CN112062561B - 一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法 - Google Patents

一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法 Download PDF

Info

Publication number
CN112062561B
CN112062561B CN202010979491.4A CN202010979491A CN112062561B CN 112062561 B CN112062561 B CN 112062561B CN 202010979491 A CN202010979491 A CN 202010979491A CN 112062561 B CN112062561 B CN 112062561B
Authority
CN
China
Prior art keywords
pnnzt
preparing
sintering
mno
coexisting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010979491.4A
Other languages
English (en)
Other versions
CN112062561A (zh
Inventor
彭彪林
韩飞飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Kabaka Electronic Technology Co ltd
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202010979491.4A priority Critical patent/CN112062561B/zh
Publication of CN112062561A publication Critical patent/CN112062561A/zh
Application granted granted Critical
Publication of CN112062561B publication Critical patent/CN112062561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种PNNZT基多相共存弛豫铁电外延薄膜的制备方法,属于化学工程技术领域。一种PNNZT基多相共存弛豫铁电外延薄膜的制备方法,包括以下步骤:将同为钙钛矿结构的SrTiO3(100/111)单晶基片作为衬底,采用固相合成法和激光脉冲沉积法制备钙钛矿结构的La0.7Sr0.3MnO3(100/111)外延薄膜;采用溶胶凝胶法和固相烧结法制备PNNZT靶材,将PNNZT前驱体溶液于室温下搅拌1.5‑2h,并放置24‑30h,自然风干,制得凝胶;所得凝胶干燥、煅烧、研磨、压制制得粒料,所得粒料经过烧结,自然冷却即得所需的PNNZT靶材;制得的PNNZT靶材利用激光脉冲沉积法在底电极上外延制备出多相共存的弛豫铁电外延薄膜。本发明的有益效果是获得具有纯度高、致密性好、平均晶粒尺寸小、电场击穿强度大、电卡效应大等优点的薄膜。

Description

一种PNNZT基多相共存弛豫铁电外延薄膜的制备方法
技术领域
本发明涉及一种PNNZT基多相共存弛豫铁电外延薄膜的制备方法,属于化学工程技术领域。
背景技术
随着电子、信息和控制技术朝着微型化、高集成化方向的发展,以及高科技领域对于快速制冷的需求,高效率的固态制冷技术的发展已经被提上日程。作为压电材料的一类分支,铁电体材料因其具有在外加电场下的电卡特性使得其成为优秀候选材料。
发明内容
本发明的目的在于提供一种PNNZT基多相共存弛豫铁电外延薄膜的制备方法。PNNZT(Pb(Ni1/3Nb2/3)xZryTi1-x-yO3,x,y=0~1)是一种多相共存弛豫铁电材料,本发明通过激光脉冲沉积法在SrTiO3和La0.7Sr0.3MnO3基底上面制备出的PNNZT多相共存弛豫铁电外延薄膜。
本发明的目的通过如下技术方案实现:
一种PNNZT基多相共存弛豫铁电外延薄膜的制备方法,包括以下步骤:
1)以SrTiO3(100/111)单晶基片作为衬底,以La0.7Sr0.3MnO3为靶材,采用激光脉冲沉积法制备钙钛矿结构氧化物La0.7Sr0.3MnO3(100/111)取向的薄膜底电极;
2)采用溶胶凝胶法和固相烧结法制备PNNZT靶材,将PNNZT前驱体溶液于室温下搅拌1.5-2h,并放置24-30h,自然风干,制得凝胶;
3)将步骤2)所得凝胶干燥、煅烧、研磨、压制制得粒料,所得粒料经过烧结,自然冷却即得所需的PNNZT靶材;
4)将步骤3)制得的PNNZT靶材利用激光脉冲沉积法在La0.7Sr0.3MnO3(100/111)取向的薄膜底电极上外延制备出多相共存的弛豫铁电外延薄膜。
优选的是,步骤1)所述La0.7Sr0.3MnO3靶材可通过固相烧结方法制得,所述方法包括如下步骤:将原料La2O3、SrCO3、MnO2球磨所得的混合物烘干、预烧、冷压制备块体、烧结制得所需的靶材La0.7Sr0.3MnO3
优选的是,步骤1)所述预烧温度为1200℃~1300℃,预烧时间为10~12小时;所述烧结温度为1350~1400℃,烧结时间为24~48小时。
优选的是,步骤1)所述激光脉冲沉积法采用的沉积温度为700℃~750℃,脉冲激光能量为5Hz,单脉冲能量为350mJ,氧气氛下沉积20~30分钟,沉积完成后原位退火35~45分钟。
优选的是,所述PNNZT通式为Pb(Ni1/3Nb2/3)xZryTi1-x-yO3,其中x,y=0~1。
优选的是,步骤2)所述PNNZT前驱体溶液浓度为0.2~0.3mol/L。
优选的是,步骤3)所述凝胶干燥温度为350-400℃,干燥时间为20-30min。
优选的是,步骤3)所述煅烧包括第一次煅烧和第二次煅烧,所述第一次煅烧温度为550-600℃,煅烧时间为20-30min,第二次煅烧温度为850-900℃,煅烧时间为1.5-2h。
优选的是,步骤3)所述研磨时间为1-2h;步骤3)所述压制工艺为300Mpa冷等静压压制,压制所得粒料直径为20mm,厚度为3mm。
优选的是,步骤3)所述烧结温度为1150-1200℃,烧结时间为4-6h,烧结环境为空气氛围。
本发明的有益效果是:获得具有纯度高、致密性好、平均晶粒尺寸小、电场击穿强度大、电卡效应大等优点的薄膜;本发明可以通过基底取向控制薄膜的结构和电卡性能,是一种方便快捷的制备技术。
附图说明
图1和图2为本发明实施例1和2得到的PNNZT薄膜的XRD图和电卡性能对比图谱。
具体实施方式
下面结合具体实施例,对本发明作进一步详细的阐述,但本发明的实施方式并不局限于实施例表示的范围。这些实施例仅用于说明本发明,而非用于限制本发明的范围。此外,在阅读本发明的内容后,本领域的技术人员可以对本发明作各种修改,这些等价变化同样落于本发明所附权利要求书所限定的范围。
实施例1
1)将同为钙钛矿结构的SrTiO3(100)单晶基片作为衬底,采用激光脉冲沉积法制备钙钛矿结构氧化物La0.7Sr0.3MnO3(100)取向的薄膜底电极;
首先按照摩尔比0.7:0.3:1分别称取分析纯的La2O3、SrCO3、MnO2作为原料,利用固相烧结的方法制备La0.7Sr0.3MnO3(LSMO)。具体的步骤如下:
(1)在烧结之前,首先按照固定的摩尔比来配比这三种粉末,将粉末放在烘箱中烘干,烘干后将其倒入球磨罐中混合,然后在球磨罐中倒入适量的去离子水,球磨4小时。
(2)将步骤(1)中球磨完成后的液体倒入表面皿,放入烘箱,烘箱温度为100℃,烘干后将粉末倒入玛瑙研钵中,研磨30分钟以上,接着将研磨充分的粉末装入坩埚中,放置于高温炉内,进行预烧,预烧温度为1200℃,时间为10小时;
(3)将步骤(2)中预烧完成后的粉末冷却,之后再倒入球磨罐中,球磨4小时,然后将粉末烘干,在粉末中加入粘合剂PVA研磨30分钟,将研磨充分的粉末放置于20MPa压力下冷压成圆形块体;
(4)将步骤(3)中的块体放入高温炉中,以1350℃烧结24个小时,得到所需的靶材La0.7Sr0.3MnO3
2)将上述制得的靶材La0.7Sr0.3MnO3利用激光脉冲沉积法制备出延薄膜,所述薄膜的厚度为100nm。具体的步骤如下:
(1)我们选择了与LSMO同为钙钛矿结构的SrTiO3(100)单晶基片作为衬底。在沉积之前,将基片分别放入去离子水,乙醇以及丙酮中用超声波清洗10分钟,重复3次;
(2)薄膜的沉积工作。沉积过程中,采用的沉积温度为700℃,脉冲激光能量为5Hz,单脉冲能量为350mJ,在40Pa的氧气氛下沉积20分钟,沉积完成后原位退火35分钟。之后就得到了优质的LSMO(100)取向外延薄膜;
3)采用溶胶凝胶法和固相烧结法制备PNNZT靶材;
首先采用溶胶凝胶法制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液,溶液浓度为0.2mol/L,两种方法的步骤如下:
(1)按照摩尔比1:(1/3×0.5):(2/3×0.5):0.15:0.35分别称取Pb(CH3COO)2、Ni(CH3COO)2、C10H25NbO5、Zr(OC3H7)4和Ti(OC4H9)4制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液;
将原料Pb(CH3COO)2、Ni(CH3COO)2和C10H25NbO5于120℃溶解在冰醋酸和去离子水的混合液体中,然后将Zr(OC3H7)4和Ti(OC4H9)4于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合并搅拌0.5h,得到浓度为0.2mol/L的Pb(Ni1/ 3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液;
(2)将步骤(1)制得的前驱体溶液在室温下继续搅拌1.5h,并放置24h,风干该溶液,得到天然干燥的凝胶;
(3)将步骤(2)得到的凝胶首先在350℃干燥20min,然后在550℃下第一次煅烧20min,最后在850℃于空气氛围中第二次煅烧1.5h,在玛瑙研钵中研磨1h,将该粉末在300Mpa冷等静压下压制成直径为20mm,厚度为3mm的粒料,然后在1150℃的空气氛围中烧结4h,之后自然冷却到室温,得到所需的靶材Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3
4)将上述制得的靶材Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3利用激光脉冲沉积法在La0.7Sr0.3MnO3(100)取向的薄膜底电极上制备出多相共存的弛豫铁电外延薄膜,所述激光脉冲沉积法除了靶材、衬底与步骤2)不同,其它步骤及参数与步骤2)一致,所述薄膜的厚度为300nm~400nm。本发明提供了一种铁电性能优异的弛豫外延薄膜制备方法。
实施例2
1)将同为钙钛矿结构的SrTiO3(111)单晶基片作为衬底,采用激光脉冲沉积法制备钙钛矿结构氧化物La0.7Sr0.3MnO3(111)取向的薄膜底电极;
首先按照摩尔比0.7:0.3:1分别称取分析纯的La2O3、SrCO3、MnO2作为原料,利用固相烧结的方法制备La0.7Sr0.3MnO3。具体的步骤如下:
(1)在烧结之前,首先按照固定的摩尔比来配比这三种粉末,将粉末放在烘箱中烘干,烘干后将其倒入球磨罐中混合,然后在球磨罐中倒入适量的去离子水,球磨5小时。
(2)将步骤(1)中球磨完成后的液体倒入表面皿,放入烘箱,烘箱温度为110℃,烘干后将粉末倒入玛瑙研钵中,研磨30分钟以上,接着将研磨充分的粉末装入坩埚中,放置于高温炉内,进行预烧,预烧温度为1250℃,时间为11小时;
(3)将步骤(2)中预烧完成后的粉末冷却,之后再倒入球磨罐中,球磨5小时,然后将粉末烘干,在粉末中加入粘合剂PVA研磨40分钟,将研磨充分的粉末放置于20MPa压力下冷压成圆形块体;
(4)将步骤(3)中的块体放入高温炉中,以1360℃烧结30个小时,得到所需的靶材La0.7Sr0.3MnO3
2)将上述制得的靶材La0.7Sr0.3MnO3利用激光脉冲沉积法制备出延薄膜,所述薄膜的厚度为150nm。具体的步骤如下:
(1)我们选择了与LSMO同为钙钛矿结构的SrTiO3(111)单晶基片作为衬底。在沉积之前,将基片分别放入去离子水,乙醇以及丙酮中用超声波清洗15分钟,重复4次;
(2)薄膜的沉积工作。沉积过程中,采用的沉积温度为720℃,脉冲激光能量为5Hz,单脉冲能量为350mJ,在40Pa的氧气氛下沉积25分钟,沉积完成后原位退火40分钟。之后就得到了优质的LSMO(111)取向外延薄膜。
3)采用溶胶凝胶法和固相烧结法制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3靶材;
首先采用溶胶凝胶法制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液,溶液浓度为0.2mol/L,两种方法的步骤如下:
(1)按照摩尔比1:(1/3×0.5):(2/3×0.5):0.15:0.35分别称取Pb(CH3COO)2、Ni(CH3COO)2、C10H25NbO5、Zr(OC3H7)4和Ti(OC4H9)4制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液;
将原料Pb(CH3COO)2、Ni(CH3COO)2和C10H25NbO5于120℃溶解在冰醋酸和去离子水的混合液体中,然后将Zr(OC3H7)4和Ti(OC4H9)4于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合并搅拌0.6h,得到浓度为0.2mol/L的Pb(Ni1/ 3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液;
(2)将步骤(1)制得的前驱体溶液在室温下继续搅拌1.6h,并放置26h,风干该溶液,得到天然干燥的凝胶;
(3)将步骤(2)得到的凝胶首先在380℃干燥25min,然后在580℃下第一次煅烧25min,最后在860℃于空气氛围中第二次煅烧1.6h,在玛瑙研钵中研磨1.5h,将该粉末在300Mpa冷等静压下压制成直径为20mm,厚度为3mm的粒料,然后在1160℃的空气氛围中烧结5h,之后自然冷却到室温,得到所需的靶材Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3
4)将上述制得的靶材Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3利用激光脉冲沉积法在La0.7Sr0.3MnO3(111)取向的薄膜底电极上制备出多相共存的弛豫铁电外延薄膜,所述激光脉冲沉积法除了靶材、衬底与步骤2)不同,其它步骤及参数与步骤2)一致,所述薄膜的厚度为300nm~400nm。本发明提供了一种铁电性能优异的弛豫外延薄膜制备方法。
实施例3
1)将同为钙钛矿结构的SrTiO3(100)单晶基片作为衬底,采用激光脉冲沉积法制备钙钛矿结构氧化物La0.7Sr0.3MnO3(100)取向的薄膜底电极;
首先按照摩尔比0.7:0.3:1分别称取分析纯的La2O3、SrCO3、MnO2作为为原料,利用固相烧结的方法制备La0.7Sr0.3MnO3。具体的步骤如下:
(1)在烧结之前,首先按照固定的摩尔比来配比这三种粉末,将粉末放在烘箱中烘干,烘干后将其倒入球磨罐中混合,然后在球磨罐中倒入适量的去离子水,球磨6小时。
(2)将步骤(1)中球磨完成后的液体倒入表面皿,放入烘箱,烘箱温度为120℃,烘干后将粉末倒入玛瑙研钵中,研磨30分钟以上,接着将研磨充分的粉末装入坩埚中,放置于高温炉内,进行预烧,预烧温度为1300℃,时间为12小时;
(3)将步骤(2)中预烧完成后的粉末冷却,之后再倒入球磨罐中,球磨6小时,然后将粉末烘干,在粉末中加入粘合剂PVA研磨60分钟,将研磨充分的粉末放置于20MPa压力下冷压成圆形块体;
(4)将步骤(3)中的块体放入高温炉中,以1400℃烧结48个小时,得到所需的靶材La0.7Sr0.3MnO3
2)将上述制得的靶材La0.7Sr0.3MnO3利用激光脉冲沉积法制备出(100)取向的延薄膜,所述薄膜的厚度为200nm。具体的步骤如下:
(1)我们选择了与LSMO同为钙钛矿结构的SrTiO3(100)单晶基片作为衬底。在沉积之前,将基片分别放入去离子水,乙醇以及丙酮中用超声波清洗20分钟,重复5次;
(2)薄膜的沉积工作。沉积过程中,采用的沉积温度为750℃,脉冲激光能量为5Hz,单脉冲能量为350mJ,在40Pa的氧气氛下沉积30分钟,沉积完成后原位退火45分钟。之后就得到了优质的LSMO(100)取向外延薄膜。
3)采用溶胶凝胶法和固相烧结法制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3靶材;
首先采用溶胶凝胶法制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液,溶液浓度为0.3mol/L,两种方法的步骤如下:
(1)按照摩尔比1:(1/3×0.5):(2/3×0.5):0.15:0.35分别称取Pb(CH3COO)2、Ni(CH3COO)2、C10H25NbO5、Zr(OC3H7)4和Ti(OC4H9)4制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液;将原料Pb(CH3COO)2、Ni(CH3COO)2和C10H25NbO5于120℃溶解在冰醋酸和去离子水的混合液体中,然后将Zr(OC3H7)4和Ti(OC4H9)4于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合并搅拌1h,得到浓度为0.3mol/L的Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液;
(2)将步骤(1)制得的前驱体溶液在室温下继续搅拌2h,并放置30h,风干该溶液,得到天然干燥的凝胶;
(3)将步骤(2)得到的凝胶首先在400℃干燥30min,然后在600℃下第一次煅烧30min,最后在900℃于空气氛围中第二次煅烧2h,在玛瑙研钵中研磨2h,将该粉末在300Mpa冷等静压下压制成直径为20mm,厚度为3mm的粒料,然后在1200℃的空气氛围中烧结6h,之后自然冷却到室温,得到所需的靶材Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3
4)将上述制得的靶材Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3利用激光脉冲沉积法在La0.7Sr0.3MnO3(100)取向的薄膜底电极上制备出多相共存的弛豫铁电外延薄膜,所述激光脉冲沉积法除了靶材、衬底与步骤2)不同,其它步骤及参数与步骤2)一致,所述薄膜的厚度为300nm~400nm。本发明提供了一种铁电性能优异的弛豫外延薄膜制备方法。
实施例4
1)将同为钙钛矿结构的SrTiO3(100)单晶基片作为衬底,采用激光脉冲沉积法制备钙钛矿结构氧化物La0.7Sr0.3MnO3(100)取向的薄膜底电极;
首先按照摩尔比0.7:0.3:1分别称取分析纯的La2O3、SrCO3、MnO2作为为原料,利用固相烧结的方法制备La0.7Sr0.3MnO3。具体的步骤如下:
(1)在烧结之前,首先按照固定的摩尔比来配比这三种粉末,将粉末放在烘箱中烘干,烘干后将其倒入球磨罐中混合,然后在球磨罐中倒入适量的去离子水,球磨6小时。
(2)将步骤(1)中球磨完成后的液体倒入表面皿,放入烘箱,烘箱温度为120℃,烘干后将粉末倒入玛瑙研钵中,研磨30分钟以上,接着将研磨充分的粉末装入坩埚中,放置于高温炉内,进行预烧,预烧温度为1300℃,时间为12小时;
(3)将步骤(2)中预烧完成后的粉末冷却,之后再倒入球磨罐中,球磨6小时,然后将粉末烘干,在粉末中加入粘合剂PVA研磨60分钟,将研磨充分的粉末放置于20MPa压力下冷压成圆形块体;
(4)将步骤(3)中的块体放入高温炉中,以1400℃烧结48个小时,得到所需的靶材La0.7Sr0.3MnO3
2)将上述制得的靶材La0.7Sr0.3MnO3利用激光脉冲沉积法制备出La0.7Sr0.3MnO3(100)取向的延薄膜,所述薄膜的厚度为200nm。具体的步骤如下:
(1)我们选择了与LSMO同为钙钛矿结构的SrTiO3(100)单晶基片作为衬底。在沉积之前,将基片分别放入去离子水,乙醇以及丙酮中用超声波清洗20分钟,重复5次;
(2)薄膜的沉积工作。沉积过程中,采用的沉积温度为750℃,脉冲激光能量为5Hz,单脉冲能量为350mJ,在40Pa的氧气氛下沉积30分钟,沉积完成后原位退火45分钟。之后就得到了优质的LSMO(100)取向外延薄膜。
3)采用溶胶凝胶法和固相烧结法制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3靶材;
首先采用溶胶凝胶法制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液,溶液浓度为0.25mol/L,两种方法的步骤如下:
(1)按照摩尔比1:(1/3×0.5):(2/3×0.5):0.15:0.35分别称取Pb(CH3COO)2、Ni(CH3COO)2、C10H25NbO5、Zr(OC3H7)4和Ti(OC4H9)4制备Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液;
将原料Pb(CH3COO)2、Ni(CH3COO)2和C10H25NbO5于120℃溶解在冰醋酸和去离子水的混合液体中,然后将Zr(OC3H7)4和Ti(OC4H9)4于室温溶解在冰醋酸和CH3COCH2COCH3的混合液体中,最后将前面两种混合液再次混合并搅拌0.6h,得到浓度为0.25mol/L的Pb(Ni1/ 3Nb2/3)0.5Zr0.15Ti0.35O3前驱体溶液;
(2)将步骤(1)制得的前驱体溶液在室温下继续搅拌1.6h,并放置26h,风干该溶液,得到天然干燥的凝胶;
(3)将步骤(2)得到的凝胶首先在380℃干燥25min,然后在580℃下第一次煅烧25min,最后在860℃于空气氛围中第二次煅烧1.6h,在玛瑙研钵中研磨1.5h,将该粉末在300Mpa冷等静压下压制成直径为20mm,厚度为3mm的粒料,然后在1160℃的空气氛围中烧结5h,之后自然冷却到室温,得到所需的靶材Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3
4)将上述制得的靶材Pb(Ni1/3Nb2/3)0.5Zr0.15Ti0.35O3利用激光脉冲沉积法在La0.7Sr0.3MnO3(100)取向的薄膜底电极上制备出多相共存的弛豫铁电外延薄膜,所述激光脉冲沉积法除了靶材、衬底与步骤2)不同,其它步骤及参数与步骤2)一致,所述薄膜的厚度为300nm~400nm。本发明提供了一种铁电性能优异的弛豫外延薄膜制备方法。

Claims (10)

1.一种PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,所述方法包括以下步骤:
1)以SrTiO3(111)单晶基片作为衬底,以La0.7Sr0.3MnO3为靶材,采用激光脉冲沉积法制备钙钛矿结构氧化物La0.7Sr0.3MnO3(111)取向的薄膜底电极;
2)采用溶胶凝胶法和固相烧结法制备PNNZT靶材,将PNNZT前驱体溶液于室温下搅拌1.5-2h,并放置24-30h,自然风干,制得凝胶;
3)将步骤2)所得凝胶干燥、煅烧、研磨、压制制得粒料,所得粒料经过烧结,自然冷却即得所需的PNNZT靶材;
4)将步骤3)制得的PNNZT靶材利用激光脉冲沉积法在La0.7Sr0.3MnO3(111)取向的薄膜底电极上外延制备出多相共存的弛豫铁电外延薄膜。
2.根据权利要求1所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,步骤1)所述La0.7Sr0.3MnO3靶材可通过固相烧结方法制得,所述方法包括如下步骤:将原料La2O3、SrCO3、MnO2球磨所得的混合物烘干、预烧、冷压制备块体、烧结制得所需的靶材La0.7Sr0.3MnO3
3.根据权利要求2所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,步骤1)所述预烧温度为1200℃~1300℃,预烧时间为10~12小时;所述烧结温度为1350~1400℃,烧结时间为24~48小时。
4.根据权利要求1所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,步骤1)所述激光脉冲沉积法采用的沉积温度为700℃~750℃,脉冲激光能量为5Hz,单脉冲能量为350mJ,氧气氛下沉积20~30分钟,沉积完成后原位退火35~45分钟。
5.根据权利要求1所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,所述PNNZT通式为Pb(Ni1/3Nb2/3)xZryTi1-x-yO3,其中0<x<1,0<y<1。
6.根据权利要求5所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,步骤2)所述PNNZT前驱体溶液浓度为0.2~0.3mol/L。
7.根据权利要求1-6任一所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,步骤3)所述凝胶干燥温度为350-400℃,干燥时间为20-30min。
8.根据权利要求1-6任一所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,步骤3)所述煅烧包括第一次煅烧和第二次煅烧,所述第一次煅烧温度为550-600℃,煅烧时间为20-30min,第二次煅烧温度为850-900℃,煅烧时间为1.5-2h。
9.根据权利要求1-6任一所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,步骤3)所述研磨时间为1-2h;步骤3)所述压制工艺为300MPa冷等静压压制,压制所得粒料直径为20mm,厚度为3mm。
10.根据权利要求1-6任一所述的PNNZT基多相共存弛豫铁电外延薄膜的制备方法,其特征在于,步骤3)所述烧结温度为1150-1200℃,烧结时间为4-6h,烧结环境为空气氛围。
CN202010979491.4A 2020-09-17 2020-09-17 一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法 Active CN112062561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010979491.4A CN112062561B (zh) 2020-09-17 2020-09-17 一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010979491.4A CN112062561B (zh) 2020-09-17 2020-09-17 一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN112062561A CN112062561A (zh) 2020-12-11
CN112062561B true CN112062561B (zh) 2022-08-05

Family

ID=73682363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010979491.4A Active CN112062561B (zh) 2020-09-17 2020-09-17 一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN112062561B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116095A (ja) * 1991-02-13 1994-04-26 Mitsubishi Materials Corp 強誘電体薄膜の結晶配向性制御方法
JP2005035864A (ja) * 2002-10-15 2005-02-10 Kenichiro Miyahara 発光素子搭載用基板
EP1986245A2 (en) * 2007-04-26 2008-10-29 FUJIFILM Corporation Piezoelectric body, piezoelectrc device, and liquid discharge apparatus
EP2645440A2 (en) * 2012-03-30 2013-10-02 Mitsubishi Materials Corporation PZT-Based ferroelectric thin film and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528919A (en) * 1965-04-01 1970-09-15 Canadian Patents Dev Electronic ceramic compositions
SG124303A1 (en) * 2005-01-18 2006-08-30 Agency Science Tech & Res Thin films of ferroelectric materials and a methodfor preparing same
CN101439877B (zh) * 2008-12-16 2010-08-18 河北师范大学 一种La2/3Sr1/3MnO3和La1.4Sr1.6Mn2O7复合材料的制备方法
JP5526552B2 (ja) * 2009-01-30 2014-06-18 三菱マテリアル株式会社 サーミスタ用金属酸化物焼結体、サーミスタ素子及びサーミスタ温度センサ並びにサーミスタ用金属酸化物焼結体の製造方法
JP5521957B2 (ja) * 2010-05-24 2014-06-18 三菱マテリアル株式会社 強誘電体薄膜及び該強誘電体薄膜を用いた薄膜キャパシタ
CN102179967B (zh) * 2010-12-30 2013-10-16 中国科学院上海硅酸盐研究所 一种镧锶锰氧-钛酸锶铅复合薄膜及其制备方法
CN102219514B (zh) * 2011-04-18 2013-05-29 南京航空航天大学 一种弛豫型铁掺杂压电陶瓷材料及制备方法
CN103073291A (zh) * 2012-12-28 2013-05-01 清华大学 一种电极缓冲层材料及其制备和应用方法
JP2015065430A (ja) * 2013-08-27 2015-04-09 三菱マテリアル株式会社 PNbZT薄膜の製造方法
CN105272235A (zh) * 2015-10-13 2016-01-27 贵州振华红云电子有限公司 一种基于铌镍锆钛酸铅三价掺杂的压电陶瓷及其制备方法
CN111128682A (zh) * 2019-12-27 2020-05-08 广西大学 一种通过衬底调控电卡性能薄膜的制备方法
CN111423231A (zh) * 2020-03-31 2020-07-17 上海师范大学 一种三元系弛豫铁电薄膜材料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06116095A (ja) * 1991-02-13 1994-04-26 Mitsubishi Materials Corp 強誘電体薄膜の結晶配向性制御方法
JP2005035864A (ja) * 2002-10-15 2005-02-10 Kenichiro Miyahara 発光素子搭載用基板
EP1986245A2 (en) * 2007-04-26 2008-10-29 FUJIFILM Corporation Piezoelectric body, piezoelectrc device, and liquid discharge apparatus
EP2645440A2 (en) * 2012-03-30 2013-10-02 Mitsubishi Materials Corporation PZT-Based ferroelectric thin film and method of manufacturing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
orientation control of international magnetism at La0.67Sr0.33MnO3/SrTiO3 Interfaces;Guo E.J.等;《ACS Appl.Mater.Interfaces》;20170516;第9卷(第22期);19307-19312 *
structure and properties of epitaxial perovskite Pb(Zr0.52Ti0.48)O3/La0.7Sr0.3MnO3 heterostructures;Zou Cheng等;《journal of applied physics》;20120401;第111卷(第7期);07D718 *

Also Published As

Publication number Publication date
CN112062561A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
US6620752B2 (en) Method for fabrication of lead-based perovskite materials
CN103601487B (zh) 一种(SrCa)TiO3-LaAlO3基微波介质陶瓷材料及其制备方法
CN109161847B (zh) 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
US20090121374A1 (en) Method of manufacturing crystal oriented ceramics
Kan et al. Low-temperature sintering of Bi4Ti3O12 derived from a co-precipitation method
CN109776089A (zh) 一种钛酸铜钙基陶瓷材料及其制备方法
CN101475376A (zh) 一种微波水热合成铌酸钾钠无铅压电陶瓷粉体的方法
Yamatoh et al. Polymerizable complex synthesis of lead-free ferroelectric Na0. 5Bi0. 5TiO3 suppressing evaporation of sodium and bismuth
CN112062561B (zh) 一种pnnzt基多相共存弛豫铁电外延薄膜的制备方法
CN113248251A (zh) 一种陶瓷脉冲电容器、介质材料及其制备方法
CN112110722A (zh) 一种微纳米电介质陶瓷材料的制备方法
CN108603276A (zh) 多晶介电体薄膜及电容元件
CN115849905A (zh) 一种高温压电陶瓷材料、制备方法及应用
CN107814567B (zh) 一种具有较低矫顽场的非本征铁电陶瓷器件及其制备方法
CN108793993B (zh) 一种单相陶瓷靶材及其制备方法和用途
CN110981477A (zh) 一种氧化钕掺杂铌酸银陶瓷的制备方法
Calzada Sol–gel electroceramic thin films
CN112979306B (zh) 一种制备铁电储能陶瓷的方法
CN107253859B (zh) 高发光热稳定性的Eu-Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
CN112661508B (zh) 一种低烧高储能锆钛酸锶钡基陶瓷材料及其制备方法
CN115196960A (zh) 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
WO1988010233A1 (en) Process for producing oxide powder and oxide superconductor
Taillades et al. Development of proton conducting thin films from nanoparticulate precursors
CN1329340C (zh) 无铅压电陶瓷K0.5Bi0.5TiO3纳米线及其烧结体的制备方法
CN114835490B (zh) 导电陶瓷材料及其制备方法和导电陶瓷体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231122

Address after: Room B1103 and 1104, Huihu Building, No.10 Yueliangwan Road, Suzhou Area, China (Jiangsu) Pilot Free Trade Zone, Suzhou City, Jiangsu Province, 215124 (Cluster Registration)

Patentee after: Suzhou Kabaka Electronic Technology Co.,Ltd.

Address before: 530004, 100 East University Road, the Guangxi Zhuang Autonomous Region, Nanning

Patentee before: GUANGXI University

TR01 Transfer of patent right