu Met Ile Asn Glu Ile Thr Ser
325 330 335
Ile Asn Asn Gly Asp Lys Ala Leu Glu Phe Asp Asp Leu Lys Glu Met
340 345 350
Lys Tyr Leu Gln Ala Cys Leu Asn Glu Ser Met Arg Leu Tyr Pro Pro
355 360 365
Val Ala Trp Asp Ser Lys His Ala Ala Lys Asp Asp Ile Leu Pro Asp
370 375 380
Gly Thr Arg Ile Gln Lys Gly Asn Arg Val Thr Tyr Phe Gln Tyr Gly
385 390 395 400
Met Gly Arg Met Glu Glu Ile Trp Gly Lys Asp Arg Leu Glu Phe Lys
405 410 415
Pro Asp Arg Trp Leu Asp Glu Asn Gly Val Ser Lys Ser Val Cys Pro
420 425 430
Tyr Lys Phe Pro Val Phe Gln Ala Gly Pro Arg Val Cys Leu Gly Lys
435 440 445
Glu Met Ala Phe Thr Gln Met Lys Tyr Val Leu Ala Ser Val Leu Arg
450 455 460
Arg Phe Glu Ile Lys Pro Val Asn Val Asp Lys Pro Val Phe Val Pro
465 470 475 480
Leu Leu Thr Ala His Met Ala Gly Gly Phe Asn Val Arg Ile Tyr His
485 490 495
Arg Ala Ser Asn Glu Met
500
<210> 3
<211> 35
<212> DNA
<213> NtCYP94B3s_F
<400> 3
aaaaagcagg ctcgatggaa cacacagcgc aaatt 35
<210> 4
<211> 38
<212> DNA
<213> NtCYP94B3s_R
<400> 4
agaaagctgg ggatctcgtt aatacaacag tgaacacg 38
<210> 5
<211> 20
<212> DNA
<213> Kan F
<400> 5
tctggacgaa gagcatcagg 20
<210> 6
<211> 20
<212> DNA
<213> Kan R
<400> 6
atgaatccag aaaagcggcc 20

Claims (2)

1.利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法,其特征在于,所述的烟草细胞色素C基因NtCYP94B3s的核苷酸序列如序列表SEQ ID NO:1所示,氨基酸序列如序列表SEQ ID NO:2所示,方法如下:
(1)构建植物RNAi载体:以Nicotiana attenuata的cDNA为模板,用含有gateway接头序列的引物进行PCR扩增,扩增产物经PCR产物纯化后,经过BP反应***到invitrogen公司pdonr-zeo载体中,将构件好的BP反应载体通过LR反应将NtCYP94B3s片段置换到PHellsgate12 RNAi干扰载体中,所述gateway反应引物的核苷酸序列如序列表SEQ ID NO:3和SEQ ID NO:4;
(2)鉴定农杆菌介导的烟草转化及转基因植株:先采用冻融法转化农杆菌,再用叶盘法转化烟草Nicotiana attenuata,得到稳定的转基因株系,采用Qiagen公司DNA提取试剂盒,提取转基因株系幼苗的基因组DNA,设计Kan抗性基因引物进行PCR扩增,筛选阳性植株,检测到25株阳性植株;所述Kan抗性基因引物的核苷酸序列如序列表SEQ ID NO:5和SEQ IDNO:6;
(3)提取野生型植株和25株转pHellsgate12的RNA基因T0代植株的总RNA,进行Realtime-PCR分析,内参基因为26s,分析不同株系的表达情况,选取表达量最低的2株植株。
2.如权利要求1所述的利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法,其特征在于,所述的烟草细胞色素C基因NtCYP94B3s的核苷酸序列为与序列表SEQID No:1限定的DNA序列杂交的核苷酸序列,或者与序列表SEQ ID No:1限定的DNA序列具有70%以上同源性,且编码相同功能蛋白质的DNA序列。
CN202011032661.4A 2020-09-27 2020-09-27 利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法 Pending CN112094864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011032661.4A CN112094864A (zh) 2020-09-27 2020-09-27 利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011032661.4A CN112094864A (zh) 2020-09-27 2020-09-27 利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法

Publications (1)

Publication Number Publication Date
CN112094864A true CN112094864A (zh) 2020-12-18

Family

ID=73782327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011032661.4A Pending CN112094864A (zh) 2020-09-27 2020-09-27 利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法

Country Status (1)

Country Link
CN (1) CN112094864A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305884A (zh) * 2019-08-05 2019-10-08 云南省烟草农业科学研究院 一种提高烟草叶片茉莉酸含量的基因NtAOS1及其克隆方法与应用
WO2023148475A1 (en) * 2022-02-04 2023-08-10 Nicoventures Trading Limited Method of modulating alkaloid content in tobacco plants

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JI LUO等: "COI1-regulated hydroxylation of jasmonoyl-L-isoleucine impairs Nicotiana attenuata’s resistance to the generalist herbivore Spodoptera litura SUPPORTING INFORMATION", 《J. AGRIC. FOOD CHEM.》 *
JI LUO等: "COI1-Regulated Hydroxylation of Jasmonoyl‑L‑isoleucine Impairs Nicotiana attenuata’s Resistance to the Generalist Herbivore Spodoptera litura", 《J.AGRIC.FOOD CHEM》 *
姜玲: "Gateway***快速构建番木瓜环斑病毒CP基因反向重复序列表达载体", 《农业生物技术学报》 *
彭明: "《中国热带生物资源研究与利用:中国热带作物学会遗传育种专业委员会2005年学术研讨会论文集》", 31 December 2005 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110305884A (zh) * 2019-08-05 2019-10-08 云南省烟草农业科学研究院 一种提高烟草叶片茉莉酸含量的基因NtAOS1及其克隆方法与应用
WO2023148475A1 (en) * 2022-02-04 2023-08-10 Nicoventures Trading Limited Method of modulating alkaloid content in tobacco plants

Similar Documents

Publication Publication Date Title
CN112094855A (zh) 烟草细胞色素C基因NtCYP94B3s及对提高烟草茉莉酸含量的应用
AU2020100800A4 (en) Use of aegilops tauschii hmt1 gene
CN109628464A (zh) 一种增加大豆产量的方法
CN112094864A (zh) 利用烟草细胞色素C基因NtCYP94B3s提高烟草叶片数与生物量的方法
CN107267526B (zh) 三七MYB转录因子基因PnMYB2及其应用
CN110358772B (zh) 提高水稻非生物胁迫抗性的OsEBP89基因及制备方法与应用
CN110819639A (zh) 烟草低温早花相关基因NtDUF599及其应用
CN108486149B (zh) 一种黄瓜CsWRKY50基因在增强黄瓜霜霉病抗性中的应用
CN104388448B (zh) 一种玉米磷脂酶A2基因ZmsPLA2-1及其应用
CN113621625A (zh) 芝麻SiERF103基因在增强植物抗性中的应用
CN110862445B (zh) 影响烟草色素含量的NtOEP1基因及其应用
CN107177604A (zh) 影响烟草色素含量的NtWRKY69基因及其应用
CN111394365A (zh) OsDUF6基因在提高水稻耐旱性中的应用
CN111117992A (zh) 一种中山杉耐淹、耐旱有关基因ThPDC1及其应用
CN115058433B (zh) 一种烟叶落黄调控基因NtMYB2、蛋白及其应用
CN116162645A (zh) 诱导转录因子CoWRKY3在植物抗炭疽病中的应用
CN114958869A (zh) 杂交鹅掌楸分生组织生长关键基因LhWOX4及其应用
CN107488223B (zh) 一种烟草尼古丁含量调控基因Ribosomal L4/L1及其克隆方法与应用
CN113604475B (zh) 棉花gh_d03g1517基因在促进抗旱和耐盐中的应用
CN116004647B (zh) 一种烟草NtSWEET12基因及其应用
CN116004646B (zh) 一种烟草NtSWEET11基因及其应用
CN116656698B (zh) 玉米基因Zm00001d018037在提高单子叶农作物抗旱性能方面的应用
CN110922459B (zh) SlSNAT1蛋白及其相关生物材料在调控植物种子耐老化性能中的应用
AU2021107431A4 (en) Application of Galega orientalis gibberellin receptor gene GoGID1 for improving alfalfa biomass
CN115948460B (zh) 辣椒抗疫病相关基因CaWRKY66及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201218

WD01 Invention patent application deemed withdrawn after publication