CN112030176B - 一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法 - Google Patents

一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法 Download PDF

Info

Publication number
CN112030176B
CN112030176B CN202010732234.0A CN202010732234A CN112030176B CN 112030176 B CN112030176 B CN 112030176B CN 202010732234 A CN202010732234 A CN 202010732234A CN 112030176 B CN112030176 B CN 112030176B
Authority
CN
China
Prior art keywords
tungsten sulfide
silicon
thiotungstate
photocathode
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010732234.0A
Other languages
English (en)
Other versions
CN112030176A (zh
Inventor
林惠文
常焜
秦亚雷
徐旺
韩文君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202010732234.0A priority Critical patent/CN112030176B/zh
Publication of CN112030176A publication Critical patent/CN112030176A/zh
Application granted granted Critical
Publication of CN112030176B publication Critical patent/CN112030176B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法,属于光电催化半导体材料领域,制备工艺简单易操作,条件温和且可控,可简单地通过改变硫代钨酸盐的浓度和反应时间来控制,原料成本和制备效率均优于现有技术。本发明具体包括:以可溶性硫代钨酸盐的溶液为反应原料,并以氢氟酸溶液作为反应介质,在常温条件下,通过已被氟化刻蚀处理过的硅片表面在氢氟酸介质中与硫代钨酸根离子的氧化还原作用,原位沉积硫化钨纳米颗粒至硅片表面,制得具有均匀沉积的超薄硫化钨纳米颗粒薄膜的硅光电阴极。

Description

一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法
技术领域
本发明属于光电催化半导体材料领域,具体涉及一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法。
背景技术
光电催化纯水分解和二氧化碳还原是开发与转化太阳能的一种非常有效的方式,其中决定光电催化性能中的关键且最基本的因素就是需要使用合适而有效的半导体光电阴极。在众多半导体中,储量丰富与价格低廉的硅是最有前景的小带隙半导体(1.12eV),其带隙吸收几乎完美匹配太阳光谱中的近红外光与可见光部分,同时其具有近乎理想的能带结构,完全能够满足光电催化纯水分解和二氧化碳还原对半导体导带位置的要求。然而,纯硅的光电催化性能极差,主要源于其表面迟缓的析氢和二氧化碳还原催化能力,因此需要在其表面沉积修饰助催化剂,才能够满足光电催化的性能要求。
作为新型廉价的助催化剂,过渡金属硫化物如硫化钨在硅基光电阴极上表现出极大的潜力。已报导通过在高温条件下合成无定形二硫化钨和三硫化钨并修饰硅光电阴极,得到接近于对标准氢电极0.4V的起始光生电压,并在0V的条件下达到20mA∙cm-2的光生电流(Appl. Mater. Inter. 2014, 6, 10408)。一般而言,硫化钨的助催化性能以及与硅半导体之间的相互作用,决定了硅光电阴极的光电催化性能。而如何提高硫化钨的助催化性能以及其与硅半导体之间的相互作用,则取决于通过何种技术手段来实现制备。化学气相沉积(MRS Commun. 2017, 7, 272),热合成(Appl. Catal. B: Environ. 2018, 237, 158)或者脉冲激光沉积(Adv. Sci. 2019, 6, 1900301)等是最常用的技术手段。虽然偶尔能够获得满足光电催化性能的硅光电阴极,但是这些技术手段具有沉积速率非常低、沉积厚度不均匀和制备成本高等缺点。
发明内容
本发明提供了一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法,所述制备方法简单易操作,反应条件温和且可控,得到的硫化钨纳米颗粒厚度1-15nm,可简单地通过改变硫代钨酸盐的浓度和反应时间来控制,原料成本和制备效率均优于现有技术。
为实现以上目的,本发明采用以下技术方案:
一种硫化钨纳米颗粒修饰的硅光电阴极,所述光电阴极中p型单晶硅表面沉积硫化钨纳米颗粒,所述硫化钨纳米颗粒均匀分布于p型单晶硅表面,所述硫化钨纳米颗粒层厚度为1-15nm。
一种硫化钨纳米颗粒修饰硅的光电阴极制备方法,包括以下步骤:
(1)将p型单晶硅在浓硫酸和双氧水混合溶液中于40-80oC下清洗30-60min去除表面有机污染物,然后用0.5-10%含氟溶液刻蚀5-30min去除表面氧化层;
(2)将可溶性硫代钨酸盐溶解于溶剂中,配置0.05-0.5M的硫代钨酸盐溶液,静置于5oC下备用;
(3)取一定体积步骤(2)制备的硫代钨酸盐溶液滴入氢氟酸溶液制得不同浓度的硫代钨酸盐混氢氟酸溶液,并将步骤(1)中已清洗的p型单晶硅平放于所述硫代钨酸盐混氢氟酸溶液中1-60min,然后清洗并在氩气气氛或真空中干燥,制得硫化钨纳米颗粒修饰的硅光电阴极。
以上步骤中,步骤(1)中所述含氟溶液为氢氟酸或氟化铵溶液;步骤(2)中可溶性硫代钨酸盐为(NH4)2WS4、Na2WS4或K2WS4,所述的溶剂为水或乙醇;步骤(3)中所述硫代钨酸盐混氢氟酸溶液中硫代钨酸铵的浓度为0.1-10mM,氢氟酸的质量百分比浓度为1-10%;所述硫化钨纳米颗粒层厚度为1-15nm,可通过改变硫代钨酸盐的浓度和反应时间来控制所述硫化钨纳米颗粒层厚度。
有益效果:本发明提供了一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法,以硫代钨酸盐为原料,通过简单的常温液相氧化还原反应,可控地在硅光电阴极上原位沉积非晶态硫化钨纳米颗粒,沉积的硫化钨纳米颗粒层厚度为1-15nm,可简单地通过改变硫代钨酸盐的浓度和反应时间来控制,原料成本和制备效率均优于现有技术;沉积的硫化钨纳米颗粒与硅光电阴极具有紧密的界面结合作用,从而实现高效的光生电子传输;本发明工艺简单易操作、条件温和且可控、试剂低廉并环保,制备得到的硅光电阴极在光电催化水分解和光电催化二氧化碳还原等领域具有极大的应用潜力。
附图说明
图1为本发明硫化钨纳米颗粒修饰的硅光电阴极的结构示意图;
图2为本发明实施例3制得的硅光电阴极表面原位沉积无定形硫化钨的原子力显微图;
图3为本发明实施例3制得的硅光电阴极中显示硫化钨纳米颗粒厚度的轮廓图。
具体实施方式
下面结合附图是具体实施例对本发明进行详细说明:
实施例1
一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法,包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在10mL浓硫酸加5mL双氧水的混合溶液中于60oC下清洗40min,接着用2.0%氢氟酸刻蚀10min,得到无氧化层的裸硅;取2.0mmol的硫代钨酸铵溶解于10mL水中配置成0.2M的硫代钨酸铵溶液,接着取0.05mL该硫代钨酸铵溶液滴入10mL 5.0%氢氟酸溶液制得1.0mM的硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中5min,其后用大量超纯水清洗并用氩气干燥,制得如图1所示的硫化钨纳米颗粒薄膜修饰的硅光电阴极,所得的硫化钨薄膜的厚度约为9.0nm。
实施例2
一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法,包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在10mL浓硫酸加5mL双氧水的混合溶液中于60oC下清洗40min,接着用5.0%氢氟酸刻蚀5min,得到无氧化层的裸硅;取1.0mmol的硫代钨酸铵溶解于10mL水中配置成0.1M的硫代钨酸铵溶液,接着取0.02mL该硫代钨酸铵溶液滴入10mL 6.0%氢氟酸溶液制得0.2mM的硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中20min,其后用大量超纯水清洗并用氩气干燥,制得如图1所示的硫化钨纳米颗粒薄膜修饰的硅光电阴极,所得的硫化钨薄膜的厚度约为6.0nm。
实施例3
一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法,包括以下步骤:
用玻璃刀将p型单晶硅切割成边长为1cm的方形样品,放置在10mL浓硫酸加5mL双氧水的混合溶液中于60oC下清洗40min,接着用3.0%氢氟酸刻蚀5min,得到无氧化层的裸硅;取1.0mmol的硫代钨酸铵溶解于10mL水中配置成0.1M的硫代钨酸铵溶液,接着取0.01mL该硫代钨酸铵溶液滴入10mL 8.0%氢氟酸溶液制得0.1mM的硫代钨酸铵混氢氟酸溶液,并将上述无氧化层的p型单晶硅平放于该溶液中20min,其后用大量超纯水清洗并用氩气干燥,制得如图1所示的硫化钨纳米颗粒薄膜修饰的硅光电阴极,所得的硫化钨薄膜的厚度约为4.0nm。从图2可以看出此种化学原位自还原法制得的无定形硫化钨纳米颗粒尺寸均匀,大致为10nm,且分散性较好,均匀地分布在Si片表面,从图3可以看出此种化学原位自还原法制得的无定形硫化钨纳米颗粒修饰Si表面膜厚度为4-6nm。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (7)

1.一种硫化钨纳米颗粒修饰硅的光电阴极制备方法,其特征在于,包括以下步骤:
(1)将p型单晶硅在浓硫酸和双氧水混合溶液中于40-80oC下清洗30-60min去除表面有机污染物,然后用0.5-10%含氟溶液刻蚀5-30min去除表面氧化层;
(2)将可溶性硫代钨酸盐溶解于溶剂中,配置0.05-0.5M的硫代钨酸盐溶液,静置于5oC下备用;
(3)取一定体积步骤(2)制备的硫代钨酸盐溶液滴入氢氟酸溶液制得不同浓度的硫代钨酸盐混氢氟酸溶液,并将步骤(1)中已清洗的p型单晶硅平放于所述硫代钨酸盐混氢氟酸溶液中1-60min,然后清洗并在氩气气氛或真空中干燥,制得硫化钨纳米颗粒修饰的硅光电阴极。
2.根据权利要求1所述的硫化钨纳米颗粒修饰硅的光电阴极制备方法,其特征在于,步骤(1)中所述含氟溶液为氢氟酸或氟化铵溶液。
3.根据权利要求1所述的硫化钨纳米颗粒修饰硅的光电阴极制备方法,其特征在于,步骤(2)中可溶性硫代钨酸盐为(NH4)2WS4、Na2WS4或K2WS4,所述的溶剂为水或乙醇。
4.根据权利要求3所述的硫化钨纳米颗粒修饰硅的光电阴极制备方法,其特征在于,步骤(3)中所述硫代钨酸盐混氢氟酸溶液中硫代钨酸铵的浓度为0.1-10mM,氢氟酸的质量百分比浓度为1-10%。
5.根据权利要求1所述的硫化钨纳米颗粒修饰硅的光电阴极制备方法,其特征在于,制备过程中可通过改变硫代钨酸盐的浓度和反应时间来控制硫化钨纳米颗粒层厚度。
6.根据权利要求1所述的硫化钨纳米颗粒修饰硅的光电阴极制备方法,其特征在于,所述硅光电阴极中p型单晶硅表面沉积硫化钨纳米颗粒,所述硫化钨纳米颗粒均匀分布于p型单晶硅表面。
7.根据权利要求5或6所述的硫化钨纳米颗粒修饰硅的光电阴极制备方法,其特征在于,硫化钨纳米颗粒层厚度为1-15nm。
CN202010732234.0A 2020-07-27 2020-07-27 一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法 Expired - Fee Related CN112030176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010732234.0A CN112030176B (zh) 2020-07-27 2020-07-27 一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010732234.0A CN112030176B (zh) 2020-07-27 2020-07-27 一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法

Publications (2)

Publication Number Publication Date
CN112030176A CN112030176A (zh) 2020-12-04
CN112030176B true CN112030176B (zh) 2022-01-18

Family

ID=73583255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010732234.0A Expired - Fee Related CN112030176B (zh) 2020-07-27 2020-07-27 一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法

Country Status (1)

Country Link
CN (1) CN112030176B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377971A1 (en) * 2010-04-16 2011-10-19 EPFL Ecole Polytechnique Fédérale de Lausanne Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions
CN103741224A (zh) * 2014-01-17 2014-04-23 中国地质大学(北京) 高纯度高密度ws2层片状纳米结构的制备方法
CN104313637A (zh) * 2014-10-11 2015-01-28 北京航空航天大学 一种具有氢还原活性的金属硫化物电极及其制备方法
CN104630820A (zh) * 2015-02-12 2015-05-20 重庆市环境科学研究院 金属银致电导增强的二硫化钼修饰硅纳米线阵列光电化学析氢电极的制备方法
CN104674297A (zh) * 2015-01-30 2015-06-03 湘潭大学 一种过渡金属硫族化合物的析氢电极制备方法
CN105870253A (zh) * 2016-04-25 2016-08-17 华中科技大学 一种WS2/Si异质结太阳能电池制备方法
CN110563040A (zh) * 2019-09-27 2019-12-13 天津大学 一种用于电催化析氢的二硫化钨纳米片的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130239469A1 (en) * 2012-03-14 2013-09-19 Board Of Regents, The University Of Texas System Photochemical Processes and Compositions for Methane Reforming Using Transition Metal Chalcogenide Photocatalysts

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2377971A1 (en) * 2010-04-16 2011-10-19 EPFL Ecole Polytechnique Fédérale de Lausanne Amorphous transition metal sulphide films or solids as efficient electrocatalysts for hydrogen production from water or aqueous solutions
CN103741224A (zh) * 2014-01-17 2014-04-23 中国地质大学(北京) 高纯度高密度ws2层片状纳米结构的制备方法
CN104313637A (zh) * 2014-10-11 2015-01-28 北京航空航天大学 一种具有氢还原活性的金属硫化物电极及其制备方法
CN104674297A (zh) * 2015-01-30 2015-06-03 湘潭大学 一种过渡金属硫族化合物的析氢电极制备方法
CN104630820A (zh) * 2015-02-12 2015-05-20 重庆市环境科学研究院 金属银致电导增强的二硫化钼修饰硅纳米线阵列光电化学析氢电极的制备方法
CN105870253A (zh) * 2016-04-25 2016-08-17 华中科技大学 一种WS2/Si异质结太阳能电池制备方法
CN110563040A (zh) * 2019-09-27 2019-12-13 天津大学 一种用于电催化析氢的二硫化钨纳米片的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fabrication of a WS2/p-Si Heterostructure Photocathode Using Direct Hybrid Thermolysis;Amirhossein Hasani等;《ACS Appl. Mater. Interfaces》;20190719;第11卷;第29910-29916页 *
Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production;Ki Chang Kwon等;《MRS Communications》;20170606;第7卷(第2期);第272-279页 *
Tungsten Sulfide Enhancing Solar-Driven Hydrogen Production from Silicon Nanowires;Zhipeng Huang等;《ACS Appl. Mater. Interfaces》;20140606;第6卷;第10408-10414页 *

Also Published As

Publication number Publication date
CN112030176A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
Bai et al. Homophase junction for promoting spatial charge separation in photocatalytic water splitting
Tian et al. Control of nanostructures and interfaces of metal oxide semiconductors for quantum-dots-sensitized solar cells
Jia et al. TiO2@ CdS core–shell nanorods films: fabrication and dramatically enhanced photoelectrochemical properties
Li et al. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation
Li et al. Trimetallic oxyhydroxide modified 3D coral-like BiVO4 photoanode for efficient solar water splitting
CN104988533A (zh) TiO2/BiVO4光阳极材料及其制备方法
Hsu et al. Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting
CN107574456A (zh) 一种超薄二硫化钼纳米片/硅纳米线异质结结构的制备方法
CN110368968B (zh) NiFe-LDH/Ti3C2/Bi2WO6纳米片阵列及制法和应用
Yu et al. Photoelectrochemical property of the BiOBr-BiOI/ZnO heterostructures with tunable bandgap
Zhang et al. Fabrication of a composite electrode: CdS decorated Sb–SnO2/TiO2-NTs for efficient photoelectrochemical reactivity
Guo et al. Effective photocathodic protection for 304 stainless steel by PbS quantum dots modified TiO2 nanotubes
Maiti et al. Efficient charge transport in surface engineered TiO2 nanoparticulate photoanodes leading to improved performance in quantum dot sensitized solar cells
Zhang et al. Enhanced charge separation of α-Bi2O3-BiOI hollow nanotube for photodegradation antibiotic under visible light
CN108435212B (zh) 二硫化钼基的高效光催化分解水产氢的纳米材料及制备方法
Dang et al. MoS2 hydrogen evolution catalysis on p-Si nanorod photocathodes
Fu et al. Electrochemical method for synthesis of Cu2ZnSnS4 Nanorod/TiO2 nanotube arrays hybrid structure with enhanced photoelectrochemical properties
Wang et al. CoSe 2/CdS-diethylenetriamine coupled with P clusters for efficient photocatalytic hydrogen evolution
Priya et al. Construction of MoS2 nanoparticles incorporated TiO2 nanosheets heterojunction photocatalyst for enhanced visible light driven hydrogen production
CN112030176B (zh) 一种硫化钨纳米颗粒修饰的硅光电阴极及其制备方法
Wen et al. Enhanced photocatalytic degradation of methyl orange by CdS quantum dots sensitized platelike WO3 photoelectrodes
CN108993469B (zh) 一种ZnO量子点TiO2纳米片复合结构及其制备方法
CN108620101B (zh) Ag/PbBiO2Cl纳米片复合光催化剂及制备方法
Ming et al. Silicon nanowires decorated with silver nanoparticles for photoassisted hydrogen generation
CN112030184B (zh) 一种无定形硫化钼薄膜修饰的硅光电阴极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220118