CN111948235A - 测量半极性面ⅲ族氮化物薄膜缺陷密度的方法及其应用 - Google Patents

测量半极性面ⅲ族氮化物薄膜缺陷密度的方法及其应用 Download PDF

Info

Publication number
CN111948235A
CN111948235A CN202010787500.XA CN202010787500A CN111948235A CN 111948235 A CN111948235 A CN 111948235A CN 202010787500 A CN202010787500 A CN 202010787500A CN 111948235 A CN111948235 A CN 111948235A
Authority
CN
China
Prior art keywords
semipolar plane
nitride film
dislocation
semipolar
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010787500.XA
Other languages
English (en)
Other versions
CN111948235B (zh
Inventor
孙茂松
张纪才
孙文红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN202010787500.XA priority Critical patent/CN111948235B/zh
Publication of CN111948235A publication Critical patent/CN111948235A/zh
Application granted granted Critical
Publication of CN111948235B publication Critical patent/CN111948235B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种测量半极性面III族氮化物薄膜缺陷密度的方法及其应用。所述的方法包括:采用X射线衍射仪测量生长在异质衬底的半极性面III族氮化物薄膜,从而获得所述薄膜面内摇摆曲线半高宽极大值与薄膜的(10‑10)晶面、(20‑20)晶面、(30‑30)晶面的摇摆曲线半高宽与峰位值;计算获得其a型位错的半高宽展宽、其半极性面的层错间距LLcL对半高宽的加宽;计算获得其c型位错的半高宽展宽;以及,依据修正的位错密度计算公式得出a型、c型位错密度,获得所述薄膜半极性面缺陷密度。本发明提供的方法能够方便、快捷地获得半极性面III族氮化物薄膜的位错密度,利于进行半极性面III族氮化物薄膜生长技术的快速反馈调控,同时其具有廉价、无损等优点。

Description

测量半极性面III族氮化物薄膜缺陷密度的方法及其应用
技术领域
本发明特别涉及一种测量半极性面III族氮化物薄膜缺陷密度的方法及其应用,属于半导体技术领域。
背景技术
2014年,基于III族氮化物研发技术获得诺贝尔奖,是异质外延生长技术最成功的表现。一方面在晶格失配较大的蓝宝石上获得高质量GaN单晶;另一方面开创了p-GaN与蓝光InGaN发射器领域。但是,III族氮化物发展中取得的成果大多集中在c-面极性GaN晶体,在c方向存在自发极化电场,在LED等发光器件领域应用上,产生量子斯塔克效应(QCSE)大幅度降低量子效率。直到现在,在c-面III族氮化物发光器件上,仍未找到有效的限制和消除自发极化电场的有效方法。半极性面在空间结构中可以减弱自发极化效应,消除其对发光器件的影响,于2000年在nature上发表相关成果。但是,相比c-面材料半极性面中除了含有高密度的位错还存在高密度的层错。因此,在晶体质量、尺寸、厚度等亟待解决的科学问题方面,引领了半极性面III族氮化物迅猛发展。
在半极性面III族氮化物薄膜的生长调控技术发展过程中,对半极性面III族氮化物薄膜缺陷分析方面,目前只能采用昂贵的透射电子显微镜技术,其缺点为周期长,区域微观,价格昂贵,不能满足及时反馈质量信息,调控生长技术。
然而,受限于复杂的位错类型与分布和半极性面自身结构不对性的影响,至今没有提出有效的、方便、快捷测定计算位错密度的方法,因此,无法快速进行生长质量反馈,改善生长工艺,因此,严重制约了半极性面III族氮化物薄膜技术的发展。
发明内容
本发明的主要目的在于提供一种快捷、廉价、无损地测量半极性面III族氮化物薄膜缺陷密度的方法及其应用,从而克服现有技术中的不足。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例,提供了一种测量半极性面III族氮化物薄膜缺陷密度的方法,其包括:
采用X射线衍射仪测量生长在异质衬底的半极性面III族氮化物薄膜,从而获得所述半极性面III族氮化物薄膜的半极性面面内摇摆曲线半高宽极大值与所述极性面III族氮化物薄膜的(10-10)晶面、(20-20)晶面、(30-30)晶面的摇摆曲线半高宽与峰位值;
通过式1)计算获得所述III族氮化物薄膜中a型位错的半高宽展宽,
Figure BDA0002622791570000021
式1)中,β(h0-h0)为所述(10-10)晶面、(20-20)晶面和(30-30)晶面的摇摆曲线半高宽,θ(h0-h0)为所述(10-10)晶面、(20-20)晶面和(30-30)晶面的试验测试布拉格衍射角度数值,λ为X射线的波长,为半极性面III族氮化物薄膜的层错间距,βtilt为a型位错对应的展宽值;
通过式2)计算获得半极性面III族氮化物薄膜的层错间距LLCL对半高宽的加宽,
Figure BDA0002622791570000022
式2)中,λ为X射线的波长,LLCL为半极性面III族氮化物薄膜的层错间距,θ(hkil)为半极性面(hkil)的布拉格角;
通过式3)计算获得所述半极性面III族氮化物薄膜中c型位错的半高宽展宽αc
Figure BDA0002622791570000023
式3)中,β(hkil)为半极性面III族氮化物薄膜表面半高宽的极大值,χ为半极性面III族氮化物薄膜与c(0001)面的夹角;
通过式4)计算获得所述半极性面III族氮化物薄膜中a型位错密度和c型位错密度,
Figure BDA0002622791570000031
式4)中,D为位错密度;β为由式1)或式3)获得的βtilt与αc;b为相应位错类型对应的伯克斯矢量,大小为晶格常数a或晶格常数c(本发明中的a型位错指的是位错伯克斯矢量为1/3<11-20>;本发明中的c型位错指的是位错伯克斯矢量为<0001>);
所述a型位错密度和c型位错密度之和为所述半极性面III族氮化物薄膜的缺陷密度。
进一步的,所述的半极性面III族氮化物薄膜生长在所述异质结衬底上。
进一步的,所述异质结衬底包括蓝宝石衬底。
进一步的,所述半极性面III族氮化物薄膜包括AlN薄膜。
进一步的,所述半极性面III族氮化物薄膜的半极性面包括(11-22)面。
进一步的,所述测量半极性面III族氮化物薄膜缺陷密度的方法具体包括:采用X射线衍射仪测量获得半极性面III族氮化物薄膜的(11-22)面内的摇摆曲线,所述半极性面III族氮化物薄膜的(11-22)面内的摇摆曲线半高宽的极大值为X射线入射线沿[1-100]方向的半高宽值。
进一步的,所述测量半极性面III族氮化物薄膜缺陷密度的方法具体包括:通过式1)构建sin(θ(h0-h0))/λ与β(h0-h0)×sin(θ(h0-h0))/λ(h=1,2,3)的线性曲线,从而获得a型位错的半高宽展宽,其中,所述a型位错的半高宽展宽为线性曲线的斜率,即为βtilt,所述线性曲线中的(30-30)点在纵轴方向上与对应横坐标在线性曲线上交点的差值即为层错的间距LLCL,层错的密度为层错间距的倒数(根据层错的加宽作用与晶面消光规律,就可以得出所述线性曲线中的(30-30)晶面对应的图像点在纵轴方向上与对应横坐标在线性曲线上交点的差值即为层错的间距就是层错间距,层错间距的倒数就是层错密度)。
进一步的,所述a型位错包括纯a型位错与在a型方向上的位错分量。
进一步的,所述c型位错包括纯c型位错与在c型方向上的位错分量。
本发明实施例,还提供了所述测量半极性面III族氮化物薄膜缺陷密度的方法与半极性面III族氮化物薄膜制备方法中的应用。
与现有技术相比,本发明的优点包括:
(1)本发明实施例提供的测量半极性面III族氮化物薄膜缺陷密度的方法能够方便、快捷地获得半极性面III族氮化物薄膜的位错密度,从而可以进行半极性面III族氮化物薄膜生长技术的快速反馈调控;
(2)本发明实施例提供的测量半极性面III族氮化物薄膜缺陷密度的方法具有廉价、无损等优点,适于大规模商业使用。
附图说明
图1是一种半极性面III族氮化物薄膜的结构示意图;
图2是本发明一典型实施案例中AlN薄膜(11-22)面内摇摆曲线分布图;
图3是本发明一典型实施案例中AlN薄膜(11-22)面内
Figure BDA0002622791570000041
与β(h0-h0)×sin(θ(h0-h0))/λ(h=1,2,3)的线性曲线图;
图4a、图4b为本发明一典型实施案例中AlN薄膜的电镜图。
具体实施方式
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
本发明实施例提供了一种半极性面III族氮化物中位错密度的计算方法,特别是针对异质外延技术获得的半极性面III族氮化物薄膜,可以实现快捷,廉价,无损地获得半极性面III族氮化物薄膜中的缺陷密度,以及填充该领域的缺陷密度测量方法。
本发明实施例提供的一种半极性面III族氮化物中位错密度的计算方法,采用高分辨X射线衍射方式,获取必要的质量分布信息数据(包括半极性半高宽,(10-10)(20-20)(30-30)晶面的半峰宽与峰位数值),然后通过测试数据与位错密度之间的计算方法,获得薄膜内准确的位错密度。
实施例1
一种测量半极性面III族氮化物薄膜缺陷密度的方法,其可以包括如下过程:
1)在m-面蓝宝石衬底上通过氢化物气相外延生长技术(HVPE或其它可获得半极性面III族氮化物薄膜的生长技术)获得半极性面III族氮化物薄膜,也可以是在r-面或其它可用于生长半极性面III族氮化物薄膜的晶面上生长半极性面III族氮化物薄膜,当然,异质结衬底不限于蓝宝石衬底,能实现获得半极性面III族氮化物薄膜的其他异质结衬底均可;如下以生长在m-面蓝宝石衬底上的(11-22)半极性面AlN薄膜为例进行说明,AlN薄膜的结构如图1所示;
2)采用高分辨X射线衍射仪(HRXRD)对AlN薄膜进行测试(平行光装置为Ge(220)4次衍射;双轴晶模式为开狭缝;三轴晶模式为Si(111)分析晶体),测量获得AlN薄膜(11-22)半极性面内摇摆曲线半高宽极大值(双轴晶模式),以及,测量获得AlN薄膜的(10-10)晶面、(20-20)晶面、(30-30)晶面的摇摆曲线半高宽与峰位数值(三轴晶模式),其中,如图2所示,AlN薄膜的(11-22)半极性面内X射线入射线沿[1-100]方向为摇摆曲线半高宽极大值;
3)通过AlN薄膜(10-10)晶面、(20-20)晶面、(30-30)晶面的摇摆曲线半高宽与峰位数值和式1)进行作图分析,
Figure BDA0002622791570000051
式1)中,β(h0-h0)为所述(10-10)晶面、(20-20)晶面和(30-30)晶面的摇摆曲线半高宽,θ(h0-h0)为所述(10-10)晶面、(20-20)晶面和(30-30)晶面的试验测试布拉格衍射角度数值,λ为X射线的波长,LLCL为半极性面III族氮化物薄膜的层错间距,βtilt为a型位错对应的展宽值,a型位错包括纯a型位错与在a型方向上的位错分量;
由式1)获得的(h0-h0)半高宽曲线(即前述线性曲线)如图3所示,该曲线的斜率为βtilt,从而得到a型位错的半高宽展宽数据;依据层错消光规律(g·R=n(n=0,±1,±2...)消光,g为衍射晶面(h0-h0),R为层错矢量,1/6<20-23>、1/3<10-10>);(30-30)晶面的摇摆曲线展宽不受层错的影响,(30-30)晶面对应的图像点在纵轴方向与对应横坐标在半高宽曲线上交点的差值即为层错的间距LLCL,层错的密度为层错间距的倒数;
4)依据(11-22)半极性面内摇摆曲线极大值进行c型位错的分析:c型位错包括纯c型位错与在c型方向上的位错分量,(11-22)半极性面内摇摆曲线极大值受到层错与位错共同影响,依据式2)计算出层错的间距LLCL对半高宽的加宽,根据公式3)计算出c型位错的半高宽展宽αc
Figure BDA0002622791570000061
式2)中,λ为X射线的波长,LLCL为半极性面III族氮化物薄膜的层错间距,θ(hkil)为(11-22)半极性面的布拉格角;
Figure BDA0002622791570000062
式3)中,β(hkil)为(11-22)半极性面面内半高宽的极大值,χ为(11-22)半极性面与c(0001)面的夹角;
通过式4)计算获得所述半极性面III族氮化物薄膜中a型位错密度和c型位错密度,
Figure BDA0002622791570000063
式4)中,D为位错密度;β为由式1)或式3)计算获得的βtilt与αc;b为相应位错类型对应的伯克斯矢量,大小为晶格常数a或晶格常数c;
所述a型位错密度和c型位错密度之和为所述半极性面III族氮化物薄膜的缺陷密度。
本实施案例中,根据XRD测试得出a型位错密为9.0×109cm-2,c型位错密为8.4×109cm-2,总位错密为1.74×1010cm-2,对AlN薄膜进行透射电子显微镜分析位错密度,结果如图4a、图4b所示,由图4a、图4b分析得出总位错密度为1.3×1010cm-2,位错密度量级相同,由于TEM为微观区域位错密度,数值与实际值偏低。
本发明实施例提供的一种测量半极性面III族氮化物薄膜缺陷密度的方法,能够方便、快捷地获得半极性面III族氮化物薄膜的位错密度,从而可以进行半极性面III族氮化物薄膜生长技术的快速反馈调控;
本发明实施例提供的一种测量半极性面III族氮化物薄膜缺陷密度的方法,具有廉价、无损地优点,可以适于大规模商业使用。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

1.一种测量半极性面III族氮化物薄膜缺陷密度的方法,其特征在于包括:
采用X射线衍射仪测量生长在异质衬底的半极性面III族氮化物薄膜,从而获得所述半极性面III族氮化物薄膜的半极性面面内摇摆曲线半高宽极大值与所述半极性面III族氮化物薄膜的(10-10)晶面、(20-20)晶面、(30-30)晶面的摇摆曲线半高宽与峰位值;
通过式1)计算获得所述半极性面III族氮化物薄膜中a型位错的半高宽展宽,
Figure FDA0002622791560000011
式1)中,β(h0-h0)为所述(10-10)晶面、(20-20)晶面和(30-30)晶面的摇摆曲线半高宽,θ(h0-h0)为所述(10-10)晶面、(20-20)晶面和(30-30)晶面的试验测试布拉格衍射角度数值,λ为X射线的波长,LLCL为半极性面III族氮化物薄膜的层错间距,βtilt为a型位错对应的展宽值;
通过式2)计算获得半极性面III族氮化物薄膜的层错间距LLCL对半高宽的加宽,
Figure FDA0002622791560000012
式2)中,λ为X射线的波长,LLCL为半极性面III族氮化物薄膜的层错间距,θ(hkil)为半极性面(hkil)的布拉格角;
通过式3)计算获得所述半极性面III族氮化物薄膜中c型位错的半高宽展宽αc,
Figure FDA0002622791560000013
式3)中,β(hkil)为半极性面III族氮化物薄膜表面半高宽的极大值,χ为半极性面III族氮化物薄膜与c(0001)面的夹角;
通过式4)计算获得所述半极性面III族氮化物薄膜中a型位错密度和c型位错密度,
Figure FDA0002622791560000014
式4)中,D为位错密度,β为由式1)与式3)获得的βtilt与αc;b为相应位错类型对应的伯克斯矢量,大小为晶格常数a或晶格常数c;
所述a型位错密度和c型位错密度之和为所述半极性面III族氮化物薄膜的缺陷密度。
2.根据权利要求1所述的方法,其特征在于:所述的半极性面III族氮化物薄膜生长在异质衬底上。
3.根据权利要求1或2所述的测量半极性面III族氮化物薄膜缺陷密度的方法,其特征在于:所述异质结衬底包括蓝宝石衬底。
4.根据权利要求1所述的测量半极性面III族氮化物薄膜缺陷密度的方法,其特征在于:所述半极性面III族氮化物薄膜包括AlN薄膜。
5.根据权利要求1所述的测量半极性面III族氮化物薄膜缺陷密度的方法,其特征在于:所述半极性面III族氮化物薄膜的半极性面包括(11-22)面。
6.根据权利要求5所述的测量半极性面III族氮化物薄膜缺陷密度的方法,其特征在于具体包括:采用X射线衍射仪测量获得半极性面III族氮化物薄膜的(11-22)面内的摇摆曲线,所述半极性面III族氮化物薄膜的(11-22)面内的摇摆曲线半高宽的极大值为X射线入射线沿[1-100]方向的半高宽值。
7.根据权利要求1所述的测量半极性面III族氮化物薄膜缺陷密度的方法,其特征在于具体包括:通过式1)构建sin(θ(h0-h0))/λ与
Figure FDA0002622791560000021
的线性曲线,从而获得a型位错的半高宽展宽,其中,所述a型位错的半高宽展宽为线性曲线的斜率,即为βtilt,所述线性曲线中的(30-30)点在纵轴方向上与对应横坐标在线性曲线上交点的差值即为层错的间距LLCL,层错的密度为层错间距的倒数。
8.根据权利要求1所述的测量半极性面III族氮化物薄膜缺陷密度的方法,其特征在于:所述a型位错包括纯a型位错与在a型方向上的位错分量。
9.根据权利要求1所述的测量半极性面III族氮化物薄膜缺陷密度的方法,其特征在于:所述c型位错包括纯c型位错与在c型方向上的位错分量。
10.权利要求1-9中任一项所述方法于半极性面III族氮化物薄膜制备方法中的应用。
CN202010787500.XA 2020-08-07 2020-08-07 测量半极性面ⅲ族氮化物薄膜缺陷密度的方法及其应用 Active CN111948235B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010787500.XA CN111948235B (zh) 2020-08-07 2020-08-07 测量半极性面ⅲ族氮化物薄膜缺陷密度的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010787500.XA CN111948235B (zh) 2020-08-07 2020-08-07 测量半极性面ⅲ族氮化物薄膜缺陷密度的方法及其应用

Publications (2)

Publication Number Publication Date
CN111948235A true CN111948235A (zh) 2020-11-17
CN111948235B CN111948235B (zh) 2022-09-20

Family

ID=73331771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010787500.XA Active CN111948235B (zh) 2020-08-07 2020-08-07 测量半极性面ⅲ族氮化物薄膜缺陷密度的方法及其应用

Country Status (1)

Country Link
CN (1) CN111948235B (zh)

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126810A (ja) * 1997-10-24 1999-05-11 Nec Corp 結晶欠陥の測定方法
US20060270076A1 (en) * 2005-05-31 2006-11-30 The Regents Of The University Of California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US20070015345A1 (en) * 2005-07-13 2007-01-18 Baker Troy J Lateral growth method for defect reduction of semipolar nitride films
CN1920124A (zh) * 2002-06-27 2007-02-28 通用电气公司 降低晶体缺陷密度的方法
CN1992166A (zh) * 2005-12-29 2007-07-04 深圳大学 蓝宝石基无掩膜横向外延生长高质量的ⅲ族氮化物薄膜
WO2007133603A2 (en) * 2006-05-09 2007-11-22 The Regents Of The University Of California In-situ defect reduction techniques for nonpolar and semipolar (ai, ga, in)n
US20080111186A1 (en) * 2006-11-14 2008-05-15 Translucent Photonics, Inc. Field-Effect Transistor Structure and Method Therefor
EP2003696A1 (en) * 2007-06-14 2008-12-17 Sumitomo Electric Industries, Ltd. GaN substrate, substrate with epitaxial layer, semiconductor device and method of manufacturing GaN substrate
JP2009224602A (ja) * 2008-03-17 2009-10-01 Sumitomo Electric Ind Ltd 窒化物半導体レーザ、窒化物半導体レーザを作製する方法、及び窒化物半導体レーザのためのエピタキシャルウエハ
JP4518209B1 (ja) * 2009-09-07 2010-08-04 住友電気工業株式会社 Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
CN102174713A (zh) * 2004-08-10 2011-09-07 日立电线株式会社 Ⅲ-v族氮化物系半导体衬底及其制造方法和ⅲ-v族氮化物系半导体
CA2806935A1 (en) * 2010-07-30 2012-02-02 Diarotech Method for synthesising a material, in particular diamond, by chemical vapour deposition, and a device for applying the method
US20120025232A1 (en) * 2010-07-29 2012-02-02 National Tsing Hua University Iii-nitride light-emitting diode and method of producing the same
CN102359956A (zh) * 2011-10-02 2012-02-22 西安电子科技大学 a面GaN外延层薄膜腐蚀应力的拉曼表征方法
US20120074525A1 (en) * 2006-01-20 2012-03-29 Japan Science And Technology Agency Miscut semipolar optoelectronic device
CN102820211A (zh) * 2012-08-29 2012-12-12 中国科学院半导体研究所 制备非极性A面GaN薄膜的方法
US20130259079A1 (en) * 2012-03-30 2013-10-03 The Regents Of The University Of Michigan GaN-Based Quantum Dot Visible Laser
JP2013209274A (ja) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp 周期表第13族金属窒化物結晶
CN103531447A (zh) * 2012-07-06 2014-01-22 中国科学院金属研究所 一种降低氮化镓纳米线阵列晶体缺陷密度的方法
US20140147650A1 (en) * 2012-11-26 2014-05-29 Soraa, Inc. High quality group-iii metal nitride crystals, mehods of making, and methods of use
JP2014145641A (ja) * 2013-01-29 2014-08-14 Nippon Telegr & Teleph Corp <Ntt> 半導体評価方法
WO2014176283A1 (en) * 2013-04-22 2014-10-30 Ostendo Technologies, Inc. Semi-polar iii-nitride films and materials and method for making the same
GB201421837D0 (en) * 2014-12-09 2015-01-21 Reishig Peter A method of generating a fingerprint for a gemstone using X-ray imaging
US20150078526A1 (en) * 2013-09-13 2015-03-19 U.S.A. Represented By The Administrator Of The National Aeronautics And Space Administration X-ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers
CN104781454A (zh) * 2012-09-26 2015-07-15 希波特公司 第iii族氮化物晶片和制造方法与测试方法
CN104790033A (zh) * 2015-04-03 2015-07-22 南京大学 在ZnO单晶衬底上低温生长高质量ZnO薄膜材料的方法
US9093820B1 (en) * 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
CN104979377A (zh) * 2015-06-25 2015-10-14 苏州纳维科技有限公司 Ⅲ族氮化物/异质衬底复合模板及其制备方法
CN204792796U (zh) * 2015-06-25 2015-11-18 苏州纳维科技有限公司 Ⅲ族氮化物/异质衬底复合模板
US20160359294A1 (en) * 2014-02-10 2016-12-08 Soraa Laser Diode, Inc. Method for Manufacturing Gallium and Nitrogen Bearing Laser Devices With Improved Usage of Substrate Material
CN106409715A (zh) * 2016-10-25 2017-02-15 华南理工大学 一种非极性GaN薄膜缺陷密度的测试方法
WO2018031876A1 (en) * 2016-08-12 2018-02-15 Yale University Stacking fault-free semipolar and nonpolar gan grown on foreign substrates by eliminating the nitrogen polar facets during the growth
US20190005635A1 (en) * 2017-06-28 2019-01-03 Kabushiki Kaisha Toshiba Crystal analysis apparatus and crystal analysis method
JP2019192697A (ja) * 2018-04-19 2019-10-31 パナソニックIpマネジメント株式会社 半導体基板及びその製造方法
CN110783176A (zh) * 2019-10-30 2020-02-11 广西大学 一种低应力半导体材料制备方法
CN110911274A (zh) * 2019-10-25 2020-03-24 北京大学 一种iii族氮化物外延薄膜及其选区生长方法

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11126810A (ja) * 1997-10-24 1999-05-11 Nec Corp 結晶欠陥の測定方法
CN1920124A (zh) * 2002-06-27 2007-02-28 通用电气公司 降低晶体缺陷密度的方法
CN102174713A (zh) * 2004-08-10 2011-09-07 日立电线株式会社 Ⅲ-v族氮化物系半导体衬底及其制造方法和ⅲ-v族氮化物系半导体
US20060270076A1 (en) * 2005-05-31 2006-11-30 The Regents Of The University Of California Defect reduction of non-polar and semi-polar III-nitrides with sidewall lateral epitaxial overgrowth (SLEO)
US20070015345A1 (en) * 2005-07-13 2007-01-18 Baker Troy J Lateral growth method for defect reduction of semipolar nitride films
WO2007009035A2 (en) * 2005-07-13 2007-01-18 The Regents Of The University Of California Lateral growth method for defect reduction of semipolar nitride films
CN1992166A (zh) * 2005-12-29 2007-07-04 深圳大学 蓝宝石基无掩膜横向外延生长高质量的ⅲ族氮化物薄膜
US20120074525A1 (en) * 2006-01-20 2012-03-29 Japan Science And Technology Agency Miscut semipolar optoelectronic device
WO2007133603A2 (en) * 2006-05-09 2007-11-22 The Regents Of The University Of California In-situ defect reduction techniques for nonpolar and semipolar (ai, ga, in)n
US20070267654A1 (en) * 2006-05-09 2007-11-22 Arpan Chakraborty In-situ defect reduction techniques for nonpolar and semipolar (Al,Ga, In)N
US20100193911A1 (en) * 2006-05-09 2010-08-05 The Regents Of The University Of California IN-SITU DEFECT REDUCTION TECHNIQUES FOR NONPOLAR AND SEMIPOLAR (Al, Ga, In)N
US20080111186A1 (en) * 2006-11-14 2008-05-15 Translucent Photonics, Inc. Field-Effect Transistor Structure and Method Therefor
US20080308906A1 (en) * 2007-06-14 2008-12-18 Sumitomo Electric Industries, Ltd. GaN SUBSTRATE, SUBSTRATE WITH EPITAXIAL LAYER, SEMICONDUCTOR DEVICE, AND METHOD OF MANUFACTURING GaN SUBSTRATE
EP2003696A1 (en) * 2007-06-14 2008-12-17 Sumitomo Electric Industries, Ltd. GaN substrate, substrate with epitaxial layer, semiconductor device and method of manufacturing GaN substrate
JP2009224602A (ja) * 2008-03-17 2009-10-01 Sumitomo Electric Ind Ltd 窒化物半導体レーザ、窒化物半導体レーザを作製する方法、及び窒化物半導体レーザのためのエピタキシャルウエハ
JP4518209B1 (ja) * 2009-09-07 2010-08-04 住友電気工業株式会社 Iii族窒化物結晶基板、エピ層付iii族窒化物結晶基板、ならびに半導体デバイスおよびその製造方法
CN102484181A (zh) * 2009-09-07 2012-05-30 住友电气工业株式会社 Iii族氮化物晶体衬底、包含外延层的iii族氮化物晶体衬底、半导体器件及其制造方法
US20120025232A1 (en) * 2010-07-29 2012-02-02 National Tsing Hua University Iii-nitride light-emitting diode and method of producing the same
CA2806935A1 (en) * 2010-07-30 2012-02-02 Diarotech Method for synthesising a material, in particular diamond, by chemical vapour deposition, and a device for applying the method
US9093820B1 (en) * 2011-01-25 2015-07-28 Soraa Laser Diode, Inc. Method and structure for laser devices using optical blocking regions
CN102359956A (zh) * 2011-10-02 2012-02-22 西安电子科技大学 a面GaN外延层薄膜腐蚀应力的拉曼表征方法
US20130259079A1 (en) * 2012-03-30 2013-10-03 The Regents Of The University Of Michigan GaN-Based Quantum Dot Visible Laser
JP2013209274A (ja) * 2012-03-30 2013-10-10 Mitsubishi Chemicals Corp 周期表第13族金属窒化物結晶
CN103531447A (zh) * 2012-07-06 2014-01-22 中国科学院金属研究所 一种降低氮化镓纳米线阵列晶体缺陷密度的方法
CN102820211A (zh) * 2012-08-29 2012-12-12 中国科学院半导体研究所 制备非极性A面GaN薄膜的方法
CN104781454A (zh) * 2012-09-26 2015-07-15 希波特公司 第iii族氮化物晶片和制造方法与测试方法
US20140147650A1 (en) * 2012-11-26 2014-05-29 Soraa, Inc. High quality group-iii metal nitride crystals, mehods of making, and methods of use
JP2014145641A (ja) * 2013-01-29 2014-08-14 Nippon Telegr & Teleph Corp <Ntt> 半導体評価方法
WO2014176283A1 (en) * 2013-04-22 2014-10-30 Ostendo Technologies, Inc. Semi-polar iii-nitride films and materials and method for making the same
US20150078526A1 (en) * 2013-09-13 2015-03-19 U.S.A. Represented By The Administrator Of The National Aeronautics And Space Administration X-ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers
US20160359294A1 (en) * 2014-02-10 2016-12-08 Soraa Laser Diode, Inc. Method for Manufacturing Gallium and Nitrogen Bearing Laser Devices With Improved Usage of Substrate Material
GB201421837D0 (en) * 2014-12-09 2015-01-21 Reishig Peter A method of generating a fingerprint for a gemstone using X-ray imaging
CN104790033A (zh) * 2015-04-03 2015-07-22 南京大学 在ZnO单晶衬底上低温生长高质量ZnO薄膜材料的方法
CN204792796U (zh) * 2015-06-25 2015-11-18 苏州纳维科技有限公司 Ⅲ族氮化物/异质衬底复合模板
CN104979377A (zh) * 2015-06-25 2015-10-14 苏州纳维科技有限公司 Ⅲ族氮化物/异质衬底复合模板及其制备方法
WO2018031876A1 (en) * 2016-08-12 2018-02-15 Yale University Stacking fault-free semipolar and nonpolar gan grown on foreign substrates by eliminating the nitrogen polar facets during the growth
CN109564850A (zh) * 2016-08-12 2019-04-02 耶鲁大学 通过在生长期间消除氮极性小面而在异质衬底上生长的无堆垛层错的半极性和非极性gan
CN106409715A (zh) * 2016-10-25 2017-02-15 华南理工大学 一种非极性GaN薄膜缺陷密度的测试方法
US20190005635A1 (en) * 2017-06-28 2019-01-03 Kabushiki Kaisha Toshiba Crystal analysis apparatus and crystal analysis method
JP2019192697A (ja) * 2018-04-19 2019-10-31 パナソニックIpマネジメント株式会社 半導体基板及びその製造方法
CN110911274A (zh) * 2019-10-25 2020-03-24 北京大学 一种iii族氮化物外延薄膜及其选区生长方法
CN110783176A (zh) * 2019-10-30 2020-02-11 广西大学 一种低应力半导体材料制备方法

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
DIPL.-PHYS. BOJAN MILJEVI´ C: "Characterization of Growth and Real Structure of Nitride Based Semiconductor Devices by Use of Synchrotron Radiation", 《KIT》 *
HISASHI MASUI.ET: "Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 *
M.SC. SERGEY LAZAREV: "X-RAY INVESTIGATION OF DEFECTS IN III-NITRIDES AND THEIR ALLOYS", 《KIT》 *
PHILIPPE VENNÉGUÈS.ET: "TEM study of defect reduction in the growth of semipolar GaN grown on patterned substrates", 《EUROPEAN MICROSCOPY CONGRESS》 *
T. S. ZHELEVA.ET: "Approaches For Reduction Of The Defect Density In Group III Nitride Based Heterostructures", 《MAT. RES. SOC. SYMP. PROC》 *
史冬梅等: "Ⅲ族氮化物第三代半导体材料发展现状与趋势", 《科技中国》 *
曹荣涛: "非极性GaN外延薄膜的低位错生长方法研究", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 *
李宝吉等: "图形化衬底对高In组分InGaN材料分子束外延(MBE)生长的影响", 《材料导报》 *
李筱婵等: "Si衬底上GaN整流器的外延结构设计与器件制备", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》 *
杨刚: "半极性面AlGaN材料的优化p型掺杂及表征", 《中国优秀硕士学位论文全文数据库 (信息科技辑)》 *
王剑屏等: "碳化硅异质外延薄膜生长及表面缺陷研究", 《西安电子科技大学学报》 *
申雁鸣等: "薄膜厚度对HfO_2薄膜残余应力的影响", 《稀有金属材料与工程》 *
谭晓宇等: "基于二维材料的Ⅲ族氮化物外延", 《化学学报》 *

Also Published As

Publication number Publication date
CN111948235B (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Zhao et al. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers
EP1495168B1 (en) Method of growing non-polar a-plane or m-plane gallium nitride thin films by metalorganic chemical vapor deposition and structure obtained thereby
EP2313543B1 (en) Growth of planar and semi-polar {1 1-2 2} gallium nitride with hydride vapor phase epitaxy (hvpe)
Srinivasan et al. Slip systems and misfit dislocations in InGaN epilayers
Marchand et al. Microstructure of GaN laterally overgrown by metalorganic chemical vapor deposition
Kusakabe et al. Characterization of overgrown GaN layers on nano-columns grown by RF-molecular beam epitaxy
US8728938B2 (en) Method for substrate pretreatment to achieve high-quality III-nitride epitaxy
Sarzynski et al. Influence of GaN substrate off‐cut on properties of InGaN and AlGaN layers
Omar et al. Embedded AlN/GaN multi-layer for enhanced crystal quality and surface morphology of semi-polar (11-22) GaN on m-plane sapphire
US20100075107A1 (en) Hexagonal wurtzite single crystal and hexagonal wurtzite single crystal substrate
Bläsing et al. Oxygen induced strain field homogenization in AlN nucleation layers and its impact on GaN grown by metal organic vapor phase epitaxy on sapphire: An x-ray diffraction study
Dinh et al. MOVPE growth and high-temperature annealing of (101¯ 0) AlN layers on (101¯ 0) sapphire
US20110217505A1 (en) Low-Defect nitride boules and associated methods
KR20110021961A (ko) 육방정 우르차이트 단결정
Bartels et al. Asymmetry of misfit dislocations in heteroepitaxial layers on (001) GaAs substrates
Araki et al. Effect of misorientation angle of r-plane sapphire substrate on a-plane GaN grown by metalorganic vapor phase epitaxy
CN111948235B (zh) 测量半极性面ⅲ族氮化物薄膜缺陷密度的方法及其应用
Ansah Antwi et al. Crystallographically tilted and partially strain relaxed GaN grown on inclined {111} facets etched on Si (100) substrate
Fan et al. Observation of threading dislocations and misfit dislocation half-loops in GaN/AlGaN heterostructures grown on Si using electron channeling contrast imaging
Buss et al. Non‐and semipolar AlInN one‐dimensionally lattice‐matched to GaN for realization of relaxed buffer layers for strain engineering in optically active GaN‐based devices
Dinh et al. Untwinned semipolar (101̅3) AlxGa1-xN layers grown on m-plane sapphire
Chang et al. Direct growth of flexible GaN film via van der Waals epitaxy on mica
Chatterjee et al. Optimization of the growth of GaN epitaxial layers in an indigenously developed MOVPE system
Lou et al. Synchrotron X-ray diffraction characterization of the inheritance of GaN homoepitaxial thin films grown on selective growth substrates
Horenburg et al. Strain dependence of In incorporation in m-oriented GaInN/GaN multi quantum well structures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant