CN112030185B - 一种增强硅光电阴极表面活性的方法 - Google Patents

一种增强硅光电阴极表面活性的方法 Download PDF

Info

Publication number
CN112030185B
CN112030185B CN202010733655.5A CN202010733655A CN112030185B CN 112030185 B CN112030185 B CN 112030185B CN 202010733655 A CN202010733655 A CN 202010733655A CN 112030185 B CN112030185 B CN 112030185B
Authority
CN
China
Prior art keywords
thiomolybdate
silicon
thiotungstate
hydrofluoric acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010733655.5A
Other languages
English (en)
Other versions
CN112030185A (zh
Inventor
常焜
林惠文
韩文君
秦亚雷
徐旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202010733655.5A priority Critical patent/CN112030185B/zh
Publication of CN112030185A publication Critical patent/CN112030185A/zh
Application granted granted Critical
Publication of CN112030185B publication Critical patent/CN112030185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种增强硅光电阴极表面活性的方法,属于光电催化技术领域,提供了简单高效地制备无定形硫化钼钨薄膜修饰的硅光电阴极的方法,所制得的硅光电阴极具有优异的表面催化活性。本发明以可溶性硫代钼酸盐和硫代钨酸盐的溶液为反应原料,并以氢氟酸溶液作为反应介质,在常温条件下,通过已被氟化处理过的硅片表面在氢氟酸介质中与硫代钼酸根和硫代钨酸根离子的氧化还原作用,原位沉积无定形硫化钼钨的共沉积薄膜至硅片表面,从而增强硅光电阴极表面的催化活性。本发明工艺简单易操作,条件温和且可控,制备得到的硅光电阴极在光电催化水分解和光电催化二氧化碳还原等领域具有极大的应用潜力。

Description

一种增强硅光电阴极表面活性的方法
技术领域
本发明属于光电催化技术领域,具体涉及一种增强硅光电阴极表面活性的方法。
背景技术
光电催化纯水分解和二氧化碳还原是开发与转化太阳能的一种非常有效的方式,其中决定光电催化性能中的关键且最基本的因素就是需要使用合适而有效的半导体光电阴极。在众多半导体中,储量丰富与价格低廉的硅是最有前景的小带隙半导体(1.12eV),其带隙吸收几乎完美匹配太阳光谱中的近红外光与可见光部分,同时其具有近乎理想的能带结构,完全能够满足光电催化纯水分解和二氧化碳还原对半导体导带位置的要求。然而,纯硅的光电催化性能极差,主要源于其表面迟缓的析氢和二氧化碳还原催化能力,因此需要在其表面沉积修饰助催化剂,才能够满足光电催化的性能要求。
作为新型廉价的助催化剂,过渡金属硫化物如硫化钼在硅基光电阴极上表现出极大的潜力。例如,无定形硫化钼纳米团簇修饰的硅光电阴极具有高效的光电催化析氢活性,在相对于标准氢电极0V的条件下达到8mA∙cm-2的光生电流,获得接近于10%的太阳能至氢能的转换效率(Nature Materials 2011, 10, 434)。又如,硫化钼钨共同修饰的硅光电阴极能获得接近0.2V的起始光生电压(Adv. Sci. 2019, 6, 1900301)。一般而言,通过硫化钼钨共同沉积能够增强硅光电阴极的表面活性,而沉积制备的过程和技术方法,决定了其与硅半导体之间的相互作用,从而影响硅光电阴极的光电催化性能。其中,化学气相沉积(MRS Commun. 2017, 7, 272),高温合成沉积(ACS Appl. Mater. Inter. 2019, 11,29910)或者光电沉积(ACS Nano 2015, 9, 3829)等是最常用的技术手段。虽然偶尔能够获得满足光电催化性能的硅光电阴极,但是这些技术手段具有沉积速率非常低或者沉积厚度不均匀等缺点。
发明内容
本发明提供了一种增强硅光电阴极表面活性的方法,所述方法简单高效地制备了无定形硫化钼钨薄膜修饰的硅光电阴极,所制得的硅光电阴极具有优异的表面催化活性。
为达到以上目的,本发明采用以下技术方案:
一种增强硅光电阴极表面活性的方法,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,所述硫化钼钨纳米颗粒层厚度为1-10nm。
以上所述方法具体包括以下步骤:
(1)将p型单晶硅在浓硫酸和双氧水混合溶液中于50-80oC下清洗30-60min去除表面有机污染物,其后用1-10%含氟溶液刻蚀5-30min去除表面氧化层;
(2)将可溶性硫代钼酸盐和硫代钨酸盐溶解于溶剂中,配制不同比例的硫代钼酸铵和硫代钨酸铵混合溶液,静置于5oC下备用;
(3)取一定体积步骤(2)配制的硫代钼酸盐和硫代钨酸盐混合溶液滴入0.5-10%氢氟酸溶液制得不同浓度比例的硫代钼酸盐加硫代钨酸盐混氢氟酸溶液,并将步骤(1)已清洗的p型单晶硅平放于所述硫代钼酸盐加硫代钨酸盐混氢氟酸溶液中1-60min,其后用清洗并用氩气吹干,制得无定形硫化钼钨纳米颗粒修饰的硅光电阴极,用以增强硅光电阴极表面活性。
以上所述步骤中,步骤(1)中所述的含氟溶液为氢氟酸或氟化铵溶液;
步骤(2)中所述的硫代钼酸盐和硫代钨酸盐之间的摩尔比例为0.1-99.9%,所述可溶性硫代钼酸盐为(NH4)2MoS4或Na2MoS4,所述硫代钨酸盐为(NH4)2WS4或Na2WS4,所述的溶剂为水或乙醇;
步骤(3)所述硫代钼酸盐加硫代钨酸盐混氢氟酸溶液中硫代钼酸盐加硫代钨酸盐的浓度为0.1-10mM,所述的氢氟酸的质量百分比浓度为0.5%-10%;所述的无定形硫化钼钨纳米颗粒层厚度为1-10nm,可以通过改变硫代钼酸盐和硫代钨酸盐的浓度和反应时间来控制硫化钼钨纳米颗粒层厚度。
有益效果:本发明提供了一种增强硅光电阴极表面活性的方法,将非晶态硫化钼钨纳米颗粒薄膜直接原位沉积到单晶硅光电阴极表面上,如图1所示,通过钼钨比调控硫化钼钨纳米颗粒的活性和能级位置,使光生电子更易于传输至助催化剂,增强硅光电阴极表面活性,本发明以可溶性硫代钼酸盐和硫代钨酸盐为原料,通过简单的液相氧化还原反应,可控地在硅光电阴极上原位沉积修饰无定形硫化钼钨助催化剂,从而增强硅光电阴极表面催化活性,得到的无定形硫化钼钨厚度1-10nm,可简单地通过改变硫代钼酸盐和硫代钨酸盐的浓度和反应时间来控制无定形硫化钼钨厚度,原料成本和制备效率均优于现有技术;本发明制备工艺简单易操作,反应条件温和且可控,所用试剂低廉并环保,在光电催化水分解和光电催化二氧化碳还原中等领域中具有广泛的应用前景。
附图说明
图1为本发明制备的硅光电阴极的光电催化析氢原理示意图;
图2为本发明实施例1制备的硫化钼钨纳米颗粒修饰硅光电阴极表面的原子力显微高度模拟图;
图3为本发明实施例1制备的制备的硅光电阴极的光电催化析氢性能图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明:
实施例1
一种增强硅光电阴极表面活性的方法,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,具体包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在20mL浓硫酸加10mL双氧水的混合溶液中于70oC下清洗60min,接着用1%氢氟酸刻蚀5min,得到无氧化层的裸硅;取1.0mmol的硫代钼酸铵和1.0mmol的硫代钨酸铵共同溶解于10mL水中配置成0.2M的硫代钼酸铵加硫代钨酸铵(1:1)混合溶液,接着取0.1mL该混合溶液滴入10mL 2%氢氟酸溶液制得2.0mM的硫代钼酸铵加硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中2min,其后用大量超纯水清洗并用氩气吹干,制得无定形硫化钼钨薄膜修饰的硅光电阴极具有优异的表面催化活性,所得到的无定形硫化钼钨薄膜的厚度约为4.0nm,从图2可以看出,硫化钼钨的修饰膜厚度约为4nm,将上述无定形硫化钼钨薄膜修饰的硅光电阴极在AM1.5模拟太阳光照条件下进行光电催化析氢性能测试,如图3所示,在标准氢电势为0V电压下的阴极光电流高达40mA/cm2
实施例2
一种增强硅光电阴极表面活性的方法,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,具体包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在20mL浓硫酸加10mL双氧水的混合溶液中于70oC下清洗60min,接着用2%氢氟酸刻蚀5min,得到无氧化层的裸硅;取0.5mmol的硫代钼酸铵和1.5mmol的硫代钨酸铵共同溶解于10mL水中配置成0.2M的硫代钼酸铵加硫代钨酸铵(1:3)混合溶液,接着取0.2mL该混合溶液滴入10mL 5%氢氟酸溶液制得4.0mM的硫代钼酸铵加硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中3min,其后用大量超纯水清洗并用氩气吹干,制得无定形硫化钼钨薄膜修饰的硅光电阴极具有优异的表面催化活性,所得到的无定形硫化钼钨薄膜的厚度约为6.0nm。
实施例3
一种增强硅光电阴极表面活性的方法,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,具体包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在20mL浓硫酸加10mL双氧水的混合溶液中于70oC下清洗60min,接着用2%氢氟酸刻蚀5min,得到无氧化层的裸硅;取1.0mmol的硫代钼酸铵和1.0mmol的硫代钨酸铵共同溶解于10mL水中配置成0.2M的硫代钼酸铵加硫代钨酸铵(1:1)混合溶液,接着取0.4mL该混合溶液滴入10mL 2%氢氟酸溶液制得8.0mM的硫代钼酸铵加硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中5min,其后用大量超纯水清洗并用氩气吹干,制得无定形硫化钼钨薄膜修饰的硅光电阴极具有优异的表面催化活性,所得到的无定形硫化钼钨薄膜的厚度约为10.0nm。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (7)

1.一种增强硅光电阴极表面活性的方法,其特征在于,所述方法为将非晶态硫化钼钨纳米颗粒原位沉积到硅光电阴极表面上,所述硫化钼钨纳米颗粒均匀修饰硅光电阴极表面,包括以下步骤:
(1)将p型单晶硅在浓硫酸和双氧水混合溶液中于50-80oC下清洗30-60min去除表面有机污染物,其后用1-10%含氟溶液刻蚀5-30min去除表面氧化层;
(2)将可溶性硫代钼酸盐和硫代钨酸盐溶解于溶剂中,配制不同比例的硫代钼酸盐和硫代钨酸盐混合溶液,静置于5oC下备用;
(3)取一定体积步骤(2)配制的硫代钼酸盐和硫代钨酸盐混合溶液滴入0.5-10%氢氟酸溶液制得不同浓度比例的硫代钼酸盐加硫代钨酸盐混氢氟酸溶液,并将步骤(1)已清洗的p型单晶硅平放于所述硫代钼酸盐加硫代钨酸盐混氢氟酸溶液中1-60min,其后清洗并用氩气吹干,制得无定形硫化钼钨纳米颗粒修饰的硅光电阴极。
2.根据权利要求1所述的增强硅光电阴极表面活性的方法,其特征在于,所述硫化钼钨纳米颗粒层厚度为1-10nm。
3.根据权利要求1所述的增强硅光电阴极表面活性的方法,其特征在于,步骤(1)中所述的含氟溶液为氢氟酸或氟化铵溶液。
4.根据权利要求1所述的增强硅光电阴极表面活性的方法,其特征在于,步骤(2)中所述的硫代钼酸盐和硫代钨酸盐之间的摩尔比例为0.1-99.9%,所述的溶剂为水或乙醇。
5.根据权利要求1或4所述的增强硅光电阴极表面活性的方法,其特征在于,步骤(2)中所述硫代钼酸盐为(NH4)2MoS4或Na2MoS4,所述硫代钨酸盐为(NH4)2WS4或Na2WS4
6.根据权利要求1所述的增强硅光电阴极表面活性的方法,其特征在于,步骤(3)中所述硫代钼酸盐加硫代钨酸盐混氢氟酸溶液中硫代钼酸盐加硫代钨酸盐的浓度为0.1-10mM,所述的氢氟酸的质量百分比浓度为0.5%-10%。
7.根据权利要求1或2所述的增强硅光电阴极表面活性的方法,其特征在于,通过改变硫代钼酸盐和硫代钨酸盐的浓度和反应时间来控制硫化钼钨纳米颗粒层厚度。
CN202010733655.5A 2020-07-27 2020-07-27 一种增强硅光电阴极表面活性的方法 Active CN112030185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010733655.5A CN112030185B (zh) 2020-07-27 2020-07-27 一种增强硅光电阴极表面活性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010733655.5A CN112030185B (zh) 2020-07-27 2020-07-27 一种增强硅光电阴极表面活性的方法

Publications (2)

Publication Number Publication Date
CN112030185A CN112030185A (zh) 2020-12-04
CN112030185B true CN112030185B (zh) 2021-12-21

Family

ID=73583260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010733655.5A Active CN112030185B (zh) 2020-07-27 2020-07-27 一种增强硅光电阴极表面活性的方法

Country Status (1)

Country Link
CN (1) CN112030185B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377971A1 (en) * 2010-04-16 2011-10-19 EPFL Ecole Polytechnique Fédérale de Lausanne Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions
CN104313637A (zh) * 2014-10-11 2015-01-28 北京航空航天大学 一种具有氢还原活性的金属硫化物电极及其制备方法
KR101596443B1 (ko) * 2014-10-17 2016-02-22 서강대학교산학협력단 광전극용 복합 나노구조체 및 이의 제조방법
CN106994357A (zh) * 2016-01-22 2017-08-01 天津大学 一种钨掺杂的二硫化钼材料及其合成方法
CN107012474A (zh) * 2016-01-28 2017-08-04 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377971A1 (en) * 2010-04-16 2011-10-19 EPFL Ecole Polytechnique Fédérale de Lausanne Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions
CN104313637A (zh) * 2014-10-11 2015-01-28 北京航空航天大学 一种具有氢还原活性的金属硫化物电极及其制备方法
KR101596443B1 (ko) * 2014-10-17 2016-02-22 서강대학교산학협력단 광전극용 복합 나노구조체 및 이의 제조방법
CN106994357A (zh) * 2016-01-22 2017-08-01 天津大学 一种钨掺杂的二硫化钼材料及其合成方法
CN107012474A (zh) * 2016-01-28 2017-08-04 中国科学院大连化学物理研究所 一种规模化太阳能光催化-光电催化分解水制氢的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Facile electrodeposition fabrication of molybdenum-tungsten sulfide on carbon cloth for electrocatalytic hydrogen evolution;Can Li等;《International Journal of Hydrogen Energy》;20170525;第42卷;15479-15488 *

Also Published As

Publication number Publication date
CN112030185A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
Ye et al. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes
Luo et al. TiO2/(CdS, CdSe, CdSeS) nanorod heterostructures and photoelectrochemical properties
Iqbal et al. Recent progress in efficiency of hydrogen evolution process based photoelectrochemical cell
CN110311039B (zh) 一种Nb-二氧化锡纳米前驱体、利用其作为电子传输层制备钙钛矿太阳能电池的方法
CN101354968B (zh) 一种染料敏化太阳能电池光阳极及其制备方法
CN101814375A (zh) 一种氮掺杂二氧化钛纳米线电极的制备方法
CN103779102B (zh) 低温原位构建BiOI/Bi2S3异质结薄膜及柔性光电化学太阳能电池器件
Zhang et al. Improved performance of CdSe/CdS/PbS co-sensitized solar cell with double-layered TiO2 films as photoanode
CN114481192B (zh) 一种Cd掺杂的二氧化钛/硫化铟锌光阳极及其制备方法
CN102254702A (zh) 一种复合光阳极材料及在染料敏化电池制备中的应用
CN104143444A (zh) 一种多级氧化铟锡纳米线阵列复合材料及其制备方法与在太阳能电池中的应用
CN105470393A (zh) 一种钙钛矿太阳能电池电解水制氢集成器件及其制备方法
CN112030185B (zh) 一种增强硅光电阴极表面活性的方法
CN110311043B (zh) 一种Sb-二氧化锡纳米前驱体、利用其作为电子传输层制备钙钛矿太阳能电池的方法
CN111705333A (zh) Ag-Pi/BiVO4异质结合成方法及其应用于光电解水
CN111509243A (zh) 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用
CN102140013B (zh) 一种制备禁带梯度化TiO2多孔薄膜的方法
CN112030184B (zh) 一种无定形硫化钼薄膜修饰的硅光电阴极及其制备方法
CN105088266A (zh) 通过在半导体材料上复合共催化剂制备光电化学电池纳米结构光电极的方法
CN112030176B (zh) 一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法
CN110528047B (zh) 一种复合光电极的制备方法
CN111807336A (zh) 一种兼具光催化和光热转换性能的非晶氧化钼纳米点/二维氮化碳纳米片及其制备方法
CN111495365A (zh) 一种新型n-Cu2O/CuO半导体光催化剂的制备方法
Pessoa et al. Atomic layer deposition of materials for solar water splitting
Baharin et al. The effects of titanium dioxide (TiO2) and reduced graphene oxide (rGO) doping ratio variation to the performance of dye-sensitized solar cell (DSSC)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant