CN111495365A - 一种新型n-Cu2O/CuO半导体光催化剂的制备方法 - Google Patents

一种新型n-Cu2O/CuO半导体光催化剂的制备方法 Download PDF

Info

Publication number
CN111495365A
CN111495365A CN202010472820.6A CN202010472820A CN111495365A CN 111495365 A CN111495365 A CN 111495365A CN 202010472820 A CN202010472820 A CN 202010472820A CN 111495365 A CN111495365 A CN 111495365A
Authority
CN
China
Prior art keywords
fto
cuo
novel
solution
deionized water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010472820.6A
Other languages
English (en)
Inventor
郑倩
罗敏
曾祥华
夏炜炜
孙佳伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010472820.6A priority Critical patent/CN111495365A/zh
Publication of CN111495365A publication Critical patent/CN111495365A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • B01J35/33
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明涉及一种新型n‑Cu2O/CuO半导体光催化剂的制备方法,属于无机金属功能材料领域。首先采用水热法合成了Cu2O/CuO复合材料,在反应结束后放入马弗炉内进行了退火处理。Cu2O/CuO复合材料中Cu2O的含量可以通过改变乙醇的量来实现合理调控。通过本发明,以高纯度Cu(NO3)·3H2O(≥99.5%),NH3和无水乙醇为原料,采用水热法,通过对原料称量、搅拌,水热制备,干燥等步骤,最终制备得到一种新型n‑Cu2O/CuO半导体光催化剂,制备方法简单周期短,合成成本低廉且易于大量生产。

Description

一种新型n-Cu2O/CuO半导体光催化剂的制备方法
技术领域
本发明涉及一种新型n-Cu2O/CuO半导体光催化剂的制备方法,属于无机金属功能材料领域。
背景技术
由于化石燃料污染严重且其资源有限,开发新能源已经迫在眉睫。氢气作为一种可再生且绿色环保的运输和便携式能源载体,已经受到了广泛的关注。然而找到可靠且可持续的制氢方法目前仍然是一个巨大的挑战。各项研究工作都致力于开发一种高效的制氢工艺,而在众多的研究方法中,光电化学(PEC)裂解水被认为是最可持续和最有前途的方法。PEC装置只需要半导体电极、水和太阳光即可,将太阳能转化为化学能不仅可以减少碳排放,还可以提高能源供应的安全性。在PEC器件中,半导体光电极材料是关键所在,因为它的作用是吸收太阳光并产生电子-空穴对。而一般来说,合理的能带排布和有效的载流子分离是选择电极材料的主要标准。考虑到价格和可持续性等因素,最好使用低成本的过渡金属来改善PEC性能。在这些过渡金属半导体材料中,铜氧化物由于其制造成本低、光学带隙和电导率适中,被认为是最具前景的一种PEC裂解水光催化剂,并且目前也有许多报道证实了铜在PEC水裂解方面确实比贵金属有优势。氧化铜(CuO)和氧化亚铜(Cu2O)是铜氧化物的两种主要类型,这两种相均可用于PEC水裂解。Cu2O和CuO是非常常见的p型半导体材料,带隙分别为2.1eV和1.7eV。但有趣的是,Cu2O在p型和n型之间可以表现出可调谐的半导体特性,p型特性是由铜空位引起,其受主能级在0.45-0.55eV之间,而n型特性则是由氧空位引起,施主能级为0.38eV。特别是铜的价态可以在Cu2O和CuO之间发生热力学变化,为Cu2O/CuO二元结构的组装提供了可能,从而使形成的异质结具有更高的催化性能。半导体异质结是提高PEC性能的一种有效方法,因为其特殊的能带排布可以有效地减少载流子的复合。然而,由于合成方法的限制,制备这种Cu2O/CuO纳米结构的研究很少,且已报道的方法往往都比较复杂,如自旋镀膜、电化学沉积、溅射沉积以及改变退火温度或气氛。Yang等人采用重复双电位脉冲计时安培(r-DPPC)方法合成Cu2O/CuO双层复合材料来作为光电阴极,而在另一项研究中通过调整300~400℃的不同退火温度,在ITO基体上对Cu进行热氧化使之在ITO基体上形成纳米结构的Cu2O/CuO络合物薄膜,然而目前报道的方法大多都难以实现合理的调控。此外,目前广泛报道的CuxO复合材料为p-Cu2O/CuO异质结,采用n-Cu2O/CuO异质结来作为光电阴极用于PEC水裂解的研究却很少。
所以在这里我们报道一种新型n-Cu2O/CuO半导体光催化剂的制备方法,简便且快速的水热合成方法。与常规方法不同的是,可以通过改变溶剂中乙醇的含量来合理地调控CuxO复合材料中Cu2O的含量。乙醇作为一种软还原剂,在缓慢的反应过程中为CuO转化为Cu2O提供了可能。
发明内容
本发明的目的在于提出了一种新颖、简便的方法,合成了稳定、高效的铜氧化物复合光电阴极材料用于PEC裂解水。提供一种具有优秀稳定性能,合成成本低、制备工艺简单的一种新型n-Cu2O/CuO半导体光催化剂的制备方法。采用水热法首先合成p型CuO纳米片,然后通过调节中乙醇溶液浓度,在p型CuO纳米片上生长具有30nm左右的n-Cu2O纳米颗粒,形成p-n结。测量发现CuO、Cu2O形成的p-n结为II-型半导体异质结,在光照下增加了光生载流子的分离,形成的耗尽层延长了载流子的寿命,因此具有较高的光电流。PEC测试结果显示n-Cu2O/CuO异质结构的光电流比纯相CuO提升了两倍,最高的光电流密度达150μA。
本发明的目的是这样实现的,一种新型n-Cu2O/CuO半导体光催化剂的制备方法,其特征在于,包括如下步骤:
(1)将FTO分别放入丙酮、乙醇和去离子水中超声10min去除其表面的油污和杂质,然后对FTO干燥待用;
(2)称量1g的Cu(NO3)·3H2O,在1g的Cu(NO3)·3H2O加入30mL去离子水搅拌至完全溶解,得到拌均匀的第一溶液;
(3)用移液枪在搅拌均匀的第一溶液中加入1.5ml NH3,搅拌均匀,得到第二溶液;
(4)充分反应后将该配置好的第二溶液移入反应釜中,将干燥后的FTO倾斜放入第二溶液中,在200℃烘箱中反应6-12h;
(5)在反应釜降至室温后将FTO取出用去离子水冲洗,干燥后移入马弗炉在300℃温度下退火2h,得到一种新型n-Cu2O/CuO半导体光催化剂。
步骤(1)中,FTO的尺寸为1×1cm。
步骤(2)中,用电子天平称量1g原料Cu(NO3)·3H2O,用量筒量取30mL去离子水,量筒在使用前用超声清洗机清洗干净。
采用X射线衍射仪(XRD)对样品进行物相结构分析;采用扫描电子显微镜(SEM)观察制备化合物样品的表面形貌进行性能表征。
本发明提出了一种新颖、简便的方法,合成了稳定、高效的铜氧化物复合光电阴极材料用于PEC裂解水。该方法分为两步,首先我们采用水热法合成了Cu2O/CuO复合材料,在反应结束后放入马弗炉内进行了退火处理。值得一提的是,Cu2O/CuO复合材料中Cu2O的含量可以通过改变乙醇的量来实现合理调控。
综上,本发明公开了一种新型n-Cu2O/CuO半导体光催化剂的制备方法。以高纯度Cu(NO3)·3H2O(≥99.5%),NH3和无水乙醇为原料,采用水热法,通过对原料称量、搅拌,水热制备,干燥等步骤,最终制备得到一种新型n-Cu2O/CuO半导体光催化剂,制备方法简单周期短,合成成本低廉且易于大量生产。
附图说明
图1为本发明一种新型n-Cu2O/CuO半导体光催化剂的XRD图谱。
图2为本发明一种新型n-Cu2O/CuO半导体光催化剂的SEM图谱。
图3为本发明一种新型n-Cu2O/CuO半导体光催化剂的UV图谱。
图4为本发明一种新型n-Cu2O/CuO半导体光催化剂的光电流图谱。
具体实施方式
本实验所用原料为:Cu(NO3)·3H2O(分析纯),NH3和无水乙醇水热法制备一种新型n-Cu2O/CuO半导体光催化剂,下面结合实例对本发明作进一步的描述。
实施例1
(1)将1×1cm的FTO分别放入丙酮、乙醇和去离子水中超声10min去除其表面的油污和其他杂质;
(2)用电子天平称量1g原料Cu(NO3)·3H2O,用量筒量取28mL去离子水和2ml无水乙醇,在Cu(NO3)·3H2O加入去离子水搅拌至完全溶解;量筒使用前用超声清洗机清洗干净;
(3)用移液枪在搅拌均匀的溶液中加入1.5ml NH3,搅拌均匀;
(4)充分反应后将该配置好的溶液移入反应釜中,将干燥后的FTO以一定角度倾斜放入溶液中,在200℃烘箱中反应6-12h;
(5)在反应釜降至室温后将FTO取出用去离子水冲洗,干燥后移入马弗炉在300℃温度下退火2h,得到一种新型n-Cu2O/CuO半导体光催化剂。
实施例2
(1)将1×1cm的FTO分别放入丙酮、乙醇和去离子水中超声10min去除其表面的油污和其他杂质;
(2)用电子天平称量1g原料Cu(NO3)·3H2O,用量筒量取25mL去离子水和5ml无水乙醇,在Cu(NO3)·3H2O加入去离子水搅拌至完全溶解;量筒使用前用超声清洗机清洗干净;
(3)用移液枪在搅拌均匀的溶液中加入1.5ml NH3,搅拌均匀;
(4)充分反应后将该配置好的溶液移入反应釜中,将干燥后的FTO以一定角度倾斜放入溶液中,在200℃烘箱中反应6-12h;
(5)在反应釜降至室温后将FTO取出用去离子水冲洗,干燥后移入马弗炉在300℃温度下退火2h,得到一种新型n-Cu2O/CuO半导体光催化剂。
实施例3
(1)将1×1cm的FTO分别放入丙酮、乙醇和去离子水中超声10min去除其表面的油污和其他杂质;
(2)用电子天平称量1g原料Cu(NO3)·3H2O,用量筒量取22mL去离子水和8ml无水乙醇,在Cu(NO3)·3H2O加入去离子水搅拌至完全溶解;量筒使用前用超声清洗机清洗干净;
(3)用移液枪在搅拌均匀的溶液中加入1.5ml NH3,搅拌均匀;
(4)充分反应后将该配置好的溶液移入反应釜中,将干燥后的FTO以一定角度倾斜放入溶液中,在200℃烘箱中反应6-12h;
(5)在反应釜降至室温后将FTO取出用去离子水冲洗,干燥后移入马弗炉在300℃温度下退火2h,得到一种新型n-Cu2O/CuO半导体光催化剂。

Claims (3)

1.一种新型n-Cu2O/CuO半导体光催化剂的制备方法,其特征在于,包括如下步骤:
(1)将FTO分别放入丙酮、乙醇和去离子水中超声10min去除其表面的油污和杂质,然后对FTO干燥待用;
(2)称量1g的Cu(NO3)·3H2O,在1g的Cu(NO3)·3H2O加入30mL去离子水搅拌至完全溶解,得到拌均匀的第一溶液;
(3)用移液枪在搅拌均匀的第一溶液中加入1.5mlNH3,搅拌均匀,得到第二溶液;
(4)充分反应后将该配置好的第二溶液移入反应釜中,将干燥后的FTO倾斜放入第二溶液中,在200℃烘箱中反应6-12h;
(5)在反应釜降至室温后将FTO取出用去离子水冲洗,干燥后移入马弗炉在300℃温度下退火2h,得到一种新型n-Cu2O/CuO半导体光催化剂。
2.根据权利要求1所述的一种新型n-Cu2O/CuO半导体光催化剂的制备方法,其特征在于,步骤(1)中,FTO的尺寸为1×1cm。
3.根据权利要求1所述的一种新型n-Cu2O/CuO半导体光催化剂的制备方法,其特征在于,步骤(2)中,用电子天平称量1g原料Cu(NO3)·3H2O,用量筒量取30mL去离子水,量筒在使用前用超声清洗机清洗干净。
CN202010472820.6A 2020-05-29 2020-05-29 一种新型n-Cu2O/CuO半导体光催化剂的制备方法 Pending CN111495365A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010472820.6A CN111495365A (zh) 2020-05-29 2020-05-29 一种新型n-Cu2O/CuO半导体光催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010472820.6A CN111495365A (zh) 2020-05-29 2020-05-29 一种新型n-Cu2O/CuO半导体光催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN111495365A true CN111495365A (zh) 2020-08-07

Family

ID=71849621

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010472820.6A Pending CN111495365A (zh) 2020-05-29 2020-05-29 一种新型n-Cu2O/CuO半导体光催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111495365A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117676A (zh) * 2021-03-08 2021-07-16 新乡学院 一种Cu2O-CuO/膨润土光催化复合材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180509A (zh) * 2011-03-28 2011-09-14 浙江理工大学 一种成分可控CuO/Cu2O空心球的制备方法
CN108091732A (zh) * 2018-01-31 2018-05-29 扬州大学 一种FTO衬底上自组装CuO纳米片的可见光电探测器的制备方法
CN109926047A (zh) * 2019-03-21 2019-06-25 华南师范大学 一种氧化铜-氧化亚铜光催化剂及其制备方法
CN110404537A (zh) * 2019-05-30 2019-11-05 重庆交通大学 CuO@Cu2O@Cu微纳米球的制备方法
CN110665503A (zh) * 2019-09-30 2020-01-10 扬州大学 一种可降解co2半导体光催化剂的制备方法
CN110713202A (zh) * 2019-11-08 2020-01-21 东北大学 一种制备Cu2O实心纳米球的方法
CN110856816A (zh) * 2018-08-22 2020-03-03 中国科学院兰州化学物理研究所苏州研究院 表面调控等离子体催化剂及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180509A (zh) * 2011-03-28 2011-09-14 浙江理工大学 一种成分可控CuO/Cu2O空心球的制备方法
CN108091732A (zh) * 2018-01-31 2018-05-29 扬州大学 一种FTO衬底上自组装CuO纳米片的可见光电探测器的制备方法
CN110856816A (zh) * 2018-08-22 2020-03-03 中国科学院兰州化学物理研究所苏州研究院 表面调控等离子体催化剂及其制备方法与应用
CN109926047A (zh) * 2019-03-21 2019-06-25 华南师范大学 一种氧化铜-氧化亚铜光催化剂及其制备方法
CN110404537A (zh) * 2019-05-30 2019-11-05 重庆交通大学 CuO@Cu2O@Cu微纳米球的制备方法
CN110665503A (zh) * 2019-09-30 2020-01-10 扬州大学 一种可降解co2半导体光催化剂的制备方法
CN110713202A (zh) * 2019-11-08 2020-01-21 东北大学 一种制备Cu2O实心纳米球的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHARITH JAYATHILAKA,等: "Improved efficiency of electrodeposited p-CuO/n-Cu2O heterojunction solar cell", 《APPLIED PHYSICS EXPRESS》, 4 June 2015 (2015-06-04), pages 291 - 294 *
MINGZHEN WEI,等: "Preparation of Cu2O nanorods by a simple solvothermal method", 《MATERIALS CHEMISTRY AND PHYSICS》, vol. 121, 20 January 2010 (2010-01-20), pages 065503 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113117676A (zh) * 2021-03-08 2021-07-16 新乡学院 一种Cu2O-CuO/膨润土光催化复合材料的制备方法

Similar Documents

Publication Publication Date Title
Toe et al. Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis
CN109913898B (zh) 一种WO3/CuWO4/NiFe LDH三元复合光电极薄膜的制备方法
CN106435635A (zh) 一种高效光电催化分解水产氧电极的制备方法及应用
Li et al. A gC 3 N 4/WO 3 photoanode with exceptional ability for photoelectrochemical water splitting
CN108579765B (zh) 硫化铜/钒酸铋双层膜复合材料的制备及作为光电阳极的应用
Lu et al. Spontaneous solar syngas production from CO2 driven by energetically favorable wastewater microbial anodes
CN110694648A (zh) 一种光催化水裂解产氢钼掺杂硫化铟锌空心分级结构光催化剂及其制备方法
CN110639585B (zh) 一种共聚合改性的层状石墨相氮化碳光催化剂及其制备方法和应用
CN110624563A (zh) 一种银离子掺杂硫代铟酸锌异质结光催化剂制备方法
Nandanapalli et al. Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications
Wen et al. A colloidal ZnTe quantum dot-based photocathode with a metal–insulator–semiconductor structure towards solar-driven CO 2 reduction to tunable syngas
CN110965073B (zh) 一种含缺陷的wo3光电极的制备方法
CN114481192B (zh) 一种Cd掺杂的二氧化钛/硫化铟锌光阳极及其制备方法
CN112941557A (zh) 一种Ce-BiVO4/g-C3N4光解水制氢复合材料及其制备方法
Esmaeili-Zare et al. CIS/CdS/ZnO/ZnO: Al modified photocathode for enhanced photoelectrochemical behavior under visible irradiation: Effects of pH and concentration of electrolyte solution
Wang et al. Stability of Photocathodes: A Review on Principles, Design, and Strategies
CN111495365A (zh) 一种新型n-Cu2O/CuO半导体光催化剂的制备方法
CN113293404A (zh) 一种异质结光阳极材料及其制备方法和应用
CN109402661B (zh) MIL-100(Fe)/TiO2复合光电极的制备方法及其应用
CN110665525A (zh) 一种复合氮化碳光催化材料的钙钛矿及其制备方法和应用
CN105088266A (zh) 通过在半导体材料上复合共催化剂制备光电化学电池纳米结构光电极的方法
Guan et al. Rational design and fabrication of Cu2O film as photoelectrode for water splitting
CN115233255A (zh) MOF衍生的NiO/BiVO4复合光电极制备方法及其光电应用
CN111871434B (zh) 一种碘氧化铋/纳米金刚石复合光催化剂及其制备方法
CN109289877B (zh) 一种过渡金属二硫属化物薄膜制备及光催化应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200807

RJ01 Rejection of invention patent application after publication