CN111909306A - 双水相pam/amps纳米微球乳胶及制备方法和应用 - Google Patents

双水相pam/amps纳米微球乳胶及制备方法和应用 Download PDF

Info

Publication number
CN111909306A
CN111909306A CN202010819429.9A CN202010819429A CN111909306A CN 111909306 A CN111909306 A CN 111909306A CN 202010819429 A CN202010819429 A CN 202010819429A CN 111909306 A CN111909306 A CN 111909306A
Authority
CN
China
Prior art keywords
amps
pam
aqueous
latex
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010819429.9A
Other languages
English (en)
Other versions
CN111909306B (zh
Inventor
孟祖超
刘祥
王硕
李善建
薛丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Hetai Chemical Industry Co ltd
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN202010819429.9A priority Critical patent/CN111909306B/zh
Publication of CN111909306A publication Critical patent/CN111909306A/zh
Application granted granted Critical
Publication of CN111909306B publication Critical patent/CN111909306B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/50Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
    • C09K8/504Compositions based on water or polar solvents
    • C09K8/506Compositions based on water or polar solvents containing organic compounds
    • C09K8/508Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/512Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/588Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/887Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/10Nanoparticle-containing well treatment fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

双水相PAM/AMPS纳米微球乳胶及制备方法和应用,向聚乙二醇水溶液中加入交联剂,得到混合液;将丙烯酰胺、2‑丙烯酰胺基‑2‑甲基丙磺酸与蒸馏水混合均匀,调节pH值后加入到混合液中,然后逐滴加入引发剂溶液,滴毕在50℃~60℃下,在氮气环境下反应1‑3h即可。本发明将双水相PAM/AMPS共聚物纳米微球乳胶由清水、盐水配制成一定浓度的双水相PAM/AMPS共聚物纳米微球乳胶后,在注入泵的作用下注入地层。PAM/AMPS共聚物纳米微球遇逐渐吸水膨胀后,封堵相匹配地层,并在注入介质压力的作用下,变形突破孔喉,进入地层深部,实现多级封堵调驱,改善低渗透和中低渗透油藏的非均质性,提高原油采收率。

Description

双水相PAM/AMPS纳米微球乳胶及制备方法和应用
技术领域
本发明涉及化学、油田化学领域,具体涉及双水相PAM/AMPS纳米微球乳胶及制备方法和应用。
背景技术
聚丙烯酰胺类微球遇水体积膨胀、遇油体积不变,具有良好的封堵性能,且能够改变注入水流动方向,提高注入水的波及系数,提升原油采收率,应用聚丙烯酰胺类微球调驱调剖是油田开采领域近几年发展起来的一种新型深部调堵技术。聚丙烯酰胺类微球多采用反相悬浮聚合和反相(微)乳液聚合方法制备。反相悬浮聚合是将反应物分散在油溶性介质中,单体水溶液作为水相,由水溶性引发剂引发聚合,反应条件平和,副反应少,适用于制备微米级大粒径聚合物微球,但聚合体系热力学不稳定,易发生结块现象,产品纯度偏低。反相(微)乳液聚合是用非极性溶剂为连续相,聚合单体溶于水中,借助于乳化剂分散于油相中,形成油包水(W/O)型(微)乳液而进行聚合,适用于制备微米级到纳米级聚合物微球。制备聚丙烯酰胺类微球所用单体除丙烯酰胺外,为改善聚丙烯酰胺类微球的抗盐耐温性能还添加有2-丙烯酰胺基-2-甲基丙磺酸、苯乙烯磺酸钠、丙烯酸钠、甲基丙烯酰氧乙基三甲基氯化铵等单体,并将制备的聚丙烯酰胺类微球作为调驱调剖化学剂用于提高原油采收率。如:CN107814874A公开了一种以丙烯酰胺、丙烯酸和2-丙烯酰胺基-2-甲基丙磺酸钠为反应单体,通过反相乳液聚合制备的纳米级聚合物微球,耐温抗盐,封堵效果好,可用于提高原油采收率。CN101029109公布的由阳离子单体甲基丙烯酰氧乙基三甲基氯化铵与丙烯酰胺进行反相悬浮聚合制备得到的粒径1~50μm阳离子型交联溶胀功能微球,具有吸水后逐渐溶胀,溶胀速率和溶胀倍率均可控制的三次采油用堵水材料。CN105315403A发明的由丙烯酰胺和/或阴离子型亲水性单体、阳离子型亲水性单体、疏水性单体、交联剂等制备的粒径为0.5~200μm的耐温抗盐活性微球,热稳定性和注入性良好,遇水膨胀、架桥封堵大孔喉,适用于中高渗透率油藏三次采油堵水调剖作业。CN107417863A公开的一种由丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸、苯乙烯磺酸钠、甲基丙烯酰氧乙基二甲基十六烷基溴化铵、交联剂等制备的吸水膨胀的热敏型聚合物微球,在前期注入过程中几乎不会膨胀,当到达一定深度后受温度影响开始缓慢膨胀,不会迅速水化溶解,从而在注入过程中能进入地层深部到达深部调驱的目的。但反相悬浮聚合和反相乳液聚合均使用有机溶剂,生产成本相对较高,存在溶剂污染、回收及生产安全等问题,在对溶剂残留量要求较高的应用领域使用受到限制。
发明内容
为了实现上述目的,本发明提供了双水相PAM/AMPS纳米微球乳胶及制备方法和应用。
为实现上述目的,本发明采用的技术方案如下:
双水相PAM/AMPS纳米微球乳胶的制备方法,包括如下步骤:
(1)向聚乙二醇水溶液中加入交联剂,搅拌均匀,得到混合液;
(2)将丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸与蒸馏水混合均匀,调节pH值6.0-7.0,加入到混合液中,然后在50℃~60℃下逐滴加入引发剂溶液,滴毕在50℃~60℃下,在氮气环境下反应1-3h,得到PAM/AMPS纳米微球乳胶。
本发明进一步的改进在于,PAM/AMPS纳米微球乳胶按质量百分数计,包括聚乙二醇7.0%~9.0%,交联剂0.0005%~0.00015%,丙烯酰胺8.0%~10.0%,2-丙烯酰胺基-2-甲基丙磺酸1.0%~3.0%,引发剂0.0020%~0.0030%,其余为水。
本发明进一步的改进在于,交联剂为N,N-亚甲基双丙烯酰胺。
本发明进一步的改进在于,引发剂为2,2'-偶氮二异丁基脒二盐酸盐。
一种根据上述方法制备的双水相PAM/AMPS纳米微球乳胶,PAM/AMPS纳米微球乳胶按质量百分数计,包括聚乙二醇7.0%~9.0%,交联剂0.0005%~0.0015%,丙烯酰胺8.0%~10.0%,2-丙烯酰胺基-2-甲基丙磺酸1.0%~3.0%,引发剂0.0020%~0.0030%,其余为水。
一种根据上述方法制备的双水相PAM/AMPS纳米微球乳胶在油田调驱调剖中的应用。
本发明进一步的改进在于,将双水相PAM/AMPS纳米微球乳胶由清水、盐水配制成双水相PAM/AMPS纳米微球乳胶后,在注入泵的作用下注入地层。
与现有技术相比,本发明具有的有益效果:本发明提供的双水相PAM/AMPS纳米微球乳胶含有的聚乙二醇、PAM/AMPS共聚物微球,其中聚乙二醇可以增加注入液体的粘度,PAM/AMPS纳米微球初始粒径较小,弹性好且流动性强,在注入初期粒径仅有几十纳米,当PAM/AMPS微球乳胶注入地层后,PAM/AMPS微球逐渐吸水膨胀,从而实现对高渗透孔道的封堵,且吸水膨胀的聚合物微球在注入介质压力的作用下,突破地层深处孔喉到达深部,实现多级封堵调驱调剖的目的。双水相PAM/AMPS纳米微球适用于改善低渗透和中低渗透油藏的非均质性,提高注入液的体积波及系数,增加原油的采收率。
进一步的,本发明以丙烯酰胺(AM)和2-丙烯酰胺-2-甲基丙磺酸(AMPS)作为聚合单体,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,2,2'-偶氮二异丁基脒二盐酸盐(V-50)为引发剂,聚乙二醇为增稠稳定剂,采用双水相聚合技术合成得到了双水相聚丙烯酰胺/2-丙烯酰胺-2-甲基丙磺酸(PAM/AMPS)纳米微球乳胶,该双水相PAM/AMPS纳米微球抗盐耐温性能、吸水膨胀性能和粘弹性的良好;双水相PAM/AMPS纳米微球乳胶粘度低,具有较好的稳定性,可以由清水、盐水配制稀释,在泵的作用下,较低压力即可顺利进入地层深部,遇水膨胀后封堵相匹配地层,作为低渗透和中低渗透油藏深部调驱用化学剂可有效调整、改善油藏的非均质性,提高注入液的体积波及系数,改变油层深部液流转向,提高原油采收率的应用。
本发明制备双水相聚合物微球方法,克服了反相悬浮聚合和反相乳液聚合使用有机溶剂,生产成本相对较高,存在溶剂污染、生产及运输安全等问题,以及反相乳液聚合物微球作为油田调驱调剖材料在配制使用方面对水质等要求。
本发明将双水相PAM/AMPS共聚物纳米微球乳胶由清水、盐水配制成一定浓度的双水相PAM/AMPS共聚物纳米微球乳胶后,在注入泵的作用下注入地层。PAM/AMPS共聚物纳米微球遇逐渐吸水膨胀后,封堵相匹配地层,并在注入介质压力的作用下,变形突破孔喉,进入地层深部,实现多级封堵调驱,改善低渗透和中低渗透油藏的非均质性,提高原油采收率。
附图说明
图1为PAM/AMPS纳米微球的溶胀情况。
图2为溶胀后PAM/AMPS纳米微球的形貌。
图3为PAM/AMPS纳米微球乳胶的粘温曲线。
图4为PAM/AMPS纳米微球乳胶封堵前后水驱压力变化。
图5为模拟岩心驱油实验装置示意图。
图6为PAM/AMPS纳米微球乳胶模拟驱油实验结果。
图中,1.恒流泵,2.油容器,3.第一驱替液容器,4.第二驱替液容器,5.压力表,6.岩芯夹持器,7.测量装置。
具体实施方式
结合双水相PAM/AMPS共聚物纳米微球的制备及其在中低渗透油藏的调剖调驱应用的具体实施案例,对本发明进行示例性说明和进一步理解,但实施案例仅以例子给出,不视为本发明的全部技术方案,不是对本发明总的技术方案的限定,凡有相同或相似技术特征、简单改变或替换的,均属本发明保护范围。
本发明提供的双水相PAM/AMPS共聚物纳米微球的合成方法为:
(1)称取一定量的聚乙二醇置于烧杯中,加入一定比例的新制蒸馏水,搅拌使其充分溶解后配制成聚乙二醇水溶液,然后加入微量N,N-亚甲基双丙烯酰胺,搅拌溶解后转移至四口烧瓶中,通入氮气除氧,搅拌速度调至500r/min,搅拌均匀,得到混合液。
(2)称取一定量的丙烯酰胺、2-丙烯酰胺-2-甲基丙磺酸置于烧杯中,加入一定比例的新制蒸馏水,搅拌使其完全溶解,调节pH值6.0-7.0,然后加入到混合液中,将水浴温度从室温升至50℃~60℃。
(3)然后逐滴加入2,2'-偶氮二异丁基脒二盐酸盐(V-50)溶液,约30min滴加完,观察温度计上读数的变化,反应温度控制在50℃~60℃(优选55℃)、搅拌速度恒定为300r/min,在氮气环境下连续反应1~3h(优选1.5h)后终止,得到稳定均一、粘稠可流动的乳状液,即为PAM/AMPS纳米微球乳胶。
本发明提供的双水相PAM/AMPS纳米微球乳胶,按质量百分比计,包括丙烯酰胺8.0%~10.0%,2-丙烯酰胺-2-甲基丙磺酸1.0%~3.0%,聚乙二醇7.0%~9.0%,引发剂(V-50)0.0020%~0.0030%,交联剂(MBA)0.0005%~0.0015%。
本发明提供的双水相PAM/AMPS共聚物纳米微球乳胶在油田调驱调剖中的应用方法为:
将一定浓度(1%~11%)的双水相PAM/AMPS共聚物纳米微球乳胶在注入泵的作用下注入地层。PAM/AMPS共聚物纳米微球遇逐渐吸水膨胀后,封堵相匹配地层,并在注入介质压力的作用下,变形突破孔喉,进入地层深部,实现多级封堵调驱,改善低渗透和中低渗透油藏的非均质性,提高原油采收率。
下面为具体实施例。
实施例1
双水相PAM/AMPS纳米微球乳胶的制备,包含以下具体步骤:
(1)称取16.0g聚乙二醇置于烧杯中,再加入0.002g N,N-亚甲基双丙烯酰胺,加入114.0g新制蒸馏水,搅拌使其充分溶解后配制成水溶液,转移至四口烧瓶中,通入氮气除氧。
(2)称取20.0g丙烯酰胺、4.0g 2-丙烯酰胺基-2-甲基丙磺酸置于烧杯中,加入36.0g新制蒸馏水,搅拌使其完全溶解,用质量分数为40%的氢氧化钠溶液调节pH值为7.0,然后加入到四口烧瓶中,搅拌速度调至300r/min,通入氮除氧,将水浴温度从室温升至55℃。
(3)待温度稳定至55℃后,在氮气保护下逐滴加入10.0g质量分数为0.05%的2,2'-偶氮二异丁基脒二盐酸盐水溶液,约30min滴加完,控制反应温度为55℃,反应1.5h,停止反应,得到的稳定均一、粘稠可流动的乳状液,即为双水相PAM/AMPS纳米微球乳胶。
在此制备条件下,测得制备双水相PAM/AMPS纳米微球乳胶单体转化率为92.6%,PAM/AMPS纳米微球的初始粒径为65.9nm。图1是PAM/AMPS纳米微球在蒸馏水、自来水、矿化度为1.0×104mg/L、5.0×104mg/L、1.0×105mg/L的模拟矿化水中溶胀倍率与溶胀时间的关系,图2是吸水溶胀后PAM/AMPS纳米微球的形貌。图3是用矿化度为1×104mg/L模拟水样配制的质量分数为10%的PAM/AMPS纳米微球乳胶体系用Haake粘度计在剪切速率为170s-1下测得的粘温曲线。表1是用蒸馏水配制的双水相PAM/AMPS纳米微球乳胶用NDJ-1型数字旋转黏度计在温度为25℃,测试得到的不同质量分数、放置不同时间的溶液表观粘度。
表1 PAM/AMPS纳米微球粘度与浓度的关系
Figure BDA0002633944730000061
实施例2
双水相PAM/AMPS纳米微球乳胶的封堵实验:将不同粗细度的石英砂按比例混合均匀,填入口径为2.5cm、长度为20cm的填砂管中,压实后将水注满填砂管,记录水驱压力,并测定填砂管孔隙体积;再将双水相PAM/AMPS纳米微球乳胶注入填砂管,静置24h,再次水驱并记录水驱压力,两次驱替压力变化情况如图4。从图4可以看出,注入PAM/AMPS纳米微球乳胶前水驱压力为0.12MPa;注入PAM/AMPS纳米微球乳胶并在填砂管中静置12h后,水驱压力迅速增至1.07MPa,且当水驱注入量为0.4PV时,水驱压力又小幅升高,并最终压力增至1.38MPa。双水相PAM/AMPS纳米微球乳胶表现出良好的封堵性。
实施例3
双水相PAM/AMPS纳米微球乳胶的驱油实验:将不同粗细度的石英砂按比例混合均匀,填入口径为2.5cm、长度为20cm的填砂管中,压实后将水注满填砂管,测填砂管孔隙体积;抽真空去除饱和水,吸入模拟原油饱和。图5是模拟岩心驱油实验装置示意图。该实验装置包括恒流泵1,油容器2,第一驱替液容器3,第二驱替液容器4,压力表5,岩芯夹持器6,以及测量装置7。其中,恒流泵1出口分为两路,一路经阀门与油容器2的入口相连通,油容器2的出口分为两路,一路经阀门与第一驱替液容器3底部入口相连通,另一路经阀门与第二驱替液容器4的底部入口相连通,第一驱替液容器3的顶部出口经阀门后分为两路,一路与第二驱替液容器4的顶部入口相连通,另一路与岩芯夹持器6的入口相连通,岩芯夹持器6出口与测量装置7相连通。恒流泵1出口的另一路与岩芯夹持器6的入口相连通。
图6是双水相PAM/AMPS纳米微球乳胶的驱油实验采收率与变化图。从图6可以看出,第一阶段原油水驱,水驱至含水率99.5%时,采收率为42.4%;第二阶段注入PAM/AMPS纳米微球乳胶溶液驱,采收率升高至51.8%;第三阶段将注入PAM/AMPS纳米微球乳胶的填砂管放置12h后,再次水驱至含水率99.5%时,采收率升高至59.3%。即使用PAM/AMPS纳米微球乳胶模拟驱油实总的采收率较水驱采收率提高16.9%。
优选的,本发明以丙烯酰胺(AM)和2-丙烯酰胺基-2-甲基丙磺酸(AMPS)作为聚合单体,N,N-亚甲基双丙烯酰胺为交联剂、2,2'-偶氮二异丁基脒二盐酸盐(V-50)为引发剂,聚乙二醇为增稠稳定剂采用双水相聚合技术合成得到了聚丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸(PAM/AMPS)纳米微球乳胶的方法,包括各组分占比、反应温度、反应时间及反应环节的控制等,提出了双水相PAM/AMPS)纳米微球乳胶作为三次采油用化学剂在低渗透和中低渗透油藏深部调驱调剖,提高原油采收率中的应用及技术实施方法。
实施例4
双水相PAM/AMPS纳米微球乳胶的制备方法,包括如下步骤:
(1)取16.0g聚乙二醇加入到水中,得到聚乙二醇水溶液。向聚乙二醇水溶液中加入N,N-亚甲基双丙烯酰胺,搅拌均匀,得到混合液;
(2)将丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸与蒸馏水混合均匀,调节pH值6.0,加入到混合液中,然后在50℃下逐滴加入2,2'-偶氮二异丁基脒二盐酸盐溶液,滴毕在50℃下,在氮气环境下反应3h,得到PAM/AMPS纳米微球乳胶。
PAM/AMPS纳米微球乳胶按质量百分数计,包括聚乙二醇7.0%,N,N-亚甲基双丙烯酰胺0.0005%,丙烯酰胺9.0%,2-丙烯酰胺基-2-甲基丙磺酸2.0%,2,2'-偶氮二异丁基脒二盐酸盐0.0020%,其余为水。
上述双水相PAM/AMPS纳米微球乳胶在油田调驱调剖中的应用:将双水相PAM/AMPS纳米微球乳胶由清水配制成质量浓度为1%的双水相PAM/AMPS纳米微球乳胶后,在注入泵的作用下注入地层。
实施例5
双水相PAM/AMPS纳米微球乳胶的制备方法,包括如下步骤:
(1)取16.0g聚乙二醇加入到水中,得到聚乙二醇水溶液。向聚乙二醇水溶液中加入N,N-亚甲基双丙烯酰胺,搅拌均匀,得到混合液;
(2)将丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸与蒸馏水混合均匀,调节pH值7.0,加入到混合液中,然后在60℃下逐滴加入2,2'-偶氮二异丁基脒二盐酸盐溶液,滴毕在60℃下,在氮气环境下反应1h,得到PAM/AMPS纳米微球乳胶。
PAM/AMPS纳米微球乳胶按质量百分数计,包括聚乙二醇8.0%,N,N-亚甲基双丙烯酰胺0.001%,丙烯酰胺10.0%,2-丙烯酰胺基-2-甲基丙磺酸1.0%,2,2'-偶氮二异丁基脒二盐酸盐0.0025%,其余为水。
上述双水相PAM/AMPS纳米微球乳胶在油田调驱调剖中的应用:将双水相PAM/AMPS纳米微球乳胶由清水配制成质量浓度为11%的双水相PAM/AMPS纳米微球乳胶后,在注入泵的作用下注入地层。
实施例6
双水相PAM/AMPS纳米微球乳胶的制备方法,包括如下步骤:
(1)取16.0g聚乙二醇加入到水中,得到聚乙二醇水溶液。向聚乙二醇水溶液中加入N,N-亚甲基双丙烯酰胺,搅拌均匀,得到混合液;
(2)将丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸与蒸馏水混合均匀,调节pH值6.0,加入到混合液中,然后在55℃下逐滴加入2,2'-偶氮二异丁基脒二盐酸盐溶液,滴毕在55℃下,在氮气环境下反应2h,得到PAM/AMPS纳米微球乳胶。
PAM/AMPS纳米微球乳胶按质量百分数计,包括聚乙二醇9.0%,N,N-亚甲基双丙烯酰胺0.0015%,丙烯酰胺8.0%,2-丙烯酰胺基-2-甲基丙磺酸3.0%,2,2'-偶氮二异丁基脒二盐酸盐0.003%,其余为水。
上述双水相PAM/AMPS纳米微球乳胶在油田调驱调剖中的应用:将双水相PAM/AMPS纳米微球乳胶由盐水配制成质量浓度为5%的双水相PAM/AMPS纳米微球乳胶后,在注入泵的作用下注入地层。
实施例7
双水相PAM/AMPS纳米微球乳胶的制备方法,包括如下步骤:
(1)取16.0g聚乙二醇加入到水中,得到聚乙二醇水溶液。向聚乙二醇水溶液中加入N,N-亚甲基双丙烯酰胺,搅拌均匀,得到混合液;
(2)将丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸与蒸馏水混合均匀,调节pH值6.5,加入到混合液中,然后在52℃下逐滴加入2,2'-偶氮二异丁基脒二盐酸盐溶液,滴毕在52℃下,在氮气环境下反应2h,得到PAM/AMPS纳米微球乳胶。
PAM/AMPS纳米微球乳胶按质量百分数计,包括聚乙二醇7.0%,N,N-亚甲基双丙烯酰胺0.0007%,丙烯酰胺8.0%,2-丙烯酰胺基-2-甲基丙磺酸2.0%,2,2'-偶氮二异丁基脒二盐酸盐0.0023%,其余为水。
上述双水相PAM/AMPS纳米微球乳胶在油田调驱调剖中的应用:将双水相PAM/AMPS纳米微球乳胶由清水配制成质量浓度为8%的双水相PAM/AMPS纳米微球乳胶后,在注入泵的作用下注入地层。

Claims (7)

1.双水相PAM/AMPS纳米微球乳胶的制备方法,其特征在于,包括如下步骤:
(1)向聚乙二醇水溶液中加入交联剂,搅拌均匀,得到混合液;
(2)将丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸与蒸馏水混合均匀,调节pH值6.0-7.0,加入到混合液中,然后在50℃~60℃下逐滴加入引发剂溶液,滴毕在50℃~60℃下,在氮气环境下反应1-3h,得到PAM/AMPS纳米微球乳胶。
2.根据权利要求1所述的双水相PAM/AMPS纳米微球乳胶的制备方法,其特征在于,PAM/AMPS纳米微球乳胶按质量百分数计,包括聚乙二醇7.0%~9.0%,交联剂0.0005%~0.0015%,丙烯酰胺8.0%~10.0%,2-丙烯酰胺基-2-甲基丙磺酸1.0%~3.0%,引发剂0.0020%~0.0030%,其余为水。
3.根据权利要求1所述的双水相PAM/AMPS纳米微球乳胶的制备方法,其特征在于,交联剂为N,N-亚甲基双丙烯酰胺。
4.根据权利要求1所述的双水相PAM/AMPS纳米微球乳胶的制备方法,其特征在于,引发剂为2,2'-偶氮二异丁基脒二盐酸盐。
5.一种根据权利要求1所述方法制备的双水相PAM/AMPS纳米微球乳胶,其特征在于,PAM/AMPS纳米微球乳胶按质量百分数计,包括聚乙二醇7.0%~9.0%,交联剂0.0005%~0.0015%,丙烯酰胺8.0%~10.0%,2-丙烯酰胺基-2-甲基丙磺酸1.0%~3.0%,引发剂0.0020%~0.0030%,其余为水。
6.一种根据权利要求1所述方法制备的双水相PAM/AMPS纳米微球乳胶在油田调驱调剖中的应用。
7.根据权利要求6所述的应用,其特征在于,将双水相PAM/AMPS纳米微球乳胶由清水、盐水配制成双水相PAM/AMPS纳米微球乳胶后,在注入泵的作用下注入地层。
CN202010819429.9A 2020-08-14 2020-08-14 双水相pam/amps纳米微球乳胶及制备方法和应用 Active CN111909306B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010819429.9A CN111909306B (zh) 2020-08-14 2020-08-14 双水相pam/amps纳米微球乳胶及制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010819429.9A CN111909306B (zh) 2020-08-14 2020-08-14 双水相pam/amps纳米微球乳胶及制备方法和应用

Publications (2)

Publication Number Publication Date
CN111909306A true CN111909306A (zh) 2020-11-10
CN111909306B CN111909306B (zh) 2022-05-31

Family

ID=73284075

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010819429.9A Active CN111909306B (zh) 2020-08-14 2020-08-14 双水相pam/amps纳米微球乳胶及制备方法和应用

Country Status (1)

Country Link
CN (1) CN111909306B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341570A (zh) * 2020-11-28 2021-02-09 西安石油大学 双水相聚丙烯酰胺三元共聚物纳米微球乳胶及其制备方法
CN115073673A (zh) * 2021-03-12 2022-09-20 中国石油天然气股份有限公司 聚合物及其双水相制备方法与应用
CN116217791A (zh) * 2021-12-03 2023-06-06 中国石油天然气集团有限公司 一种水基聚合物纳米微球抗高温降滤失剂及其制备方法和应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152143A (ja) * 2004-11-30 2006-06-15 Dainippon Ink & Chem Inc 吸液性樹脂の製造方法
CN101029109A (zh) * 2007-02-01 2007-09-05 江南大学 一种阳离子型交联溶胀功能微球的制备方法
CN103408698A (zh) * 2013-08-28 2013-11-27 江苏博特新材料有限公司 原位氧化还原引发制备聚丙烯酰胺水包水分散液
US20140326457A1 (en) * 2012-01-20 2014-11-06 S.P.C.M. Sa Process For The Enhanced Recovery Of Oil By Injection Of A Polymer Solution
CN104449617A (zh) * 2014-11-26 2015-03-25 胜利油田胜利化工有限责任公司 一种阴离子聚丙烯酰胺水包水乳液堵水调剖剂及其制备方法和使用用法
CN105315403A (zh) * 2014-07-24 2016-02-10 中国石油化工股份有限公司 耐温抗盐活性微球及其制备方法和应用
CN105482033A (zh) * 2014-09-19 2016-04-13 中国石油化工股份有限公司 一种聚合物微球及其制备方法和应用
CN105524215A (zh) * 2014-10-24 2016-04-27 中国石油化工股份有限公司 耐温抗盐丙烯酰胺类聚合物微球分散体系及其制备方法和应用
CN106146730A (zh) * 2015-03-25 2016-11-23 中国石油天然气股份有限公司 一种丙烯酰胺类聚合物增稠剂及其制备方法和压裂液
CN106220782A (zh) * 2016-08-29 2016-12-14 浙江大川新材料股份有限公司 一种聚丙烯酰胺水包水乳液及其制备方法
CN106589225A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 深部调剖堵水用聚合物凝胶颗粒及其制备方法
CN106749885A (zh) * 2015-11-19 2017-05-31 北京熠海能源科技有限公司 一种纳微米级水包水型微球调剖剂的制备方法及其应用
CN106832111A (zh) * 2017-01-18 2017-06-13 西安石油大学 一种多功能滑溜水压裂液减阻剂的制备方法
CN107417863A (zh) * 2017-07-14 2017-12-01 西安长庆化工集团有限公司 一种吸水膨胀的热敏型聚合物微球及其制备方法和应用
CN107814874A (zh) * 2017-11-01 2018-03-20 南阳理工学院 一种纳米级耐温抗盐交联聚合物微球及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152143A (ja) * 2004-11-30 2006-06-15 Dainippon Ink & Chem Inc 吸液性樹脂の製造方法
CN101029109A (zh) * 2007-02-01 2007-09-05 江南大学 一种阳离子型交联溶胀功能微球的制备方法
US20140326457A1 (en) * 2012-01-20 2014-11-06 S.P.C.M. Sa Process For The Enhanced Recovery Of Oil By Injection Of A Polymer Solution
CN103408698A (zh) * 2013-08-28 2013-11-27 江苏博特新材料有限公司 原位氧化还原引发制备聚丙烯酰胺水包水分散液
CN105315403A (zh) * 2014-07-24 2016-02-10 中国石油化工股份有限公司 耐温抗盐活性微球及其制备方法和应用
CN105482033A (zh) * 2014-09-19 2016-04-13 中国石油化工股份有限公司 一种聚合物微球及其制备方法和应用
CN105524215A (zh) * 2014-10-24 2016-04-27 中国石油化工股份有限公司 耐温抗盐丙烯酰胺类聚合物微球分散体系及其制备方法和应用
CN104449617A (zh) * 2014-11-26 2015-03-25 胜利油田胜利化工有限责任公司 一种阴离子聚丙烯酰胺水包水乳液堵水调剖剂及其制备方法和使用用法
CN106146730A (zh) * 2015-03-25 2016-11-23 中国石油天然气股份有限公司 一种丙烯酰胺类聚合物增稠剂及其制备方法和压裂液
CN106589225A (zh) * 2015-10-20 2017-04-26 中国石油化工股份有限公司 深部调剖堵水用聚合物凝胶颗粒及其制备方法
CN106749885A (zh) * 2015-11-19 2017-05-31 北京熠海能源科技有限公司 一种纳微米级水包水型微球调剖剂的制备方法及其应用
CN106220782A (zh) * 2016-08-29 2016-12-14 浙江大川新材料股份有限公司 一种聚丙烯酰胺水包水乳液及其制备方法
CN106832111A (zh) * 2017-01-18 2017-06-13 西安石油大学 一种多功能滑溜水压裂液减阻剂的制备方法
CN107417863A (zh) * 2017-07-14 2017-12-01 西安长庆化工集团有限公司 一种吸水膨胀的热敏型聚合物微球及其制备方法和应用
CN107814874A (zh) * 2017-11-01 2018-03-20 南阳理工学院 一种纳米级耐温抗盐交联聚合物微球及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JIN-HUA HUO,等: "Preparation, characterization, and investigation of poly(AMPS/AM/SSS) on application performance of water-based drilling fluid", 《J. APPL. POLYM. SCI.》 *
KUANXIANG SHANG,等: "Unusual Soluble-Insoluble-Soluble Phase Transition in Two-Phase Copolymerization of Acrylamide and an Anionic Comonomer in a Poly(ethylene glycol) Aqueous Solution", 《IND. ENG. CHEM. RES.》 *
S. DURMAZ,等: "Acrylamide/2-acrylamido-2-methylpropane sulfonic acid sodium salt-based hydrogels: synthesis and characterization", 《POLYMER》 *
单国荣,等: "水体系相图及丙烯酰胺单体在两相中的分配", 《高等学校化学学报》 *
呼早霞,等: "高稳定性双水相共聚物PAM-AMPS的合成与表征", 《精细化工》 *
柏少玲: "阴离子型聚丙烯酰胺微球的水分散聚合法制备", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341570A (zh) * 2020-11-28 2021-02-09 西安石油大学 双水相聚丙烯酰胺三元共聚物纳米微球乳胶及其制备方法
CN115073673A (zh) * 2021-03-12 2022-09-20 中国石油天然气股份有限公司 聚合物及其双水相制备方法与应用
CN115073673B (zh) * 2021-03-12 2023-08-22 中国石油天然气股份有限公司 聚合物及其双水相制备方法与应用
CN116217791A (zh) * 2021-12-03 2023-06-06 中国石油天然气集团有限公司 一种水基聚合物纳米微球抗高温降滤失剂及其制备方法和应用

Also Published As

Publication number Publication date
CN111909306B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
CN111909306B (zh) 双水相pam/amps纳米微球乳胶及制备方法和应用
US11015109B2 (en) Particulate profile control agent self-adaptive to size of formation pore throat and preparation method thereof
CA2973253C (en) Hydrophobically associated polymer and preparation method thereof
CN110483687B (zh) 压裂液增稠剂及其制备方法
CN105586025B (zh) 高温高盐油藏聚合物微球分散体系调驱剂及其制备方法和应用
CN102304200B (zh) 一种交联聚合物微球及其制备方法
CN107337762A (zh) 一种疏水缔合交联聚合物微球、制备方法和应用
CN112341570B (zh) 双水相聚丙烯酰胺三元共聚物纳米微球乳胶及其制备方法
CN107383273B (zh) 一种稠油活化剂及其制备方法
CN110698580B (zh) 一种用于钻井液的纳米胶乳强封堵剂及其制备方法
CN112898484B (zh) 一种油气田调堵驱多功能药剂及其制作工艺
CN104017131B (zh) 聚合物微凝胶驱油剂及其制备方法和应用
CN112920321A (zh) 一种调驱用聚丙烯酰胺基核壳结构耐温抗盐高强型纳米级微球及其制备方法
CN108484827B (zh) 一种在压裂中同时具有减阻及增稠性能且溶解迅速的乳液及其制备方法
CN106467598B (zh) 一种两***联聚合物线团及其制备方法
Gou et al. A novel hybrid hyperbranched nanowire CNTs for enhancing oil recovery through increasing viscoelasticity and high-viscous emulsions to compensate reservoir heterogeneity
CN101240044B (zh) 粒径呈双峰分布的交联聚合物线团的制备方法
CN111393545B (zh) 一种耐温抗盐树枝状超分子聚合物驱油剂及其制备方法、应用
CN107686533B (zh) 具有选择性堵水功能的聚合物及其制备方法和应用
CN114456332A (zh) 一种纳米颗粒修饰的聚合物及其制备方法和应用
CN111139046A (zh) 一种高分子凝胶复合型堵漏剂及其制备方法
CN114805709B (zh) 一种具有乳液稳定性能的油基钻井液用抗超高温纳米封堵剂及其制备方法与应用
CN106467733B (zh) 两***联聚合物微球-疏水缔合聚合物调驱剂及其应用
CN107686532B (zh) 具有选择性堵水功能的聚合物及其制备方法和应用
CN107686535B (zh) 具有选择性堵水功能的聚合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230727

Address after: 710018 Room 11811, Building 1, New Century Building, No. 16, Fengcheng Second Road, Xi'an Economic and Technological Development Zone, Xi'an City, Shaanxi Province

Patentee after: XI'AN HETAI CHEMICAL INDUSTRY CO.,LTD.

Address before: 710065, No. 18, two East, electronic road, Shaanxi, Xi'an

Patentee before: XI'AN SHIYOU University