CN111902417B - 一种二芳基巨环化合物、药物组合物以及其用途 - Google Patents

一种二芳基巨环化合物、药物组合物以及其用途 Download PDF

Info

Publication number
CN111902417B
CN111902417B CN201980020599.6A CN201980020599A CN111902417B CN 111902417 B CN111902417 B CN 111902417B CN 201980020599 A CN201980020599 A CN 201980020599A CN 111902417 B CN111902417 B CN 111902417B
Authority
CN
China
Prior art keywords
compound
mmol
group
pharmaceutical composition
ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980020599.6A
Other languages
English (en)
Other versions
CN111902417A (zh
Inventor
祝力
吴伟
杨艳青
胡伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Puqi Pharmaceutical Technology Co ltd
Original Assignee
Beijing Puqi Pharmaceutical Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Puqi Pharmaceutical Technology Co ltd filed Critical Beijing Puqi Pharmaceutical Technology Co ltd
Publication of CN111902417A publication Critical patent/CN111902417A/zh
Application granted granted Critical
Publication of CN111902417B publication Critical patent/CN111902417B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/16Peri-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D515/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D515/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D515/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D515/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D515/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains three hetero rings
    • C07D515/16Peri-condensed systems

Abstract

本发明提供了一种如式(1)所示的化合物或其药学上可接受的盐、溶剂化物、活性代谢物、多晶型物、同位素标记物、异构体或前药。本发明还提供了包含其的药物组合物以及所述化合物、药物组合物在制备用于治疗酪氨酸激酶介导的疾病的药物中的用途。本发明提供的化合物及其药物组合物具有显著的酪氨酸激酶抑制活性,能克服肿瘤耐药,能够突破血脑屏障,还具有优异的药代动力学性质以及极佳的口服生物利用度,可以以较小的剂量施用,从而可降低患者的治疗成本及可能的毒副作用,因而非常具备应用潜力。

Description

一种二芳基巨环化合物、药物组合物以及其用途
交叉引用
本申请要求于2018年04月25日递交的中国发明申请第201810377811.1号的优先权,在此全文引用上述中国专利申请公开的内容以作为本公开的一部分。
技术领域
本发明涉及医药领域,具体涉及一种二芳基巨环化合物、包含所述化合物的药物组合物以及其用途。
背景技术
蛋白激酶是细胞生长、增殖和存活的关键调控剂。包括癌症、疼痛、神经疾病、自身免疫疾病和炎症在内的多种疾病,都由受体酪氨酸激酶来介导,如TRK、ROS1、ALK、JAK2、SRC、FAK、FYN、LYN、YES、FGR、FAK、ARK5、AXL等。
NTRK/TRK,神经营养因子酪氨酸激酶受体,隶属于受体酪氨酸激酶家族,TRK家族主要包括3个成员,NTRK1/TRKA、NTRK2/TRKB和NTRK3/TRKC。TRK融合蛋白与肿瘤密切相关,多种融合蛋白如CD74-NTRK1、MPRIP-NTRK1、QKI-NTRK2、ETV6-NTRK3、BTB1-NTRK3等在多种肿瘤如结肠癌、肺癌、头颈癌、乳腺癌、甲状腺癌、神经胶质瘤等中均有发现。因此,近几年来,TRK融合蛋白已经成为一个有效的抗癌靶点和研究热点,例如WO 2010048314、WO2010033941等均公开了具有不同母核的TRK激酶抑制剂。此外,持续给药后出现的靶标突变是肿瘤产生耐药性的重要原因,近期临床上已经出现了NTRK突变的病例,如NTRK1 G595R和G667C的突变(Russo M等.Cancer Discovery,2016,6(1),36-44)、NTRK3 G623R的突变(Drilon A.等Annals of Oncology 2016,27(5),920-926),而寻找新的TRK激酶抑制剂有望解决NTRK突变引起的肿瘤耐药性问题。
ALK(Anaplastic lymphoma kinase)抑制剂在治疗携带异常ALK基因的肺癌患者中取得了巨大成功,但是肿瘤耐药的出现限制了这些药物临床上的长期使用。耐药的机制通常包含了靶标基因的扩增、获得性耐药突变、旁路和下游通路的激活、上皮间充质转化和肿瘤转移等。当前上市的ALK抑制剂尚没有一个能克服基于旁路激活或者上皮间充质转化的耐药。迫切需要开发能同时克服多重耐药机制的ALK抑制剂。
ROS1激酶经基因重排之后在多种癌症中产生组成型活性融合蛋白,如胶质母细胞瘤、非小细胞肺癌、胆管癌、卵巢癌、胃腺癌、结直肠癌、炎症性肌纤维母细胞瘤、血管肉瘤和上皮样血管内皮瘤等,抑制ROS1融合蛋白能有效抑制ROS1阳性肿瘤。FDA已经批准多个治疗ALK阳性的非小细胞肺癌新药,但是对于ROS1阳性的非小细胞肺癌患者而言,可选择的药物仍比较有限,目前仅克唑替尼批准用于治疗ROS1阳性的非小细胞肺癌。此外,克唑替尼临床用药已经出现了获得性耐药,耐药突变位点主要在ROS1 G2032和ROS1 L2026M。迫切需要开发针对野生及多种耐药突变的ROS1抑制剂。
EGFR抑制剂在治疗非小细胞肺癌的患者中取得了巨大成功,但同时也出现了肿瘤耐药。在EGFR耐药人群中,发现有多种信号通路的过表达,如MET、CDCP1、AXL、SHP2。此外,STAT3和Src-YAP1信号通路也会影响EGFR抑制剂的治疗效果,而JAK2则能调控下游STAT3的表达。开发作用于JAK2、Src/FAK、AXL在内的多重抑制剂有望与EGFR抑制剂联用,克服旁路代偿性的EGFR耐药。
发明内容
本发明的一个目的是提供一种新型化合物或其药学上可接受的盐、溶剂化物、活性代谢物、多晶型物、同位素标记物、异构体或前药,其具备优异的酪氨酸激酶抑制活性。
本发明的另一目的是提供一种药物组合物。
本发明的另一目的是提供新型化合物或其药学上可接受的盐、溶剂化物、活性代谢物、多晶型物、同位素标记物、异构体或前药的用途。
本发明提供了一种如式(1)所示的化合物或其药学上可接受的盐、溶剂化物、活性代谢物、多晶型物、同位素标记物、异构体或前药,
式(1)中,
X选自-O-、-S-或-CRaRb-;
Ra、Rb各自独立地选自取代或未取代的以下基团:氢、卤素、C1~8烷基、C1~8烷氧基、C1~8卤代烷基、C3~8环烷基、C3~8杂环基、C6~20芳基、C5~20杂芳基、羟基、巯基、羧基、酯基、酰基、氨基、酰胺基、磺酰基、氰基、或CRaRb共同形成3~10元环烷基或含有至少一个杂原子的3~10元杂环基;
L1选自-O-、-S-、-S(=O)-、-S(=O)2-、-NR6-或为单键;
L2选自-O-、-S-、-S(=O)-、-S(=O)2-或-NR6-;
R1、R2、R5各自独立地选自取代或未取代的以下基团:氢、卤素、C1~8烷基、C1~8烷氧基、C1~8卤代烷基、C3~8环烷基、C3~8杂环基、C6~20芳基、C5~20杂芳基、羟基、巯基、羧基、酯基、酰基、氨基、酰胺基、磺酰基或氰基;
每个C原子上的取代基R3、R4各自独立地选自取代或未取代的以下基团:氢、卤素、C1~8烷基、C1~8烷氧基、C1~8卤代烷基、C3~8环烷基、C3~8杂环基、C6~20芳基、C5~20杂芳基、羟基、巯基、羧基、酯基、酰基、氨基、酰胺基、磺酰基、氰基、或与X基团共同形成3~10元的环烷基、含有至少一个杂原子的3~10元杂环基或含有至少一个杂原子的5~10元杂芳基;或者R3、R4各自独立地为连接所述C原子和相邻的巨环环原子的单键。
R3’、R4’各自独立地选自取代或未取代的以下基团:氢、卤素、C1~8烷基、C1~8烷氧基、C1~8卤代烷基、C3~8环烷基、C3~8杂环基、C6~20芳基、C5~20杂芳基、羟基、巯基、羧基、酯基、酰基、氨基、酰胺基、磺酰基、氰基、或与所连接的C及L2共同形成含有至少一个杂原子的3~10元杂环基或含有至少一个杂原子的5~10元杂芳基;
R6选自取代或未取代的以下基团:氢、卤素、C1~8烷基、C1~8烷氧基、C1~8卤代烷基、C3~8环烷基、C3~8杂环基、C6~20芳基、C5~20杂芳基、羟基、巯基、羧基、酯基、酰基、氨基、酰胺基、磺酰基或氰基;
Z表示C或杂原子作为环原子;
n表示1~10的整数;
上述所述基团的取代基可选自卤素、C1~8烷基、C1~8卤代烷基、C1~8烷氧基、C3~8环烷基、C3~8杂环基、C6~20芳基、C5~20杂芳基、羟基、巯基、羧基、酯基、酰基、氨基、酰胺基、磺酰基或氰基;
上述所述的杂原子选自N、O或S。
可选地,式(1)中的不饱和单环还可以替换为其他类似结构,如在环中增加一个或多个O、S、N等种类的杂原子。例如,如式(1)中所示的环原子“Z”可表示N。
可选地,式(1)中的二元杂芳基还可以替换为其他类似结构,如改变N原子的取代位置、在环中增加或减少一个或多个N原子等。优选替换为以下结构:/>
上述式(1)中,Ra、Rb、R1、R2、R3、R4、R3’、R4’、R5、R6以及其可选的取代基表示的基团包括但不限于:
氢可表示为-H,也可以替换为氘、氚等同位素。
卤素可包括氟、氯、溴、碘。
C1~8烷基可包括甲基、乙基、正丙基、异丙基、2-甲基-1-丙基、2-甲基-2-丙基、2-甲基-1-丁基、3-甲基-1-丁基、2-甲基-3-丁基、2,2-二甲基-1-丙基、2-甲基-1-戊基、3-甲基-1-戊基、4-甲基-1-戊基、2-甲基-2-戊基、3-甲基-2-戊基、4-甲基-2-戊基、2,2-二甲基-1-丁基、3,3-二甲基-1-丁基、2-乙基-1-丁基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基、叔戊基、己基、庚基、辛基等。
C1~8烷氧基可表示为-OC1~8烷基,其中的C1~8烷基包括的基团如前定义;例如,C1~8烷氧基可包括甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、异丁氧基、仲丁氧基、叔丁氧基等。
C1~8卤代烷基可表示为C1~8烷基中的任意个数的氢原子被卤素取代后的基团,其中的C1~8烷基、卤素包括的基团如前定义;例如,C1~8卤代烷基可包括-CF3等。
C3~8环烷基可表示为非芳香的饱和碳环,包括单碳环(具有一个环)及双碳环(具有两个环),例如,C3~8环烷基可包括等。
C3~8杂环基可表示为C3~8环烷基中的任意个数的环原子被O、S、N、P、Si等杂原子取代后所得的基团,其中的C3~8环烷基包括的基团如前定义。例如,C3~8杂环基可包括环氧乙烷基、环硫乙烷基、环氮乙烷基、吖丁啶基、噁丁环基、噻丁环基、四氢呋喃基、吡咯烷基、噁唑烷基、四氢吡唑基、吡咯啉基、二氢呋喃基、二氢噻吩基、哌啶基、四氢吡喃基、四氢噻喃基、吗啉基、哌嗪基、二氢吡啶基、四氢吡啶基、二氢吡喃基、四氢吡喃基、二氢噻喃基、氮杂环庚烷基、氧杂环庚烷基、硫杂环庚烷基、氧杂氮杂双环[2.2.1]庚基、氮杂螺[3.3]庚基等。
C6~20芳基可包括单环芳基、双环芳基或更多环芳基,例如,可包括苯基、联苯基、萘基、菲基、蒽基、薁基等。
C5~20杂芳基可表示含有任意个数的O、S、N、P、Si等杂原子作为环原子所得的不饱和基团。例如,C5~20杂芳基可包括吡咯基、呋喃基、噻吩基、咪唑基、噁唑基、吡唑基、吡啶基、嘧啶基、吡嗪基、喹啉基、异喹啉基、四唑基、***基、三嗪基、苯并呋喃基、苯并噻吩基、吲哚基、异吲哚基等。
羟基可表示为-OH。
巯基可表示为-SH。
羧基可表示为-COOH。
酯基可表示为-COOR’,R’的定义可为式(1)中所述的取代基的定义,例如C1~8烷基取代的酯基,可表示为-COOC1~8烷基,其中的C1~8烷基包括的基团如前定义。
酰基可表示为-COR’,R’的定义可为式(1)中所述的取代基的定义,例如C1~8烷基取代的酰基,可表示为-COC1~8烷基,其中的C1~8烷基包括的基团如前定义。
氨基可表示为-NH2、-NHR’或-N(R’)2,R’的定义可为式(1)中所述的取代基的定义,例如C1~8烷基取代的氨基,可表示为-NHC1~8烷基或-N(C1~8烷基)2,其中的C1~8烷基包括的基团如前定义。
酰胺基可表示为-CO氨基,其中的氨基如前定义。
磺酰基可表示为-S(O)2R’,R’的定义可为式(1)中所述的取代基的定义,例如C1~8烷基取代的磺酰基,可表示为-S(O)2C1~8烷基,其中的C1~8烷基包括的基团如前定义。
氰基可表示为-CN。
前述定义中,当碳原子数变化时,上述定义仅根据碳原子数变化而变化,不影响基团种类的定义;例如,“C1~5烷基”可包括甲基、乙基、正丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基、正戊基、异戊基、新戊基等前述“C1~8烷基”定义中符合碳原子数为1-5的所有基团。
进一步地,上述式(1)中,Ra、Rb、R1、R2、R3、R4、R3’、R4’、R5、R6以及其可选的取代基可表示的基团包括但不限于:氢、氘、氟、氯、溴、甲基、乙基、丙基、异丙基、正丁基、仲丁基、叔丁基、甲氧基、乙氧基、丙氧基、异丙氧基、-CN、-CF3、-NH2、-NH(C1~4烷基)、-N(C1~4烷基)2、-CO2C1~4烷基、-CO2H、-NHC(O)C1~4烷基、-SO2C1~4烷基、-C(O)NH2、-C(O)NH(C1~4烷基)、-C(O)N(C1~4烷基)2、环丙基、环丁基、环戊基、环己基、吡咯烷基、吡唑基、哌啶基、吡啶基、哌嗪基、三嗪基、呋喃基、硫代呋喃基、吗啉基、硫代吗啉基、苯基、萘基、二联苯基、三联苯基等。
在根据本发明的一个实施方式中,所述化合物如式(2)所示,
式(2)中,R1选自氟或溴。
在根据本发明的一个实施方式中,式(1)或式(2)中的R2选自氢、氟或溴。
在根据本发明的一个实施方式中,式(1)或式(2)中的L1选自-O-、-S-或为单键。本文中的单键是指无L1基团的存在,即最远离X基团的一个-(CR3R4)-中的C直接与单元芳香环相连。
在根据本发明的一个实施方式中,式(1)或式(2)中的L2选自-NR6-。
在根据本发明的一个实施方式中,式(1)或式(2)中的n表示2、3、4、5或6的整数。
在根据本发明的一个实施方式中,式(1)或式(2)中,当C原子上的取代基R3、R4各自独立地选自与X基团共同形成环烷基、杂环基或杂芳基时,是指与X基团相邻的一个-(CR3R4)-基团,其中的R3或R4与其所连接的C以及X基团共同形成。
在根据本发明的一个实施方式中,式(1)或式(2)中,当R3、R4各自独立地为连接所述C原子和相邻的巨环环原子的单键时,相邻的巨环环原子可以为与之相邻的另一-(CR3R4)-基团中的环原子C,也可以为与之相邻的X基团中的环原子。在一个优选的实施方式中,临近X基团的-(CR3R4)-基团中的R3、R4可各自独立地为连接所述C原子和所述X基团的单键,即R3和/或R4为连接C原子和X中心原子(即-CRaRb-中的C)的单键。例如,当R3、R4中的一个为单键时,X基团与相邻的-(CR3R4)-基团形成一个双键;当R3、R4中的两个为单键时,X基团与相邻的-(CR3R4)-基团形成一个三键。
同样地,巨环中相邻的两个-(CR3R4)-基团之间,C、C原子之间也可以形成取代或未取代的双键或三键。
在根据本发明的一个实施方式中,式(1)或式(2)中,每个C原子上的取代基R3、R4各自独立地选自取代或未取代的以下基团:氢、卤素、C1~5烷基、C1~5烷氧基、C1~5卤代烷基、C3~6环烷基或R3、R4各自独立地为连接所述C原子和相邻的巨环环原子的单键。
在根据本发明的一个实施方式中,式(1)或式(2)中,R3’、R4’各自独立地选自取代或未取代的以下基团:氢、卤素、C1~5烷基、C1~5烷氧基、C1~5卤代烷基、C3~6环烷基、或与所连接的C及L2共同形成含有至少一个杂原子的4~8元杂环基。优选地,此处的杂环基可以为吡咯烷基或哌啶基,其中的N来源于L2
在根据本发明的一个实施方式中,式(1)或式(2)中,-CR3R4-基团或-CR3’R4’-基团中的巨环原子C或取代基中的C根据基团的不同可产生一个或多个手性中心,本发明包含所有的光学异构体及外消旋体。
在根据本发明的一个实施方式中,式(1)或式(2)中,R5选自取代或未取代的以下基团:R5选自取代或未取代的以下基团:氢、卤素、C1~5烷基、C1~5烷氧基、C1~5卤代烷基、C3~6环烷基、羟基、巯基、羧基、氨基或氰基。
在根据本发明的一个实施方式中,式(1)或式(2)中,R6选自取代或未取代的以下基团:氢、卤素、C1~5烷基、C1~5烷氧基、C1~5卤代烷基或C3~6环烷基。
在根据本发明的一个实施方式中,上述实施方式中可选的取代基选自氟、溴、-CN、-OH、-CF3、-NH2、-NH(C1~4烷基)、-N(C1~4烷基)2、-CO2C1~4烷基、-CO2H、-NHC(O)C1~4烷基、-SO2C1~4烷基、-C(O)NH2、-C(O)NH(C1~4烷基)、-C(O)N(C1~4烷基)2、C1~5烷基、C3~6环烷基、C3~6杂环基、C6~10芳基或C5~10杂芳基。
在根据本发明的一个实施方式中,所述化合物选自以下结构:
本发明还提供了一种药物组合物,其包含以上技术方案任一项所述的化合物或其药学上可接受的盐、溶剂化物、活性代谢物、多晶型物、同位素标记物、异构体或前药,以及药学可接受的载体。
所述药物组合物包括但不限于口服剂型、胃肠外给药剂型、外用剂型、直肠给药剂型等。例如,所述药物组合物可以是口服的片剂、胶囊、丸剂、粉剂、缓释制剂、溶液和悬浮液,用于胃肠外注射的无菌溶液、悬浮液或乳液,用于外用的软膏、乳膏、凝胶剂等,或者用于直肠给药的栓剂。
所述药物组合物还可以包括其他活性成分或药物,与所述的化合物或其药学上可接受的盐、溶剂化物、活性代谢物、多晶型物、同位素标记物、异构体或前药联合用药。
本发明还提供了上述化合物或其药学上可接受的盐、溶剂化物、活性代谢物、多晶型物、同位素标记物、异构体或前药,以及上述的药物组合物在制备用于治疗酪氨酸激酶介导的疾病的药物中的用途。
进一步地,所述酪氨酸激酶选自以下一种或多种:ALK、ROS1、TRKA、TRKB、TRKC、JAK2、SRC、FYN、LYN、YES、FGR、FAK、AXL、ARK5。
进一步地,所述酪氨酸激酶介导的疾病包括癌症、疼痛、神经疾病、自身免疫疾病和炎症。
更进一步地,所述酪氨酸激酶介导的癌症可包括肺癌、结直肠癌、乳腺癌、卵巢癌、甲状腺癌、***癌、肝细胞癌、肾细胞癌、胃和食管癌、胆管癌、神经胶质瘤、胶质母细胞瘤、头颈癌、炎症性肌纤维母细胞肿瘤、血管肉瘤、上皮样血管内皮瘤、间变性大细胞淋巴瘤等。
更进一步地,所述酪氨酸激酶介导的疼痛可以为任一源或病因的疼痛,包括癌症疼痛、化学治疗的疼痛、神经疼痛、损伤疼痛或其它源。
更进一步地,所述酪氨酸激酶介导的自身免疫疾病包括类风湿性关节炎、休格伦氏综合症(Sjogren syndrome)、I型糖尿病、狼疮等。
更进一步地,所述酪氨酸激酶介导的神经疾病包括阿尔茨海默病(Alzheimer′sDisease)、帕金森氏病(Parkinson′s Disease)、肌萎缩性侧束硬化症、亨廷顿氏病(Huntington′s disease)等。
更进一步地,所述酪氨酸激酶介导的炎症疾病包括动脉粥样硬化、过敏、因感染或损伤而引起的炎症等。
本发明提供的二芳基巨环化合物及其药物组合物具有显著的酪氨酸激酶抑制活性,能克服肿瘤耐药,能够突破血脑屏障,具有优异的药代动力学性质以及极佳的口服生物利用度,可以以较小的剂量施用,从而可降低患者的治疗成本及可能的毒副作用,因而非常具备应用潜力。
详述
除非另有定义,否则本文所有科技术语具有的涵义与权利要求主题所属领域技术人员通常理解的涵义相同。除非另有说明,本文全文引用的所有专利、专利申请、公开材料通过引用方式整体并入本文。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
应理解,上述简述和下文的详述为示例性且仅用于解释,而不对本文发明主题做任何限制。在本申请中,必须注意,除非文中另有清楚的说明,否则在本说明书和权利要求书中所用的单数形式包括所指事物的复数形式。还应注意,除非另有说明,否则所用“或”、“或者”表示“和/或”。此外,所用术语“包括”以及其他形式,例如“包含”、“含”和“含有”并非限制性。
标准化学术语的定义可以在文献著作中找到,包括Carey和Sundberg的“AdvancedOrganic Chemistry 4th Ed,Vol A(2000)and B(2001),Plenum Press,New York。除非另有说明,否则采用本领域技术范围内的常规方法,如质谱、NMR、HPLC、蛋白质化学、生物化学、重组DNA技术和药理学方法。除非提出具体定义,否则本文在分析化学、有机合成化学以及医学和药物化学等化学上的相关的命名和实验室操作和技术,是本领域技术人员已知的。标准技术可以用于化学合成,化学分析,药物制备,制剂,递药和患者的治疗。标准技术可以用于重组DNA,寡核苷酸合成,以及组织培养和转化(例如电穿孔、脂质传染法)。举例来说,可以使用附有生厂商提供的说明书的试剂盒,或者按照本领域公知的方法,或者按照本发明表述的方法,来实施反应和纯化技术。一般而言,前述技术和步骤可以通过本领域众所周知的和在各种一般文献或更具体文献中描述的常规方法来实施,这些文献在本发明中被引用和讨论。
当通过从左向右书写的常规化学式描述取代基时,该取代基也同样包括从右向左书写结构式时所得到的在化学上等同的取代基。举例而言,CH2O等同于OCH2
术语“取代”是指特定原子上的任意一个或多个氢原子被取代基取代,只要特定原子的价态是正常的并且取代后的化合物是稳定的即可。当取代基为氧代(即=O)时,意味着两个氢原子被取代,氧代不会发生在芳香基上。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
本文所用Cm~n指该部分中具有m~n个碳原子。举例而言,所述“C1~8”基团是指该部分中具有1-8个碳原子,即基团包含1个碳原子,2个碳原子、3个碳原子……8个碳原子。因此,举例而言“C1~8烷基”是指含有1-8个碳原子的烷基,即所述烷基选自甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基……辛基等。本文中的数字范围,例如“1-8”是指给定范围中的各个整数,例如“1-8个碳原子”是指该基团可具有1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子或8个碳原子。
术语“元”是指构成环的骨架原子的个数。例如吡啶是六元环,吡咯是五元环。
术语“药学上可接受的”是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药物组合物”是指任选的混合有至少一种药学上可接受的化学成分或试剂的生物活性化合物,所述药学上可接受的化学成分或试剂即为“载体”,其有助于将化合物引入到细胞或组织中,包括但不限于稳定剂、稀释剂、悬浮剂、增稠剂和/或赋形剂。
术语“药学上可接受的盐”是指保留了指定化合物的游离酸和游离碱的生物效力,并且在生物学或其它方面上没有不良作用的盐。除特别指示外,本发明中的盐可以提及金属盐、铵盐、与有机碱形成的盐、与无机酸形成的盐、与有机酸形成的盐、与碱性或者酸性氨基酸形成的盐等。金属盐的非限制性实例包括但不限于碱金属的盐,例如钠盐、钾盐等;碱土金属的盐,例如钙盐、镁盐、钡盐等;铝盐等。与有机碱形成的盐的非限制性实例包括但不限于与三甲胺、三乙胺、吡啶、甲基吡啶、2,6-二甲基吡啶、乙醇胺、二乙醇胺、三乙醇胺、环己胺、二环己基胺等形成的盐。与无机酸形成的盐的非限制性实例包括但不限于与盐酸、氢溴酸、硝酸、硫酸、磷酸等形成的盐。与有机酸形成的盐的非限制性实例包括但不限于与甲酸、乙酸、三氟乙酸、富马酸、草酸、苹果酸、马来酸、酒石酸、柠檬酸、琥珀酸、甲磺酸、苯磺酸、对甲基苯磺酸等形成的盐。与碱性氨基酸形成的盐的非限制性实例包括但不限于与精氨酸、赖氨酸、鸟氨酸等形成的盐。与酸性氨基酸形成的盐的非限制性实例包括但不限于与天冬氨酸、谷氨酸等形成的盐。
药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。一般地,优选醚、乙酸乙酯、乙醇、异丙醇或乙腈等非水介质。
术语“溶剂化物”是指本发明中的一个化合物与一个或多个溶剂分子形成的物理聚集体,这个物理聚集体包括离子的不同程度和共价键,例如氢键。已证实这个溶剂化物可以被分离,例如,当晶体的晶格中混有一个或多个溶剂分子时。“溶剂化物”包括溶剂相和可分离的溶剂化物两部分。相应的溶剂化物例子有很多,包括乙醇溶剂化物、甲醇溶剂化物等。“水合物”是一种以水(H2O)分子为溶剂的溶剂化物。本发明中的一个或多个化合物都可以随意的制备成溶剂化物。溶剂化物的制备众所周知。例如M.Caira et al,J.Pharmaceutical Sci.,93(3),601-611(2004)中描述了抗真菌药氟康唑的溶剂化物的制备,即用乙酸乙酯和水制备。E.C.van Tonder et al,AAPS PharmSciTech.,5(1),article12(2004);和A.L.Bingham et al,Chem.Commun.,603-604(2001)中也描述了溶剂化物、水合物的类似制备方法。一种典型的、非限制性的制备过程是在高于常温的温度时将发明的化合物溶解于所需要量的理想溶剂中(有机溶剂或水或它们的混合溶剂),降温,放置析晶,然后用标准的方法分离挑出晶体。用I.R.光谱学分析技术可以证实结晶中形成溶剂化物(水合物)的溶剂(水)的存在。
术语“活性代谢物”是指在化合物代谢时形成的该化合物的具有活性的衍生物。
术语“多晶型物”是指以不同的晶格形式存在的本发明化合物。
术语“同位素标记物”是指有同位素标记的本发明化合物。例如本发明的化合物中的同位素可包括H,C,N,O,P,F,S等元素的各种同位素,如2H,3H,13C,14C,15N,18O,17O,31P,32P,35S,18F和36S。
术语“药学上可接受的前药”或“前药”是指本发明化合物的任何药学上可接受的盐、酯、酯的盐或其它衍生物,其在向受体施用后能够直接或间接地提供本发明的化合物或其具有药学活性的代谢物或残基。特别优选的衍生物或前药是在施用于患者时可以提高本申请化合物生物利用度的那些化合物(例如,可以使口服的化合物更易于被吸收到血液中),或者促进母体化合物向生物器官或作用位点(例如脑部或淋巴***)递送的那些化合物。可通过常规操作或在体内,按可分解为母体化合物的修饰方式,修饰存在于化合物中的官能团,制备前药。各种前药形式是本领域熟知的。参见,在T.Higuchi和V.Stella所著的Pro-drugs as Novel Delivery Systems(1987)Vol.14 of the A.C.S.SymposiumSeries,Bioreversible Carriers in Drug Design,(1987)Edward B.Roche,ed.,American Pharmaceutical Association和在Pergamon Press中提供了有关前药的讨论。Design of Prodrugs,Bundgaard,A.Ed.,Elseview,1985 and Method in Enzymology,Widder,K.et al.,Ed.;Academic,1985,vol.42,p.309-396;Bundgaard,H.″Design andApplication of Prodrugs″in A Textbook of Drug Design and Development,Krosgaard-Larsen and H.Bundgaard,Ed.,1991,第五章,113-191页;以及Bundgaard,H.,Advanced Drug Delivery Review,1992,8,1-38,以上文献通过引用并入本文。
术语“立体异构体”是指由分子中原子在空间上排列方式不同所产生的异构体。本发明化合物含有不对称或手性中心、双键等结构,因此,本发明的化合物可能包括光学异构体、几何异构体、互变异构体、阻转异构体等多种异构体形式,这些异构体及其单一异构体、外消旋体等等都包括在本发明的范围之内。例如,对于光学异构体而言,可以通过手性拆分、手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。例如,可通过与适当的光学活性物质(例如手性醇或Mosher`s莫氏酰氯)反应转换为非对映异构体,将其分离并转化(如水解)为相对应的单一的异构体。再例如,还可通过色谱柱进行分离。
本文的“药物组合物”可按药剂领域中熟知的方式制备,并可通过多种途径给予或施用它们,这取决于是否需要局部或全身治疗和所治疗的区域。可局部(例如,透皮、皮肤、眼和粘膜包括鼻内、***和直肠递药)、肺(例如,通过吸入或吹入粉末或气雾剂,包括通过喷雾器;气管内、鼻内)、口服或肠胃外给药。肠胃外给药包括静脉内、动脉内、皮下、腹膜内或肌内注射或输注;或颅内例如鞘内或脑室内给药。可按单次大剂量形式肠胃外给药,或可通过例如连续灌注泵给药。本文的药物组合物包括但不限于以下形式:片剂、丸剂、散剂、锭剂、小药囊、扁囊剂、酏剂、混悬剂、乳剂、溶液剂、糖浆剂、气雾剂(固体或溶于液体溶媒);含例如高达10%重量活性化合物的软膏剂、软和硬明胶胶囊、栓剂、无菌注射溶液和无菌包装粉末等。
本文的药物组合物可按单位剂型配制,每一剂量可含约0.1~1000mg,通常约5~1000mg活性成分,更通常约100~500mg活性成分。术语“单位剂型”是指物理上分离的适宜作为用于人患者和其它哺乳动物的单一剂量单位,各单位含有与适宜的药物载体混合的经计算可产生所需疗效的预定量的活性物质。
术语“个体”是指患有疾病、病症或病况等的个体,包括哺乳动物和非哺乳动物。哺乳动物的实施例包括但不限于哺乳动物纲的任何成员:人,非人的灵长类动物(例如黑猩猩和其它猿类和猴);家畜,例如牛、马、绵羊、山羊、猪;家养动物,例如兔、狗和猫;实验室动物,包括啮齿类动物,例如大鼠、小鼠和豚鼠等。
术语“治疗”和其它类似的同义词包括缓解、减轻或改善疾病或病症症状,预防其它症状,改善或预防导致症状的潜在代谢原因,抑制疾病或病症,例如阻止疾病或病症的发展,缓解疾病或病症,使疾病或病症好转,缓解由疾病或病症导致的症状,或者中止疾病或病症的症状,此外,该术语还可包含预防的目的。该术语还包括获得治疗效果和/或预防效果。所述治疗效果是指治愈或改善所治疗的潜在疾病。此外,对与潜在疾病相关的一种或多种生理症状的治愈或改善也是治疗效果,例如尽管患者可能仍然受到潜在疾病的影响,但观察到患者情况改善。就预防效果而言,可向具有患特定疾病风险的患者施用所述组合物或化合物,或者即便尚未做出疾病诊断,但向出现该疾病的一个或多个生理症状的患者施用所述组合物或化合物。
术语“获得必要的治疗效果的计量”或“治疗有效量”是指施用后足以在某种程度上缓解所治疗的疾病或病症的一个或多个症状的至少一种药剂或化合物的量。其结果可以为迹象、症状或病因的消减和/或缓解,或生物***的任何其它所需变化。可使用诸如剂量递增试验的技术测定适合于任意个体病例中的有效量。实际给予的化合物、药物组合物或药剂的量通常由医师根据相关情况决定,包括所治疗的病症、所选择的给药途径、所给予的实际化合物;患者个体的年龄、重量和反应;患者症状的严重程度等。
本发明化合物在药用组合物中的比例或浓度可不固定,取决于多种因素,它们包括剂量、化学特性(例如疏水性)、给药途径等。例如可通过含约0.1~10%w/v该化合物的生理缓冲水溶液提供本发明化合物,用于肠胃外给药。某些典型剂量范围为约1μg/kg~约1g/kg体重/日。在某些实施方案中,剂量范围为约0.01mg/kg~约100mg/kg体重/日。剂量很可能取决于此类变量,如疾病或病症的种类和发展程度、具体患者的一般健康状态、所选择的化合物的相对生物学效力、赋形剂制剂及其给药途径。
术语“施用”是指能够将化合物或组合物递送到进行生物作用的所需位点的方法。这些方法包括但不限于口服途径、经十二指肠途径、胃肠外注射(包括静脉内、皮下、腹膜内、肌内、动脉内注射或输注)、外用和经直肠给药。本领域技术人员熟知可用于本文所述化合物和方法的施用技术,例如在Goodman and Gilman,The Pharmacological Basis ofTherapeutics,currented.;Pergamon;and Remington′s,Pharmaceutical Sciences(current edition),Mack Publishing Co.,Easton,Pa中讨论的那些。
术语“IC50”是指在测量这样的效应的分析中获得最大效应的50%抑制。
附图说明
图1为实施例1的合成路线示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将进一步描述本发明的示例性实施例的技术方案。
本发明可以通过下述方法制备本发明所述的化合物。以下方法和实施例是为了说明这些方法。这些流程和实施例不应以任何方式被解释为对本发明的限制。也可使用本领域技术人员已知的标准合成技术合成本文所述的化合物,或者组合使用本领域已知方法和本文所述方法。
本发明实施例的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本领域任何合成路线规划中的一个重要考量因素是为反应性官能团(如本发明中的氨基)选择合适的保护基。对于经过训练的从业者来说,Greene and Wuts的(ProtectiveGroups In Organic Synthesis,Wiley and Sons,1991)是这方面的权威。本发明引用的所有参考文献整体上并入本发明。
可按照本领域中已知的任何合适的方法监测本文中所述的反应。例如,可通过广谱方法例如核磁共振波谱(例如1H或13C)、红外光谱、分光光度测定(例如UV-可见光)、质谱等,或通过色谱例如高效液相色谱(HPLC)或薄层层析监测产物形成。
实施例1(13E,14E,3R,6S)-45-氟-3,6-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑 并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
合成路线如图1所示。
步骤A:(E)-N-(5-氟-2-羟基苯亚甲基)叔丁基亚磺酰胺
将5.8g(41.4mmol,1.0eq)5-氟-2-羟基苯甲醛和5.0g(41.4mmol,1eq)(R)-叔丁基亚磺酰胺加入到100mL二氯甲烷中,在磁力搅拌下加入21.5g(66.3mmol,1.6eq)碳酸铯反应过夜。反应完成后抽滤,用二氯甲烷淋洗滤饼。滤液浓缩得产物直接用于下一步(8.5g,收率=85%)。
步骤B:N-((R)-1-(5-氟-2-羟基苯基)乙基)叔丁基亚磺酰胺
将24g(100mmol,1.0eq)(E)-N-(5-氟-2-羟基苯亚甲基)叔丁基亚磺酰胺溶于300mL四氢呋喃中并降温至-65℃,N2气氛围下缓慢加入100mL(3N,3.0eq)甲基溴化镁,保持反应温度不高于-50℃。加完缓慢升至室温反应过夜。TLC监控反应完毕,冰浴下加入500mL的水缓慢淬灭反应。500mL乙酸乙酯萃取,将有机相依次用水和饱和食盐水洗涤2遍,有机相经无水硫酸钠干燥,蒸干,残余物经硅胶柱层析纯化得产物(8.5g,收率=33%)。
1H NMR(400MHz,CDCl3)δ9.02(s,1H),6.79(d,J=4.0Hz,1H),6.65-6.51(m,1H),6.50-6.41(m,1H),5.04(d,J=8.0Hz,1H),4.45-4.30(m,1H),1.53(d,J=8.0Hz,3H),1.29(s,9H).
步骤C:(R)-2-(1-胺乙基)-4-氟苯酚盐酸盐
将8.5g(32.8mmol,1.0eq)N-((R)-1-(5-氟-2-羟基苯基)乙基)叔丁基亚磺酰胺溶解在100mL的二氧六环(4N)溶液中,室温下反应3小时。TLC监控反应完毕,将溶剂蒸干,残余物中加入100mL乙酸乙酯打浆,抽滤、乙酸乙酯淋洗,收集固体、干燥得目标产物(5.4g,收率=87%)。
步骤D:(R)-5-((1-(5-氟-2-羟基苯基)乙基)氨基)吡唑[1,5-a]嘧啶-3-甲酸乙酯
将5.3g(27.9mmol,1.0eq)(R)-2-(1-胺乙基)-4-氟苯酚盐酸盐、6.29g(27.9mmol,1.0eq)5-氯吡唑[1,5-a]嘧啶-3-甲酸乙酯、12mL(167mmol,6.0eq)二异丙基乙基胺溶解在60mL N,N-二甲基甲酰胺中,体系升温至120℃反应5小时。TLC监控反应完毕,将反应液浓缩蒸干,加入100mL水、200mL乙酸乙酯萃取,将有机相依次用水和饱和食盐水洗涤2遍,有机相经无水硫酸钠干燥,蒸干,残余物经硅胶柱层析纯化得产物(2.9g,收率=31%)。
1H NMR(400MHz,CDCl3)δ9.17(brs,1H),8.24(s,1H),8.14(d,J=8.0Hz,1H),6.93-6.90(m,2H),6.83(d,J=8.0Hz,1H),6.13(d,J=8.0Hz,1H),5.81(d,J=8.0Hz,1H),5.64(t,J=8.0Hz,1H),4.42(q,J=8.0Hz,2H),1.61(d,J=8.0Hz,3H),1.41(t,3H).
步骤E:(R)-2-羟基丙基叔丁基甲酸酯
将7.6g(100mmol,1.0eq)(R)-丙烷-1,2-二醇、16mL(200mmol,2.0eq)吡啶溶解在80mL二氯甲烷中,冰浴下向反应体系缓慢滴加入12.6g(100mmol,1.0eq)叔丁基甲酰氯。加完升至室温反应过夜。TLC监控反应完毕,将反应液浓缩蒸干,加入100mL水、250mL乙酸乙酯萃取,将有机相依次用水和饱和食盐水洗涤2遍,有机相经无水硫酸钠干燥,蒸干,残余物经硅胶柱层析纯化得产物(10.5g,收率=66%)。
步骤F:化合物11
将2.0g(5.8mmol,1.0eq)(R)-5-((1-(5-氟-2-羟基苯基)乙基)氨基)吡唑[1,5-a]嘧啶-3-甲酸乙酯、1.39g(8.7mmol,1.5eq)(R)-2-羟基丙基叔丁基甲酸酯、3.04g(11.6mmol,2.0eq)三苯基膦溶解在35mL二氯甲烷中,冰浴下向反应体系缓慢滴加入2.02g(11.6mmol,2.0eq)偶氮二甲酸二异丙酯。加完升至室温反应过夜。TLC监控反应完毕,加入100mL水、250mL乙酸乙酯萃取,将有机相依次用水和饱和食盐水洗涤2遍,有机相经无水硫酸钠干燥,蒸干,残余物经硅胶柱层析纯化得产物(2.1g,收率=75%)。
1H NMR(400MHz,CDCl3)δ8.25(s,1H),8.16(d,J=8.0Hz,1H),7.10(d,J=8.0Hz,1H),6.90(d,J=8.0Hz,2H),6.08(d,J=8.0Hz,1H),5.24(s,1H),4.74-4.65(m,1H),4.38(q,J=8.0Hz,2H),4.28-4.13(m,3H),1.56(d,J=8.0Hz,3H),1.40(t,J=8.0Hz,3H),1.25(d,J=8.0Hz,3H),1.20(t,9H).
步骤G:化合物12
将1.5g(3.1mmol,1.0eq)化合物11溶解在10mL甲醇中,冰浴下加入3.1mL(10N,10.0eq)氢氧化钠水溶液。加完升至室温反应2小时。TLC监控反应完毕,浓缩除去溶剂,加入1N的盐酸水溶液调节pH到中性、抽滤收集固体,用200mL水淋洗滤饼、干燥得目标产物化合物12(0.72g,收率=63%)。
1H NMR(400MHz,DMSO)δ11.50(brs,1H),8.55(d,J=9.2Hz,1H),8.28(d,J=9.2Hz,1H),8.10(s,1H),7.15-6.94(m,3H),6.45(d,J=9.2Hz,1H),5.61(d,J=8.0Hz,1H),4.52-4.35(m,1H),3.68-3.42(m,2H),1.43(d,J=8.0Hz,3H),1.24(d,J=8.0Hz,3H).
步骤H:(13E,14E,3R,6S)-45-氟-3,6-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
将150mg(0.40mmol,1.0eq)化合物12、489mg(2.0mmol,5.0eq)2,4,6-三氯苯甲酰氯、280mg(2.4mmol,6.0eq)三乙胺溶解在10mL四氢呋喃中,加毕室温搅拌反应30min。然后将上述反应液缓慢滴加到488mg(4.0mmol,10.0eq)4-二甲氨基吡啶的500mL甲苯溶液中,此反应液升温至100℃搅拌2小时,然后降至室温反应过夜。TLC监控反应完毕,浓缩除去溶剂,向残余物中加入30mL水,50mL乙酸乙酯萃取,将有机相依次用水和饱和食盐水洗涤2遍,有机相经无水硫酸钠干燥,蒸干,残余物经硅胶柱层析纯化得产物(23mg,收率=16%)。
LC-MS:m/z=357[M+H]+.
1H NMR(400MHz,CDCl3)δ8.26-8.20(m,2H),7.01(d,J=8.0Hz,1H),6.87-6.69(m,2H),6.19(d,J=4.0Hz,1H),6.01-5.85(m,1H),5.55(s,1H),4.89(dd,J=8.0,4.0Hz,1H),4.62(s,1H),4.13(t,J=8.0Hz,1H),1.63-1.52(m,6H).
实施例2(13E,14E,3S,6S)-45-氟-3,6-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑 并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
参照实施例1中所述的步骤制备目标化合物(20mg,15%)。LC-MS:m/z=357[M+H]+.
实施例3(13E,14E,3S,6R)-45-氟-3,6-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑 并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
参照实施例1中所述的步骤制备目标化合物(31mg,22%)。LC-MS:m/z=357[M+H]+.
实施例4(13E,14E,3R,6R)-45-氟-3,6-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑 并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
/>
参照实施例1中所述的步骤制备目标化合物(35mg,24%)。LC-MS:m/z=357[M+H]+.
下列化合物的制备参照实施例1用类似的方法合成。
/>
/>
实施例6(13E,14E,3R,7R)-45-氟-3,7-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑 并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
步骤A:(R)-2-羟基丙基-4-甲基苯磺酸
向2.08g(27.3mmol,1.0eq)(R)-1,2-丙二醇的二氯甲烷溶液中加入三乙胺8.3g(81.9mmol,3.0eq),随后加入4-甲苯磺酰氯5.2g(27.34mmol,1.0eq),再加入催化量的DMAP,室温反应过夜,加水,用二氯甲烷萃取3次,饱和食盐水洗涤一次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(2.1g,收率=33%)。
1H NMR(400MHz,CDCl3)δ7.85(d,J=8.2Hz,2H),7.40(d,J=8.0Hz,2H),4.16-3.98(m,2H),3.92-3.87(m,1H),2.50(s,3H),1.20(d,J=6.4Hz,3H).
步骤B:5-(((R)-1-(5-氟-2-((R)-2-羟基丙氧基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯
向680mg(1.97mmol,1.0eq)(R)-5-((1-(5-氟-2-羟基苯基)乙基)氨基)吡唑[1,5-a]嘧啶-3-甲酸乙酯的DMF溶液中加入碳酸钾1.36g(9.85mmol,5.0eq),随后加入500mg(2.17mmol,1.1eq)(R)-2-羟基丙基-4-甲基苯磺酸,加入完毕,油浴加热至80℃反应4小时,冷却至室温,加水,用乙酸乙酯萃取3次,合并有机相有水洗涤3次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(278mg,收率=35%)。
LC-MS:m/z=403[M+H]+.
步骤C:5-(((R)-1-(5-氟-2-((R)-2-羟基丙氧基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸
实验操作参考实施例13中的步骤C。
LC-MS:m/z=375[M+H]+.
步骤D:(13E,14E,3R,7R)-45-氟-3,7-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
实验操作参考实施例13中的步骤D。
1H NMR(400MHz,CDCl3)δ8.24(s,1H),8.18(d,J=7.2Hz,1H),7.01(d,J=9.0Hz,1H),6.88-6.86(m,1H),6.79(s,1H),6.17-6.15(m,2H),5.62(s,1H),5.52(s,1H),4.37(d,J=10.4Hz,1H),4.08(d,J=10.0Hz,1H),1.71(d,J=6.4Hz,3H),1.57(d,J=7.0Hz,3H).LC-MS:m/z=357[M+H]+.
实施例9(13E,14E,3R,6S)-45-氟-3,6-二甲基-8-氧杂-5-硫杂-2-氮杂-1(5,3)-吡 唑并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
步骤A:(R)-5-((1-(5-氟-2-(((三氟甲基)磺酰基)氧基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯
冰浴下,向0.71g(2.06mmol,1.0eq)(R)-5-((1-(5-氟-2-羟基苯基)乙基)氨基)吡唑[1,5-a]嘧啶-3-甲酸乙酯的二氯甲烷溶液中加入吡啶489mg(3.18mmol,3.0eq),随后加入三氟甲磺酸酐872mg(3.09mmol,1.5eq),室温继续搅拌反应2小时,加水,用二氯甲烷萃取3次,用饱和食盐水洗涤1次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(785mg,收率=80%)。
LC-MS:m/z=477[M+H]+.
步骤B:(R)-1-((叔丁基二甲基甲硅烷基)氧基)丙-2-基4-甲基苯磺酸
实验操作参考实施例6中的步骤A。
步骤C:(S)-S-(1-((叔丁基二甲基甲硅烷基)氧基)丙-2-基)乙硫醇
向2.0g(5.8mmol,1.0eq)(S)-S-(1-((叔丁基二甲基甲硅烷基)氧基)丙-2-基)乙硫醇的DMF溶液中加入硫代乙酸钾796mg(6.96mmol,1.2eq),加入完毕,油浴加热至60℃继续搅拌反应4小时,冷却至室温,加水,用乙酸乙酯萃取3次,再用水洗涤3次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(1.0g,收率=69%)。
步骤D:(S)-1-((叔丁基二甲基硅烷基)氧基)丙烷-2-硫醇
冰浴下,向1.0g(4.02mmol,1.0eq)(S)-S-(1-((叔丁基二甲基甲硅烷基)氧基)丙-2-基)乙硫醇的甲醇/水(5∶1)溶液中加入氢氧化钠241mg(6.03mmol,1.5eq),继续搅拌反应0.5小时,减压蒸馏除去甲醇,用二氯甲烷萃取3次,用饱和食盐水洗涤1次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(700mg,收率=84%)。
步骤E:5-(((R)-1-(2-(((S)-1-((叔丁基二甲基甲硅烷基)氧基)丙-2-基)硫代)-5-氟苯基)乙基)氨基)吡唑[1,5-a]嘧啶-3-甲酸乙酯
向646mg(1.35mmol,1.0eq)(R)-5-((1-(5-氟-2-(((三氟甲基)磺酰基)氧基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯的二氧六环溶液中加入700mg(3.39mmol,2.5eq)(S)-1-((叔丁基二甲基硅烷基)氧基)丙烷-2-硫醇,156mg(0.27mmol,0.2eq)Xantphos,1.3mL(8.1mmol,6.0eq)DIEA和124mg(0.135mmol,0.1eq)Pd2(dba)3,N2置换3次,油浴加热至120℃反应过夜,冷却至室温,加水,用乙酸乙酯萃取3次,用饱和食盐水洗涤1次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(390mg,收率=54%)。
LC-MS:m/z=533[M+H]+.
步骤F:5-(((R)-1-(5-氟-2-(((S)-1-羟基丙烷-2-基)硫基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯
实验操作参考实施例13中的步骤B。
LC-MS:m/z=419[M+H]+.
步骤G:5-(((R)-1-(5-氟-2-(((S)-1-羟基丙烷-2-基)硫基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸
实验操作参考实施例13中的步骤C。
LC-MS:m/z=391[M+H]+.
步骤H:(13E,14E,3R,6S)-45-氟-3,6-二甲基-8-氧杂-5-硫杂-2-氮杂-1(5,3)-吡唑并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
实验操作参考实施例13中的步骤D。
1H NMR(400MHz,CDCl3)δ8.36-8.24(m,2H),7.49-7.47(m,1H),7.13-6.94(m,2H),6.28(d,J=7.6Hz,1H),6.12-6.01(m,1H),5.66(s,1H),5.03(dd,J=11.6,3.8Hz,1H),3.87(t,J=11.2Hz,1H),3.50-3.49(m,1H),1.74(d,J=7.2Hz,3H),1.50(d,J=7.0Hz,3H).
LC-MS:m/z=373[M+H]+.
实施例13(R,13E,14E)-45-氟-3-甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑并[1,5- α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
步骤A:(R)-5-((1-(2-(2-((叔丁基二甲基甲硅烷基)氧基)乙氧基)-5-氟苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯
将600mg(1.74mmol,1.0eq)(R)-5-((1-(5-氟-2-羟基苯基)乙基)氨基)吡唑[1,5-a]嘧啶-3-甲酸乙酯、614mg(2.48mmol,2.0eq)(R)-2-羟基丙基叔丁基甲酸酯、911mg(3.48mmol,2.0eq)三苯基膦溶解在35mL二氯甲烷中,冰浴下向反应体系缓慢滴加入703mg(3.48mmol,2.0eq)偶氮二甲酸二异丙酯。加完升至室温反应过夜。TLC监控反应完毕,减压蒸馏浓缩得残余物经硅胶柱层析纯化得产物(719mg,收率=82%)。
LC-MS:m/z=503[M+H]+
步骤B:(R)-5-((1-(5-氟-2-(2-羟基乙氧基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯
冰浴下,向719mg(1.43mmol,1.0eq)(R)-5-((1-(2-(2-((叔丁基二甲基甲硅烷基)氧基)乙氧基)-5-氟苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯的四氢呋喃溶液中加入四丁基氟化铵三水合物900mg(2.86mmol,2.0eq)。加完升至室温继续反应1.5小时,加水,用乙酸乙酯萃取3次,合并有机相用饱和食盐水洗涤一次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(519mg,收率=93%)。
LC-MS:m/z=389[M+H]+.
步骤C:(R)-5-((1-(5-氟-2-(2-羟基乙氧基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸
向519mg(1.34mmol,1.0eq)(R)-5-((1-(5-氟-2-(2-羟基乙氧基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯的甲醇/水(5∶1)溶液中加入氢氧化钠1.6g(40.2mmol,40.0eq)。加入完毕,油浴加热至80℃继续反应5小时。冷却至室温,减压蒸馏除去溶剂得残渣,用1N盐酸溶液调PH为5,用乙酸乙酯萃取2次,合并有机相,用无水硫酸钠干燥,减压蒸馏浓缩得产物(482mg,收率=100%)。
LC-MS:m/z=361[M+H]+.
步骤D:(R,13E,14E)-45-氟-3-甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
向150mg(0.42mmol,1.0eq)(R)-5-((1-(5-氟-2-(2-羟基乙氧基)苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸的二氯甲烷溶液中加入1-乙基-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(0.84mmol,2.0eq),随后加入4-二甲氨基吡啶(5mg,0.1eq),油浴加热至回流反应5小时,冷却至室温,加水,用二氯甲烷萃取3次,饱和食盐水洗涤一次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(60mg,收率=42%)。
1H NMR(400MHz,CDCl3)δ8.26(s,1H),8.20(d,J=7.4Hz,1H),7.04(dd,J=9.0,2.6Hz,1H),6.95-6.78(m,2H),6.21(d,J=7.4Hz,1H),6.14-6.01(m,1H),5.85(d,J=5.9Hz,1H),5.06(d,J=11.8Hz,1H),4.62-4.59(m,1H),4.49-4.45(m,1H),4.39-4.19(m,2H),1.56(d,J=7.0Hz,3H).LC-MS:m/z=343[M+H]+.
实施例23(R,13E,14E)-45-氟-2,3-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑并 [1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
步骤A:(R)-1-(5-氟-2-羟基苯基)乙基)氨基甲酸叔丁酯
向3.7g(19.3mmol,1.0eq)(R)-2-(1-胺乙基)-4-氟苯酚盐酸盐的二氯甲烷溶液中加入三乙胺5.4mL(38.6mmol,2.0eq),随后滴加二碳酸二叔丁酯4.6g(21.2mmol,1.1eq),滴加完毕,室温继续反应2小时,减压蒸馏浓缩得残渣,经硅胶柱层析纯化得产物(4.9g,收率=100%)。
LC-MS:m/z=256[M+H]+.
步骤B:(R)-1-(2-(2-((叔丁基二甲基甲硅烷基)氧基)乙氧基)-5-氟苯基)乙基)氨基甲酸叔丁酯
向600mg(2.35mmol,1.0eq)的DMF溶液中加入碳酸钾1.3g(9.4mmol,4.0eq),随后加入1.1g(4.7mmol,2.0eq)(2-溴乙氧基)-叔丁基二甲基硅烷,油浴加热至80℃继续反应4小时,冷却至室温,加水,用乙酸乙酯萃取3次,合并有机相,用水洗涤3次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(670mg,收率=69%)。
LC-MS:m/z=414[M+H]+.
步骤C:(R)-(1-(2-(2-((叔丁基二甲基甲硅烷基)氧基)乙氧基)-5-氟苯基)乙基)(甲基)氨基甲酸叔丁酯
冰浴下,向670mg(1.62mmol,1.0eq)(R)-1-(2-(2-((叔丁基二甲基甲硅烷基)氧基)乙氧基)-5-氟苯基)乙基)氨基甲酸叔丁酯的DMF溶液中加入氢化钠194mg(4.86mmol,3.0eq),加入完毕,继续在该温度下搅拌反应15分钟,随后滴加CH3I 460mg(3.24mmol,2.0eq),滴加完毕,继续反应2小时,加水,用乙酸乙酯萃取3次,合并有机相,用水洗涤3次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(692mg,收率=100%)。
LC-MS:m/z=428[M+H]+.
步骤D:(R)-1-(5-氟-2-(2-羟基乙氧基)苯基)乙基)(甲基)氨基甲酸叔丁酯
实验操作参考实施例13中的步骤B。
1H NMR(400MHz,CDCl3)δ7.12-6.94(m,2H),6.84-6.80(m Hz,1H),5.92(bRs,1H),4.63(bRs,1H),4.15-4.13(m,1H),3.92-3.88(m,3H),2.55(s,3H),1.53(s,9H),1.46(d,J=7.0Hz,3H).LC-MS:m/z=314[M+H]+.
步骤E:(R)-2-(4-氟-2-(1-(甲基氨基)乙基)苯氧基)乙-1-醇
实验操作参考实施例24中的步骤C。
LC-MS:m/z=214[M+H]+.
步骤F:(R)-5-((1-(5-氟-2-(2-羟基乙氧基)苯基)乙基)(甲基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯
实验操作参考实施例1中的步骤D。
LC-MS:m/z=403[M+H]+.
步骤G:(R)-5-((1-(5-氟-2-(2-羟基乙氧基)苯基)乙基)(甲基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸
实验操作参考实施例13中的步骤C。
LC-MS:m/z=375[M+H]+.
步骤H:(R,13E,14E)-45-氟-2,3-二甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
实验操作参考实施例13中的步骤D。
1H NMR(400MHz,CDCl3)δ8.39-8.25(m,2H),7.01-6.69(m,4H),6.42(d,J=7.8Hz,1H),5.0-5.07(m,1H),4.58-5.56(m,1H),4.44-4.42(m,1H),4.17-4.15(m,1H),3.43(s,3H),1.62(d,J=7.4Hz,3H).LC-MS:m/z=357[M+H]+.
实施例24(R,13E,14E)-45,6,6-三氟-3-甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑并 [1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
/>
步骤A:(R)-2-(2-(1-((叔丁氧基羰基)氨基)乙基)-4-氟苯氧基)-2,2-二氟乙酸乙酯
向700mg(2.75mmol,1.0eq)的N,N-二甲基甲酰胺溶液中加入二氟溴乙酸乙酯1.4g(6.86mmol,2.5eq),随后加入DBU 1.06g(6.86mmol,2.5eq),油浴加热至70℃反应4小时,冷却至室温,加水,有乙酸乙酯萃取3次,用饱和食盐水洗涤一次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(720mg,收率=69%)。
1H NMR(400MHz,CDCl3)δ7.33-7.23(m,1H),7.10-7.07(m,1H),6.97-5.93(m,1H),5.19(s,1H),4.98(s,1H),4.45(q,J=7.0Hz,2H),1.49-1.39(m,15H).
步骤B:(R)-1-(2-(1,1-二氟-2-羟基乙氧基)-5-氟苯基)乙基)氨基甲酸叔丁酯
冰浴下,向720mg(1.9mmol,1.0eq)(R)-2-(2-(1-((叔丁氧基羰基)氨基)乙基)-4-氟苯氧基)-2,2-二氟乙酸乙酯的四氢呋喃溶液中加入氢化铝锂160mg(4.2mmol,2.2eq),加入完毕,在该温度下继续反应2小时,加水淬灭反应,用乙酸乙酯萃取3次,用饱和食盐水洗涤一次,无水硫酸钠干燥,减压蒸馏浓缩,经硅胶柱层析纯化得产物(450mg,收率=71%)。
1H NMR(400MHz,CDCl3)δ7.36-7.33(m,1H),7.14-6.94(m,2H),5.27(s,1H),4.87(bRs,2H),4.05-3.97(m,2H),1.51-1.41(m,12H).
步骤C:(R)-2-(2-(1-氨基乙基)-4-氟苯氧基)-2,2-二氟甲基-1-醇
向450mg(1.34mmol,1eq)的二氯甲烷溶液中加入三氟乙酸4mL,加入完毕,室温继续搅拌反应3小时,减压蒸馏浓缩得残渣,加入饱和碳酸氢钠溶液调至碱性,用乙酸乙酯萃取3次,无水硫酸钠干燥,减压浓缩得产物(315mg,收率=100%)。
LC-MS:m/z=236[M+H]+.
步骤D:(R)-5-((1-(2-(1,1-二氟-2-羟基乙氧基)-5-氟苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸乙酯
实验操作参照实施例1中的步骤D。
LC-MS:m/z=425[M+H]+.
步骤E:(R)-5-((1-(2-(1,1-二氟-2-羟基乙氧基)-5-氟苯基)乙基)氨基)吡唑并[1,5-a]嘧啶-3-羧酸
实验操作参照实施例13中的步骤C。
LC-MS:m/z=397[M+H]+.
步骤F:(R,13E,14E)-45,6,6-三氟-3-甲基-5,8-二氧杂-2-氮杂-1(5,3)-吡唑并[1,5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
实验操作参照实施例13中的步骤D。
1H NMR(400MHz,CDCl3)δ8.27-8.25(m,2H),7.23(s,1H),7.08(dd,J=8.8,3.0Hz,1H),6.94-6.90(m,1H),6.26(d,J=7.5Hz,1H),5.85(bRs,1H),5.57(bRs,1H),5.01-4.93(m,1H),4.82-4.77(m,1H),1.58(d,J=7.0Hz,3H).LC-MS:m/z=379[M+H]+.
实施例25(R,13E,14E)-45-氟-3-甲基-8-氧杂-5-硫杂-2-氮杂-1(5,3)-吡唑并[1, 5-α]嘧啶杂-4(1,2)-苯杂环壬蕃-9-酮
参考实施例9的合成。
1H NMR(400MHz,CDCl3)δ8.33-8.20(m,2H),7.44-7.42(m,1H),7.06-7.04(m,1H),6.96-6.94(m,1H),6.25(d,J=7.4Hz,1H),6.17-5.98(m,1H),5.64(s,1H),5.02-5.00(m,1H),4.21-4.06(m,1H),3.78-3.76(m,1H),3.33-3.18(m,1H),1.49(d,J=7.0Hz,3H).LC-MS:m/z=359[M+H]+.
效果评估
1.化合物对TRKA、TRKB、TRKC以及ROS1的酶学抑制活性(IC50)检测
利用迁移率检测技术(Mobility shift assay),对TRKA、TRKB、TRKC以及ROS1激酶进行化合物的抑制活性筛选。该筛选平台的核心是基于微流体芯片技术的MSA,将毛细管电泳的基本理念应用到微流体环境中。实验用底物是带有荧光标记的多肽,在反应体系中酶的催化作用下,底物转变为产物,其所带的电荷也发生了相应的变化。MSA正是利用底物和产物所带电荷的不同,将二者进行分离,并分别进行检测。
操作方法简述如下:
将化合物粉末用100%DMSO(Sigma,Cat.D8418-1L)充分溶解,配制成10mM储存液。化合物起始测试浓度为100nM,3倍梯度稀释,10个浓度,复孔检测。针对TRKA、TRKB和TRKC激酶靶点,以LOXO-101(Selleckchem,Cat.S7960)作为阳性参照化合物,对于ROS1靶点,以Staurosporine(Selleckchem,Cat.S1421)为阳性对照化合物。将梯度稀释化合物与终浓度为2.5nM/2.55nM/2.5nM/0.3nM的TRKA/TRKB/TRKC/ROS1激酶(Carna,Cat.08-186/08-187/08-197/08-163)在Optiplate-384F孔板(PerkinElmer,Cat.6007270)混匀后室温孵育10分钟。之后加入终浓度为47.8μM/71.2μM/44.4μM/26.7μM的ATP及3μM Kinase substrate22(GL Biochem,Cat.112393),混匀后分别室温反应30分钟/40分钟/20分钟/20分钟。加入终止检测液终止酶促反应后并用Caliper EZ Reader II读取转化率。
数据分析:
Conversion%_sample:样品的转化率;Conversion%_min:阴性对照孔均值,代表没有酶活孔的转化率读数;Conversion%_max:阳性对照孔比值均值,代表没有化合物抑制孔的转化率读数。
以浓度的log值作为X轴,百分比抑制率为Y轴,采用分析软件GraphPad Prism5拟合量效曲线,从而得出各个化合物对酶活性抑制的IC50值。
2.化合物对ROS1-G2032R的酶学抑制活性(IC50)检测
利用Lance Ultra(Perkin Elmer,CR97-100)原理建立ROS1-G2032R激酶活性检测平台进行化合物活性的测定。
将化合物粉末溶解在100%DMSO(Sigma,Cat.D8418)中,配制成10mM储存液。化合物起始测试浓度为1,000nM,3倍梯度稀释,11个浓度,复孔检测。以TPX-0005(WuXiAppTec.)作为阳性参照化合物。将梯度稀释化合物与终浓度为0.016nM的ROS1-G2032R激酶(Abcam,Cat.ab206012)、50nM LANCE Ultra ULight-poly GT peptide(PerkinElmer,Cat.TRF0100-M)以及2.6μM ATP(Sigma,Cat.A7699)在Optiplate-384F孔板(PerkinElmer,Cat.6007299)混匀后室温孵育60分钟。加入5μl 40mM的EDTA终止反应5分钟,之后加入终浓度为2nM的Europium-anti-phosphotyrosine(PT66)(PerkinElmer,Cat.AD0069),混匀并室温反应60分钟。LANCE信号通过EnVisionTM(PerkinElmer,#2014)获取(激发光320nm,发射光665nm)。化合物的IC50值使用XLFIT5(IDBS公司)的软件计算得到。
3.化合物对TRKA和ALK-L1196M的酶学抑制活性(IC50)检测
利用剂基于Cisbio的HTRF(Cisbio,Cat.08-529)原理建立的TRKA和ALK-L1196M激酶活性检测平台进行化合物活性的测定。将化合物粉末溶解在100%DMSO(Sigma,Cat.D8418)中,配制成10mM储存液。化合物起始测试浓度分别为100nM和10,000nM,3倍梯度稀释,11个浓度,复孔检测。以RXDX-101(WuXi AppTec.)和Crizotinib(WuXi AppTec.)作为阳性参照化合物。
将梯度稀释化合物与终浓度为0.5nM TRKA(Carna,Cat.08-186)/ALK-L1196M激酶(Carna,Cat.08-529)、0.3μM/1μM TK Substrate-biotin以及90μM/30μM ATP(Sigma,Cat.A7699)在Optiplate-384F孔板(PerkinElmer,Cat.6007299)混匀后室温孵育90分钟/120分钟。加入终浓度为0.67nM Eu标记的TK-Antibody以及50nM Streptavidin标记的XL-665,混匀并室温反应60分钟。在Envision(PerkinElmer,#2014)上读取荧光值(激发光320nm,发射光665nm)。化合物的IC50值使用XLFIT5(IDBS公司)软件计算得到。
4.化合物对TRK融合及其突变稳转细胞系增殖的抑制作用(IC50)检测
检测化合物对六株细胞生长的抑制作用,分别使用使用LOXO-101(Selleckchem,Cat.S7960)和TPX-0005(Selleckchem,Cat.S8583)作为对照化合物。本实验所用细胞系为Ba/F3 LMNA-NTRK1-WT,Ba/F3 LMNA-NTRK1-G595R,Ba/F3 ETV6-NTRK2-WT,Ba/F3 ETV6-NTRK2-G639R,Ba/F3 ETV6-NTRK2-G639R和Ba/F3 ETV6-NTRK3-G623R。六种细胞系最高测试药物浓度分别为1μM、1μM、10μM、100μM、1μM和10μM,9个浓度,3.16倍稀释。
测试方法简述如下:
收获处于对数生长期的细胞,确保细胞活力在90%以上。3000细胞/孔铺于96-孔细胞培养板(Cat# 3603)中,将细胞置于37℃、5%CO2、95%湿度条件下培养过夜。在接种有细胞的96-孔板中每孔加入药物溶液,每个药物浓度设置三个复孔,继续培养72小时,之后使用/>试剂盒(Promega,Cat#G7572)进行检测。首先将CTG试剂融化并平衡细胞板至室温。每孔加入等体积的CTG溶液并在摇床上振动5分钟使细胞裂解。将细胞板放置于室温20分钟以稳定冷光信号。通过SpectraMax多标记微孔板检测仪(MD,2104-0010A)读取冷光值。之后使用GraphPad Prism 5.0软件分析数据,利用非线性S曲线回归来拟合数据得出剂量-效应曲线,并由此计算IC50值。
细胞存活率(%)=(Lum待测药-Lum培养液对照)/(Lum细胞对照-Lum培养液对照)×100%
表1.TRKA和ALK-L1196M激酶抑制活性测试
表2.TRKA、TRKB、TRKC、ROS1和ROS1-G2032R激酶抑制活性测试
表3.实施例1对TRK融合及其突变稳转细胞系的增殖抑制活性
注:*标记为同一批测试结果;#标记为同一批测试结果。
5.化合物细胞水平协同作用
H1975细胞(L858R和T790M双突变)在孵箱(37℃,5%CO2)中用1640培养基加10%FBS(胎牛血清)和1%P/S(青霉素/链霉素)进行培养。在化合物的检测中,将H1975细胞以每孔3000个/195μL的浓度铺于96孔板(Corning)中,化合物从10mM开始3倍梯度稀释11个浓度,每个浓度取4μL加入到96μL的1640培养基中稀释成25×化合物,然后取5μL加入到195μL的细胞培养液中(DMSO终浓度为0.1%,v/v),处理72小时后加入35μL的(购买于Promega),按照说明书的操作流程在Flex Station3(Molecular Devices)上测定荧光信号,使用GraphPad Prism5.0计算化合物对细胞增殖抑制的IC50值。使用Chou-Talalay联合指数法计算联合用药效果,联合指数(CoI)值0.9≤CI≤1.1为叠加作用,0.8≤CI<0.9为低度协同作用,0.6≤CI<0.8为中度协同作用,0.4≤CI<0.6为高度协同作用,0.2≤CI<0.4为强协同作用。
实验结果表明,实施例化合物与AZD9291联合用药,对于EGFR双突变细胞H1975(L858R和T790M双突变)有中度至高度的协同作用(实施例1,CI=0.53-0.67),表明实施例化合物与EGFR抑制剂联合用药能克服EGFR耐药。
6.药代动力学实验
将雄性SD大鼠分组,每组3只,分别口服单次灌胃给予实施例1化合物(5mg/kg)和TPX-0005(5mg/kg),静脉注射实施例1化合物(1mg/kg)。动物在实验前禁食过夜,禁食时间从给药前10小时至给药后4小时。口服组给药后0.25、0.5、1、2、4、8和24小时采血,静脉注射组注射后0.083、0.25、0.5、1、2、4、8和24小时采血。使用小动物麻醉机经异氟烷麻醉后通过眼底静脉丛采取0.3mL全血,放于肝素抗凝管中,样品于4℃、4000rpm离心5min,血浆转移至离心管中,并放于-80℃保存直到分析。血浆中样品使用蛋白质沉淀法萃取,萃取液通过LC/MS/MS分析。药代动力学实验结果如表2、表3所示。
表4.大鼠灌胃给予5mg/kg不同化合物后的药代动力学参数
表5.大鼠静脉给予1mg/kg化合物后的药代动力学参数
由上述结果可知,本发明的实施例1化合物的口服药代动力学性能优于现有化合物TPX-0005,且实施例1的口服生物利用度达到了100%。按照同样的方法测试本发明其余的实施例化合物,所得的药代动力学性能也优于TPX-0005。
7.血脑分布实验
将雄性SD大鼠分组,每组12只,分别口服单次灌胃给予实施例化合物(10mg/kg)。动物在实验前禁食过夜,禁食时间从给药前10小时至给药后4小时。每组大鼠给药后0.5、1、4和12小时处死并采血及脑组织,样品处理后于4℃、4000rpm离心5min,血浆转移至离心管中,并放于-80℃保存直到分析。血浆中样品使用蛋白质沉淀法萃取,萃取液通过LC/MS/MS分析。
表6.大鼠血脑分布实验结果
虽然为了说明本发明,已经公开了本发明的优选实施方案,但是本领域的技术人员应当理解,在不脱离权利要求书所限定的本发明构思和范围的情况下,可以对本发明做出各种修改、添加和替换。

Claims (6)

1.一种如式(1)所示的化合物或其药学上可接受的盐、同位素标记物,
式(1)中,
X选自-O-或-S-;
L1选自-O-、-S-;
L2选自-NR6-;
R1、R2各自独立地选自氢或卤素;
R5选自氢;
每个C原子上的取代基R3、R4各自独立地选自氢或C1-8烷基;
R3’、R4’各自独立地选自氢或C1~8烷基;
R6选自氢或C1~8烷基;
Z表示C;和
n表示1或2。
2.根据权利要求1所述的化合物或其药学上可接受的盐、同位素标记物,其中,所述化合物选自:
3.一种药物组合物,其包含权利要求1或2所述的化合物或其药学上可接受的盐、同位素标记物,以及药学可接受的载体。
4.权利要求1或2所述的化合物或其药学上可接受的盐、同位素标记物,以及权利要求3所述的药物组合物在制备用于治疗酪氨酸激酶介导的疾病的药物中的用途。
5.根据权利要求4所述的用途,其中,所述酪氨酸激酶选自以下一种或多种:ALK、ROS1、TRKA、TRKB、TRKC、JAK2、SRC、FYN、LYN、YES、FGR、FAK、AXL、ARK5。
6.根据权利要求4所述的用途,其中,所述酪氨酸激酶介导的疾病选自癌症、疼痛、神经疾病、自身免疫疾病和炎症。
CN201980020599.6A 2018-04-25 2019-04-22 一种二芳基巨环化合物、药物组合物以及其用途 Active CN111902417B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2018103778111 2018-04-25
CN201810377811 2018-04-25
PCT/CN2019/083644 WO2019206069A1 (zh) 2018-04-25 2019-04-22 一种二芳基巨环化合物、药物组合物以及其用途

Publications (2)

Publication Number Publication Date
CN111902417A CN111902417A (zh) 2020-11-06
CN111902417B true CN111902417B (zh) 2023-07-28

Family

ID=68294851

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980020599.6A Active CN111902417B (zh) 2018-04-25 2019-04-22 一种二芳基巨环化合物、药物组合物以及其用途

Country Status (5)

Country Link
US (1) US20220162218A1 (zh)
EP (1) EP3786167A4 (zh)
JP (2) JP7128345B2 (zh)
CN (1) CN111902417B (zh)
WO (1) WO2019206069A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230002410A1 (en) 2019-11-18 2023-01-05 Guangzhou Joyo Pharmatech Co., Ltd. Compound as highly selective ros1 inhibitor and use thereof
CN112824417A (zh) * 2019-11-21 2021-05-21 上海天慈国际药业有限公司 一种劳拉替尼的制备方法
CN113004305B (zh) * 2019-12-19 2024-04-09 赛诺哈勃药业(成都)有限公司 大环化合物及其制备方法和用途
CN113121568A (zh) * 2019-12-31 2021-07-16 成都倍特药业股份有限公司 一种大环结构化合物的盐及其制备方法
WO2021244609A1 (zh) * 2020-06-04 2021-12-09 成都倍特药业股份有限公司 具有大环结构的化合物及其用途
CN116829562A (zh) * 2021-02-10 2023-09-29 深圳国顺康医药科技有限公司 一种巨环化合物、药物组合物以及其用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971322A (zh) * 2010-05-20 2013-03-13 阵列生物制药公司 作为trk激酶抑制剂的大环化合物
CN106170289A (zh) * 2014-01-24 2016-11-30 Tp生物医药公司 作为蛋白质激酶的调节剂的二芳基巨环

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2350075E (pt) 2008-09-22 2014-06-09 Array Biopharma Inc Compostos imidazo[1,2b]piridazina substituídos como inibidores da trk cinase
SG10201914059WA (en) 2008-10-22 2020-03-30 Array Biopharma Inc Substituted pyrazolo[1,5-a]pyrimidine compounds as trk kinase inhibitors
CA3093140A1 (en) * 2018-03-28 2019-10-03 Fochon Pharmaceuticals, Ltd. Macrocyclic compounds as trk kinases inhibitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102971322A (zh) * 2010-05-20 2013-03-13 阵列生物制药公司 作为trk激酶抑制剂的大环化合物
CN106170289A (zh) * 2014-01-24 2016-11-30 Tp生物医药公司 作为蛋白质激酶的调节剂的二芳基巨环

Also Published As

Publication number Publication date
JP7128345B2 (ja) 2022-08-30
JP2022126780A (ja) 2022-08-30
CN111902417A (zh) 2020-11-06
JP2021519828A (ja) 2021-08-12
US20220162218A1 (en) 2022-05-26
WO2019206069A1 (zh) 2019-10-31
EP3786167A1 (en) 2021-03-03
EP3786167A4 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
CN111902417B (zh) 一种二芳基巨环化合物、药物组合物以及其用途
KR102426043B1 (ko) 액티빈 수용체 유사 키나아제의 저해제
WO2021190467A1 (zh) 含螺环的喹唑啉化合物
CN110790749B (zh) 一种含氮杂环化合物、药物组合物以及其用途
CN109867676B (zh) 一种吡咯并嘧啶衍生的化合物、药物组合物以及其用途
WO2016192609A1 (zh) 蝶啶酮衍生物作为egfr抑制剂的应用
WO2021213317A1 (zh) Hpk1抑制剂及其制备方法和用途
CN109311891A (zh) 作为jak抑制剂的吡咯并嘧啶化合物的结晶
CN109721600A (zh) 一类含氮稠环化合物及其制备方法和用途
TW202102505A (zh) 吡咯并雜環類衍生物、其製備方法及其在醫藥上的應用
CN109867675B (zh) 一种吡咯并嘧啶衍生的化合物、药物组合物以及其用途
WO2021249533A1 (zh) ***受体调节剂化合物及其用途
TW202110848A (zh) 取代的稠合雙環類衍生物、其製備方法及其在醫藥上的應用
JP2022517723A (ja) Cdk阻害剤としての大環状化合物、その製造方法及びその医薬品における応用
CN112174940A (zh) 3-(6,7-双(2-甲氧乙氧基)-喹唑啉-4-胺基)苯基-1h-三氮唑衍生物
CN107793371B (zh) 一类溴结构域识别蛋白抑制剂及其制备方法和用途
EP3950677A1 (en) Quinolyl-containing compound and pharmaceutical composition, and use thereof
US20220048914A1 (en) Preparation for 6-amino-1h-pyrazolo[3,4-d]pyrimidine-based jak kinase inhibitor and application thereof
WO2023016484A1 (zh) 磺酰胺衍生物、其制备方法及其在医药上的应用
CN115594695A (zh) 大环类化合物、其制备方法及其在医药上的应用
CN114874234A (zh) 作为kras g12c抑制剂的三环类化合物及其应用
CN108069913B (zh) 双(吗啉基烷氧基)喹唑啉衍生物及其在抗肿瘤方面的用途
JP7329052B2 (ja) フッ素含有置換ベンゾチオフェン化合物ならびにその医薬組成物および応用
WO2022171139A1 (zh) 一种巨环化合物、药物组合物以及其用途
US20230406854A1 (en) Covalent kras-binding compounds for therapeutic purposes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: Room 608, floor 6, building 2, No. 13 yard, Hangfeng Road, Fengtai District, Beijing 100070

Applicant after: Beijing Puqi Pharmaceutical Technology Co.,Ltd.

Address before: 100070 6th floor, block B, Chongxin building, No. 13, Hangfeng Road, Fengtai District, Beijing

Applicant before: BEIJING PUQI MEDICINE TECHNOLOGY Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant