CN111801304A - cBN sintered body and cutting tool - Google Patents

cBN sintered body and cutting tool Download PDF

Info

Publication number
CN111801304A
CN111801304A CN201980016596.5A CN201980016596A CN111801304A CN 111801304 A CN111801304 A CN 111801304A CN 201980016596 A CN201980016596 A CN 201980016596A CN 111801304 A CN111801304 A CN 111801304A
Authority
CN
China
Prior art keywords
cbn
sintered body
wsi
powder
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201980016596.5A
Other languages
Chinese (zh)
Other versions
CN111801304B (en
Inventor
矢野雅大
小口史朗
宫下庸介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Publication of CN111801304A publication Critical patent/CN111801304A/en
Application granted granted Critical
Publication of CN111801304B publication Critical patent/CN111801304B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • C04B35/5831Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2226/00Materials of tools or workpieces not comprising a metal
    • B23B2226/12Boron nitride
    • B23B2226/125Boron nitride cubic [CBN]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3804Borides
    • C04B2235/3813Refractory metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3839Refractory metal carbides
    • C04B2235/3847Tungsten carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3856Carbonitrides, e.g. titanium carbonitride, zirconium carbonitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3886Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3891Silicides, e.g. molybdenum disilicide, iron silicide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/361Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/401Cermets

Abstract

The cBN sintered body of the invention is composed of cubic boron nitride particles and a ceramic binder phase, and has an average particle diameter of 10nm to 200nm WSi2Is dispersed in the sintered body so that the content ratio thereof is 1 to 20 vol%. A cutting tool has the cBN sintered body as a tool base body.

Description

cBN sintered body and cutting tool
Technical Field
The present invention relates to a cubic boron nitride (hereinafter referred to as "cBN") based ultra-high pressure sintered body (hereinafter referred to as "cBN sintered body") having excellent toughness, and a cutting tool (hereinafter referred to as "cBN tool") using the same as a tool base.
The present application claims priority based on patent application No. 2018-047247 filed on japanese application No. 2018, 3, 14 and the content thereof is incorporated herein by reference.
Background
Heretofore, it has been known that a cBN sintered body is excellent in toughness and low in affinity with an iron-based material, and therefore, the cBN sintered body is widely used as a cutting tool material for an iron-based workpiece material such as steel or cast iron by effectively utilizing these characteristics.
For example, patent document 1 describes a cBN sintered body having the following configuration.
(a) Contains about 60 to 80 vol% of cBN having an average grain size of about 3 to 6 μm.
(b) The binder phase comprises about 40 to 20 volume percent of a ceramic binder phase, (i) about 20 to 60 volume percent of the ceramic binder phase is one or more carbides, nitrides, or borides of group IVA or group VIA metals, and (ii) about 40 to 80 volume percent of the ceramic binder phase is one or more carbides, nitrides, borides, or oxides of aluminum.
(c) About 3 to 15 wt% of tungsten, TiB2Of [101 ]]Peak and WB [110 ]]The XRD intensity ratio of the peaks is less than about 0.4.
Further, the cBN sintered body described in patent document 2 has cubic boron nitride particles of 20 volume% or more and 80 volume% or less and a binder material composed of at least one selected from nitrides, carbides, borides, oxides and solid solutions of group IVB elements, group VB elements, group VIB elements of the periodic table, at least one selected from simple substances, compounds and solid solutions of Zr, Si, Hf, Ge, W, Co and compounds of Al, and when W and/or Co are contained in the composite sintered body, the total weight of W and/or Co is less than 2.0 weight% and any one or more of Zr, Si, Hf and Ge (hereinafter referred to as "X") is contained, each element of X is 0.005 weight% or more and less than 2.0 weight%, and X/(X + W + Co) satisfies 0.01 or more and 1.0 or less, and the weight of Al is 2.0-20.0 wt%.
Patent document 1: japanese laid-open patent application No. 2004-160637
Patent document 2: japanese patent No. 5189504
Since the cBN sintered body described in patent document 1 contains W in the sintered body, Ti boride (TiB) is produced simultaneously at the time of sintering2) Phase and W Boride (WB) phase. The W boride phase produced suppresses the production of Ti boride phase at the cBN particle-binder phase interface, and TiB2Of [101 ]]Peak and WB [110 ]]The XRD intensity ratio of the peak is suppressed to less than about 0.4. Therefore, the cBN particle-binder phase interface is deteriorated in adhesion, which becomes a starting point of crack generation, resulting in a problem that toughness and chipping resistance are deteriorated.
In the cBN sintered body described in patent document 2, in order to improve the strength and toughness of the binder phase, a predetermined amount of W and/or Co, Si or Zr is contained in the binder phase, but if the proportion of W in the sintered body is large, the toughness in the sintered body is lowered, and if Si is large, the diffusion reaction of the binder material is excessively suppressed, and the binding force between the cBN particles and the binder material and between the cBN particles and the binder material is lowered, resulting in a problem that the toughness of the sintered body is lowered. Further, when the dispersibility during mixing is poor, a portion having a high concentration of the additive locally occurs, and the toughness of the binder in this portion is lowered, and when the binder is used as a tool, the fracture resistance is lowered due to the occurrence of a starting point of fracture.
Disclosure of Invention
The present invention has been made to solve the problem of the conventional cBN sintered body that sufficient toughness cannot be secured, and an object of the present invention is to provide a cBN sintered body having high toughness and a cBN tool using the same as a tool base.
In order to solve the above problems, the present inventors have conducted studies on a cBN sintered body and a CBN tool using the same as a tool base, wherein dispersed particles are formed in the cBN sintered body so that the cBN particle-binder phase interface does not suffer from a decrease in adhesion even when a W compound is contained thereinThe study was conducted intensively. As a result, it was found that when particles that do not form a reaction product with cBN particles are dispersed, the formation of a Ti boride phase formed at the cBN particle-binder phase interface is not inhibited. Further, the following new findings are made: the particles are suitable for WSi2Particles and WSi of a fine particle size in a specific average particle size range2Particles are dispersed in the binder phase of the cBN sintered body, and even when cracks are generated in the sintered body, the progress of the cracks is progressed by WSi2The sintered cBN is finely detoured, and the linear progress can be suppressed, whereby a sintered cBN having high toughness can be obtained. Further, it has been found that when the cBN sintered body is used as a tool base of a cutting tool, the cutting edge is less likely to be chipped even when intermittent cutting is performed in which a large load is applied to the cutting edge.
The present invention has been completed based on the above findings, and is characterized by the following configuration.
(1) The invention of claim 1 is a cBN sintered body comprising cubic boron nitride particles and a ceramic binder phase, wherein WSi having an average grain size of 10nm to 200nm is dispersed in the cBN sintered body so that the content ratio is 1 vol% to 20 vol% or less2
(2) Another embodiment of the present invention is a cutting tool comprising the cBN sintered body described in the above (1) as a tool base.
In the cBN sintered body according to the present invention, since the reaction product with the cBN particles, that is, WSi containing no B and N in its constituent components is formed2The fine particles of (2) are dispersed, so that the generation of a Ti boride phase generated at the cBN particle-binder phase interface is not inhibited, and the progress of cracks generated in the sintered body is made to pass through WSi dispersed in the sintered body without lowering the adhesion of the cBN particle-binder phase interface2The fine detour exhibits an effect of suppressing the linear progression of the crack and improving the toughness.
Further, the cutting tool according to the present invention uses the cBN sintered body as a tool base, and thus the cutting edge is less likely to be damaged even when interrupted cutting is performed with a large load on the cutting edge, and for example, even in interrupted cutting of high hardness steel, the cutting tool is excellent in wear resistance and has excellent chipping resistance in long-term use.
Drawings
FIG. 1 shows WSi contained in a sintered structure in one embodiment of a cBN sintered body according to the present invention2Wherein the shape and size of each tissue does not conform to the actual tissue.
FIG. 2 is a diagram showing an example of XRD (X-ray diffraction) of the sintered body 9 of the present invention as a sintered cBN body according to the present invention.
Detailed Description
The present invention will be described in detail below. In the present specification, when a numerical range is expressed by using "-" this range includes upper and lower numerical values.
[ average particle diameter of cBN particles ]
The average particle diameter of the cBN particles used in the present invention is not particularly limited, but is preferably in the range of 0.2 to 8.0. mu.m. Thus, the sintered body contains hard cBN particles, and hence the effect of improving the chipping resistance can be obtained. Furthermore, by dispersing cBN particles having an average particle diameter of 0.2 to 8.0 [ mu ] m in the sintered body, chipping and chipping originating from the uneven shape of the cutting edge caused by the cBN particles falling off from the tool surface during use of the tool are suppressed. Furthermore, by suppressing the propagation of cracks that progress from the interface between the cBN particles and the binder phase or cracks that progress from the breaking of the cBN particles, which are generated by the stress applied to the cutting tip during the use of the tool, it is possible to have excellent chipping resistance.
The average particle diameter of the cBN particles can be determined as follows.
The cross-sectional structure of the cBN sintered body was observed by a Scanning Electron Microscope (SEM) to obtain a secondary electron image. The cBN particle portions in the obtained image were extracted by image processing, and the average particle diameter was calculated from the maximum length of each particle obtained by image analysis. In order to clearly judge the cBN particles and the binder phase in the image at the time of extracting the portions of the cBN particles in the image by the image processing, the binarization processing is performed so that the cBN particles become black by using an image of pixels in which the ratio of the values of the pixels of the cBN particles portion to the values of the pixels of the binder phase portion becomes 2 or more, and displaying the image in a monochrome of 256 gradations with the value of the black pixel in the image set to 0 and the value of the white pixel set to 255.
The region for determining the pixel value of the cBN particle portion or the binder phase portion is determined from the average value in a region of about 0.5. mu. m.times.0.5. mu.m, and preferably, at least the average values determined from different 3 points in the same image are used as the respective references.
In addition, after the binarization process, the cBN particles that are considered to be in contact with each other are separated from each other using a process of separating portions where the cBN particles are considered to be in contact with each other, for example, using watershed (an algorithm of obtaining a region by expanding the center of the region called watershed algorithm/mark toward an adjacent pixel).
The portion (black portion) corresponding to the cBN particles in the image obtained after the binarization process was subjected to particle analysis, and the obtained maximum length was defined as the maximum length of each particle and defined as the diameter of each particle. As a particle analysis for obtaining the maximum length, for example, a value of the larger of two lengths obtained by calculating the Feret diameter with respect to one cBN particle is defined as the maximum length, and this value is defined as the diameter of each particle. The volume obtained by calculation assuming an ideal sphere having the diameter is defined as the volume of each particle, the cumulative volume is determined, and a graph is drawn from the cumulative volume with the vertical axis being the volume percentage [% ]andthe horizontal axis being the diameter [ μm ]. On the graph, the diameter at 50% by volume was defined as the average grain size of cBN particles, and the average value of the three observation regions was defined as the average grain size [ μm ] of cBN. In the particle analysis, the length (μm) of each pixel is set using a value of a scale known in advance by SEM. The observation region used for image processing is preferably a field-of-view region of about 15.0. mu. m.times.15.0 μm when the average particle size of the cBN particles is 3 μm.
[ content ratio of cBN particles in cBN sintered body ]
The content of the cBN particles in the cBN sintered body is not particularly limited, but when the content is less than 40 vol%, the hard material in the sintered body is small, and when the sintered body is used as a tool, chipping resistance may be lowered, and when the content exceeds 78 vol%, voids which become starting points of cracks are generated in the sintered body, and chipping resistance may be lowered. Therefore, in order to further exhibit the effect of the present invention, the content ratio of the cBN particles in the cBN sintered body is preferably in the range of 40 to 78 vol%.
[ WSi dispersed in cBN sintered body2]
For WSi dispersed in cBN sintered body2The description is given.
(1) Average particle diameter
WSi2The average particle diameter of (A) is 10nm to 200 nm. The reason for this range is that WSi in the binder phase tends to occur when the average particle diameter exceeds 200nm2Since cracks starting from particles are generated and progressed, the toughness of the cBN sintered body is lowered, and if the average particle diameter is less than 10nm, the cracks cannot be finely detoured and the progress thereof cannot be sufficiently suppressed. WSi2The average particle diameter of (3) is more preferably 10nm to 160 nm.
(2) Contains the ratio of
WSi2The cBN sintered body is present in a content ratio of 1 to 20 vol%. The reason for this range is that if it is less than 1 vol%, the cracks cannot be finely detoured to sufficiently suppress the progress thereof, and if it exceeds 20 vol%, the amount of the cracks is not sufficient to improve the toughness of the cBN sintered body, and WSi in the sintered body2Probability of contact with each other increases, adjacent WSi2WSi which is bonded to be large during sintering2WSi susceptible to the hypertrophy2The generation of cracks as starting points lowers the toughness of the cBN sintered body. The content ratio is more preferably 3% by volume or more and 15% by volume or less.
[ method for producing cBN sintered body ]
An example of a process for producing the cBN sintered body excellent in toughness of the present invention will be described below.
(1) Preparation of raw material powder of component constituting binder phase
As the raw material powder constituting the binder phase,preparation of WSi2Raw materials and a binder phase. As WSi2Raw Material WSi having an average particle size of 3 μm2And (3) powder. To make WSi pulverized to a desired particle size2Raw material powder, WSi2The powder is filled in a container lined with cemented carbide, for example, together with cemented carbide balls and acetone, and after the container is covered with a lid, the powder is pulverized by a ball mill, and then classified by a centrifugal separator, whereby the median particle diameter D50 where the vertical axis represents the volume percentage and the horizontal axis represents the particle diameter is defined as the pulverized WSi2The average particle size of the raw material powder is used for obtaining the WSi with the value of 10-200 nm2Raw material powder. As a main raw material of the binder phase, conventionally known binder phase-forming raw material powders (TiN powder, TiC powder, TiCN powder, TiAl powder) were prepared3Powder, Al2O3Powder).
(2) Pulverizing/mixing
These raw material powders are charged into a container lined with cemented carbide, for example, together with cemented carbide balls and acetone, and then the container is covered with a lid and pulverized and mixed by a ball mill. Next, cBN powder having an average particle size of 0.2 to 8.0 μm, which functions as a hard phase, is added and further ball mill-mixed.
(3) Molding and sintering
Next, the obtained raw powder of the sintered body is molded under a predetermined pressure to prepare a molded body, which is presintered at 1000 ℃, and then loaded into an ultrahigh pressure sintering apparatus, for example, under a pressure: 5GPa, temperature: the cBN sintered body of the present invention is produced by sintering at a predetermined temperature in the range of 1200 to 1600 ℃.
[ CBN tool ]
The cBN-based ultra-high pressure sintered body cutting tool of the present invention, which uses a cBN-based sintered body having excellent toughness as a tool base body, has excellent chipping resistance even in interrupted cutting machining of high hardness steel, for example, and exhibits excellent wear resistance in long-term use.
[ measuring methods of respective numerical values ]
The method of measuring each numerical value specified in the present invention will be explained.
[WSi2Average particle diameter of]
To measure WSi2The average particle diameter of (2) was determined by Auger Electron Spectroscopy (hereinafter referred to as AES) to obtain a mapping image of W element and Si element on the cross-sectional structure of the cBN sintered body. In the obtained image, a portion where the W element and the Si element overlap is extracted by image processing, and an average particle diameter is calculated from each particle determined by image analysis.
WSi2The average particle diameter of (2) is calculated by identifying a portion where W element and Si element overlap each other in one image as WSi from a mapping image of W element and Si element2The Ferrett diameter of each particle of (a) is defined as the diameter of each particle. From the volume of each particle calculated from the diameter, the cumulative volume was determined in the same manner as in cBN, and from this cumulative volume, the vertical axis was taken as the volume percentage [% ]]The horizontal axis is taken as the diameter [ mu ] m]The diameter at 50% volume percentage was plotted as WSi in one image used for measurement2The average particle diameter of (3). This process was performed on three images, and the average value was defined as WSi2Average particle diameter of [ mu ] m]. In performing particle analysis, the length (μm) of each pixel is set using the value of a scale known in advance by AES. The observation region used for image processing is preferably a field of view region of about 5.0 μm × 3.0 μm.
[ WSi in sintered body2In the content ratio of]
WSi2The content ratio of the cBN sintered body was calculated by AES from a mapping image of the W element and the Si element to obtain a cross-sectional structure of the cBN sintered body. In one observed image, a portion where the W element and the Si element are overlapped is taken as WSi2Computing WSi by image analysis using image processing extraction2The occupied area is calculated to obtain WSi2The ratio of the active ingredients to the total amount of the active ingredients. The processing is performed on at least three images, and each calculated WSi is calculated2The average value of the area ratios of (a) to (b) is defined as WSi2The content ratio of the cBN sintered body was determined. The observation region used for image processing is preferably a field of view region of about 5.0 μm × 3.0 μm.
Example 1
Examples of the present invention are described below.
In the production of the cBN sintered body of the present embodiment, WSi is prepared as a raw material powder for constituting a binder phase2Powder, for control of WSi2The particle size of (3) is prepared by pulverizing the powder using a ball mill and then classifying the powder by centrifugal separation to prepare WSi having a desired particle size range2Raw material powder. That is, WSi having an average particle size of 3 μm was prepared2The powder is filled into a container lined with cemented carbide together with cemented carbide balls and acetone, the container is covered with a cover, the container is pulverized by a ball mill, the mixed slurry is dried, and then, the slurry is classified by a centrifugal separator, thereby obtaining WSi with an average particle size of 50 to 200nm2Raw material powder.
Preparation of WSi prepared in advance as described above2Raw material powder, TiN powder, TiC powder, TiCN powder and TiAl powder with average grain diameter of 0.3-0.9 mu m3Powder and Al2O3The powders were blended so that the content ratio of the sintered cBN particles becomes 40 to 78 vol% when the total amount of the raw material powder for binder phase constitution (the vol% of each raw material powder is shown in Table 1) selected from these raw material powders and the cBN powder as the raw material for the hard phase is taken as 100 vol%, wet-mixed, and dried.
Next, the obtained sintered body raw material powder was press-molded into a diameter at a molding pressure of 1 MPa: 50 mm. times. thickness: 1.5mm, and then maintaining the shaped body under a pressure: presintering at a predetermined temperature within a range of 1000 ℃ in a vacuum atmosphere of 1Pa or less, and then loading into an ultrahigh pressure sintering apparatus under a pressure of: 5GPa, temperature: the sintered cBN 1 to 12 (referred to as sintered cBN 1 to 12) of the present invention shown in Table 2 were produced by sintering at a temperature of 1400 ℃. The heat treatment of the molded article is mainly intended to remove the solvent in wet mixing. In the above-described production step, it is preferable to prevent the raw material powder from being oxidized in the step up to the ultrahigh pressure sintering as in the present example, and specifically, it is preferable to perform the treatment in a non-oxidizing protective atmosphere. Fig. 2 shows an XRD pattern of the sintered body 9 of the present invention.
[ Table 1]
Figure BDA0002660880150000071
[ Table 2]
Figure BDA0002660880150000072
For comparison, the following cases were studied separately: (1) does not contain WSi2In the case (2) grinding WSi by a ball mill is used2WSi having an average particle diameter outside the range specified in the present invention, which is obtained by classifying a raw material using a centrifugal separator2In the case of raw material powder, (3) WSi having an average particle diameter within the range specified in the present invention is used2Raw material powder having WSi outside the range specified in the present invention2The case of the content ratio. These WSi are prepared2TiN powder, TiC powder, TiCN powder, TiAl powder, etc. having an average particle diameter of 0.3 to 0.9 [ mu ] m3Powder and Al2O3And (3) powder. The raw material powders for constituting several binder phases selected from these raw material powders (the volume% of each raw material powder is shown in table 3) and cBN powder as a hard phase were wet-mixed, and the obtained mixture was dried. The blending ratio of the both is such that the content of the cBN particles after sintering becomes 58 to 63 vol% when the content of the mixture is 100 vol%.
Then, molded bodies were produced under the same conditions as those of the sintered bodies 1 to 12 of the present invention, heat-treated, and these molded bodies were subjected to ultra-high pressure high temperature sintering under the same conditions as those of the sintered bodies 1 to 12 of the present invention, thereby producing cBN sintered bodies (hereinafter referred to as comparative sintered bodies) 1 to 5 of comparative examples shown in table 4.
[ Table 3]
Figure BDA0002660880150000081
[ Table 4]
Figure BDA0002660880150000082
Next, the sintered bodies 1 to 12 of the present invention and the sintered bodies 1 to 5 of the comparative examples produced above were cut into predetermined dimensions by a wire electric discharge machine. Insert bodies made of WC-based cemented carbide having a composition of 5 mass% Co, 5 mass% TaC, and the balance WC, and an insert shape of ISO standard CNGA120408 were manufactured, and the sintered bodies 1 to 12 of the present invention and the sintered bodies 1 to 5 of comparative examples were brazed at brazed portions (corners) of the insert bodies using a brazing filler metal of an Ag alloy having a composition of 26 mass% Cu, 5 mass% Ti, and the balance Ag, and subjected to upper and lower surface and outer periphery polishing and edge grinding, thereby manufacturing the cutting tools 1 to 12 of cBN-based ultra-high pressure sintered bodies of the present invention (referred to as the cutting tools) and the cutting tools 1 to 5 of cBN-based ultra-high pressure sintered bodies of comparative examples (referred to as the comparative tools) having an insert shape of ISO standard CNGA 120408.
Next, the cutting was performed on the present tools 1 to 12 and the comparative tools 1 to 5 under the following cutting conditions, and the tool life (number of interruptions) until the cutting was lost was measured.
< cutting Condition >
Workpiece material: 8 longitudinal grooved round bars equally spaced in the longitudinal direction of carburized and quenched steel (JIS SCM415, hardness: HRC 58-62),
Cutting speed: 200 m/min,
Cutting depth: 0.1mm,
Feeding: 0.1mm/rev
The dry cutting test of the high hardness steel under the above conditions was carried out. The number of interruptions from the cutting edge to the chipping or chipping of each tool was regarded as the tool life, and the presence or absence of chipping or chipping of the cutting edge was confirmed by observing the cutting edge every 500 times. Table 5 shows the results of the above-described cutting test.
[ Table 5]
Figure BDA0002660880150000091
As is clear from the results shown in table 5, the tool of the present invention has an extended tool life and improved toughness without causing sudden edge chipping of the cutting edge as compared with the comparative tool. The tool of the present invention has excellent wear resistance even in interrupted cutting of high hardness steel, and exhibits an excellent effect of having excellent fracture resistance in long-term use.
Industrial applicability
When used as a tool base for cBN tools, the cBN sintered body of the present invention can be industrially used because it does not cause chipping of the tool base, exhibits excellent chipping resistance in long-term use, can realize extension of tool life, and can realize high performance of a cutting apparatus, and labor saving, energy saving, and cost reduction in cutting.

Claims (2)

1. A cBN sintered body composed of cubic boron nitride particles and a ceramic binder phase, characterized in that,
in the sintered body, WSi having an average particle diameter of 10nm to 200nm is dispersed so as to have a content ratio of 1 vol% to 20 vol%2
2. A cutting tool having a tool base body formed of the cBN sintered body as set forth in claim 1.
CN201980016596.5A 2018-03-14 2019-03-14 cBN sintered body and cutting tool Active CN111801304B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018-047247 2018-03-14
JP2018047247A JP7015979B2 (en) 2018-03-14 2018-03-14 cBN sintered body and cutting tool
PCT/JP2019/010528 WO2019177094A1 (en) 2018-03-14 2019-03-14 Cbn sintered compact and cutting tool

Publications (2)

Publication Number Publication Date
CN111801304A true CN111801304A (en) 2020-10-20
CN111801304B CN111801304B (en) 2022-08-12

Family

ID=67906825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980016596.5A Active CN111801304B (en) 2018-03-14 2019-03-14 cBN sintered body and cutting tool

Country Status (5)

Country Link
US (1) US11383305B2 (en)
EP (1) EP3766857A4 (en)
JP (1) JP7015979B2 (en)
CN (1) CN111801304B (en)
WO (1) WO2019177094A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11130713B2 (en) * 2016-05-23 2021-09-28 Mitsubishi Materials Corporation Cubic boron nitride sintered material cutting tool

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401443A (en) * 1981-10-26 1983-08-30 General Electric Company Polycrystalline silicon-bonded cubic boron nitride body and method
JPS6183681A (en) * 1984-09-27 1986-04-28 三菱マテリアル株式会社 Manufacture of cubic boron nitride base sintered body for cutting tool
JP2003192446A (en) * 2001-12-26 2003-07-09 Isuzu Motors Ltd Silicon nitride composite material and production method therefor
JP2006280164A (en) * 2005-03-30 2006-10-12 Toshiba Ceramics Co Ltd Electrical carbon brush and its manufacturing method
JP2009154219A (en) * 2007-12-25 2009-07-16 Kyocera Corp Cutting tool
CN101848782A (en) * 2008-03-26 2010-09-29 京瓷株式会社 Cutting tool
CN103052738A (en) * 2010-07-09 2013-04-17 第六元素公司 Hard Face Structure, Body Comprising Same And Method For Making Same
JP2014233767A (en) * 2013-05-30 2014-12-15 三菱マテリアル株式会社 Cubic boron nitride sinter body cutting tool excellent in crack resistance
CN104418594A (en) * 2013-08-27 2015-03-18 三菱综合材料株式会社 Cubic boron nitride sintering body cutting tool and manufacturing method of the same
CN106132604A (en) * 2014-03-28 2016-11-16 三菱综合材料株式会社 Cubic boron nitride sintered compact cutting element

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU512633B2 (en) * 1976-12-21 1980-10-23 Sumitomo Electric Industries, Ltd. Sintered tool
US4353714A (en) * 1981-10-26 1982-10-12 General Electric Company Polycrystalline silicon-bonded cubic boron nitride body and method
JPS60138044A (en) * 1983-12-27 1985-07-22 Tatsuro Kuratomi Composite sintered structural body of cubic boron nitride and cermet and production thereof
US6814775B2 (en) * 2002-06-26 2004-11-09 Diamond Innovations, Inc. Sintered compact for use in machining chemically reactive materials
CA2676513C (en) * 2007-01-30 2015-04-07 Sumitomo Electric Hardmetal Corp. Composite sintered body
PL227103B1 (en) * 2012-12-24 2017-10-31 Inst Zaawansowanych Tech Wytwarzania Composite with regular boron nitride and a method for its preparation
JP2015009327A (en) * 2013-06-28 2015-01-19 京セラ株式会社 Cutting insert
JP2018047247A (en) 2017-10-06 2018-03-29 株式会社ソフイア Game machine

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4401443A (en) * 1981-10-26 1983-08-30 General Electric Company Polycrystalline silicon-bonded cubic boron nitride body and method
JPS6183681A (en) * 1984-09-27 1986-04-28 三菱マテリアル株式会社 Manufacture of cubic boron nitride base sintered body for cutting tool
JP2003192446A (en) * 2001-12-26 2003-07-09 Isuzu Motors Ltd Silicon nitride composite material and production method therefor
JP2006280164A (en) * 2005-03-30 2006-10-12 Toshiba Ceramics Co Ltd Electrical carbon brush and its manufacturing method
JP2009154219A (en) * 2007-12-25 2009-07-16 Kyocera Corp Cutting tool
CN101848782A (en) * 2008-03-26 2010-09-29 京瓷株式会社 Cutting tool
CN103052738A (en) * 2010-07-09 2013-04-17 第六元素公司 Hard Face Structure, Body Comprising Same And Method For Making Same
JP2014233767A (en) * 2013-05-30 2014-12-15 三菱マテリアル株式会社 Cubic boron nitride sinter body cutting tool excellent in crack resistance
CN104418594A (en) * 2013-08-27 2015-03-18 三菱综合材料株式会社 Cubic boron nitride sintering body cutting tool and manufacturing method of the same
CN106132604A (en) * 2014-03-28 2016-11-16 三菱综合材料株式会社 Cubic boron nitride sintered compact cutting element
US20170101346A1 (en) * 2014-03-28 2017-04-13 Mitsubishi Materials Corporation Cubic boron nitride sintered body cutting tool

Also Published As

Publication number Publication date
CN111801304B (en) 2022-08-12
US11383305B2 (en) 2022-07-12
JP2019156688A (en) 2019-09-19
US20210001411A1 (en) 2021-01-07
WO2019177094A1 (en) 2019-09-19
JP7015979B2 (en) 2022-02-04
EP3766857A1 (en) 2021-01-20
EP3766857A4 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
KR101252332B1 (en) Composite sintered body
JP6853951B2 (en) cBN sintered body and cutting tool
JP6032409B2 (en) Cutting tools and surface-coated cutting tools using a cubic boron nitride-based ultra-high pressure sintered body as a tool base
JP6198142B2 (en) Cutting tool made of cubic boron nitride super high pressure sintered material
CN111801304B (en) cBN sintered body and cutting tool
JP6843096B2 (en) A tool having a cubic boron nitride sintered body and a cubic boron nitride sintered body
JP6968341B2 (en) Cubic boron nitride-based sintered body with microstructural structure and cutting tools
JP7096977B2 (en) cBN sintered body and cutting tool
JP5804448B2 (en) Cubic boron nitride based ultra-high pressure sintered body, cutting tool using this as a tool base, and surface-coated cutting tool
CN113454047B (en) cBN sintered body and cutting tool
JP2021151943A (en) cBN sintered body and cutting tool
JP7137119B2 (en) cBN sintered body and cutting tool
JP2020131293A (en) Cutting tool made of cubic crystal boron nitride-based sintered body
CN113508101B (en) cBN sintered body and cutting tool
JP2022142894A (en) cBN SINTERED COMPACT
JP7336063B2 (en) Cubic boron nitride sintered body and coated cubic boron nitride sintered body
US20240102135A1 (en) cBN SINTERED COMPACT
JP6933017B2 (en) Cubic boron nitride base sintered body and cutting tool
JP2022147104A (en) cBN SINTERED BODY AND CUTTING TOOL INCLUDING THE SAME
JPH09301773A (en) Silicon nitride sintered compact for tool
JP2019167256A (en) Cubic boron nitride based sintered body and cutting tool comprising the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant