CN111747407A - 一种玉米淀粉活性炭的制备方法 - Google Patents

一种玉米淀粉活性炭的制备方法 Download PDF

Info

Publication number
CN111747407A
CN111747407A CN202010683811.1A CN202010683811A CN111747407A CN 111747407 A CN111747407 A CN 111747407A CN 202010683811 A CN202010683811 A CN 202010683811A CN 111747407 A CN111747407 A CN 111747407A
Authority
CN
China
Prior art keywords
activated carbon
corn starch
starch
sodium hydroxide
temperature plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010683811.1A
Other languages
English (en)
Other versions
CN111747407B (zh
Inventor
黄涛
邓***
苏怡宇
戴宇星
刘一睿
宋东平
金俊勋
刘龙飞
周璐璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changshu Institute of Technology
Original Assignee
Changshu Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changshu Institute of Technology filed Critical Changshu Institute of Technology
Priority to CN202010683811.1A priority Critical patent/CN111747407B/zh
Publication of CN111747407A publication Critical patent/CN111747407A/zh
Application granted granted Critical
Publication of CN111747407B publication Critical patent/CN111747407B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/342Preparation characterised by non-gaseous activating agents
    • C01B32/348Metallic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/105Phosphorus compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种玉米淀粉活性炭的制备方法,包括以下步骤:(1)将玉米淀粉加入氢氧化钠水溶液中,放置,得淀粉浆,将淀粉浆离心分离,固体部分烘干,得碱激淀粉;(2)将碱激淀粉进行低温等离子体照射,得玉米淀粉活性炭。本发明无需高温处理就能制备得到活性炭,解决了传统高温处理带来的有机生物质的分解与有害尾气产生的问题;可以同步实现淀粉碳化及活性炭表面改性,使得制备工艺简单,且改性过程无需额外添加含有巯基和胺基的化学试剂;活性炭吸附性能高效,可去除垃圾渗滤液中96%的氨氮、99%COD、98%总磷和99%铅。

Description

一种玉米淀粉活性炭的制备方法
技术领域
本发明涉及活性炭的制备方法,尤其涉及一种玉米淀粉活性炭的制备方法。
背景技术
活性炭是一种常用的吸附材料,具有发达的孔隙结构,对废液中的有机或无机污染物均具有很强的吸附性,其吸附性能取决于多个因素,包括前驱体的选择、表面改性、作用环境等。随着能源问题与环境问题日益突出,活性炭生产行业在前驱材料选择及制备工艺上积极寻求拓展与创新。
随着传统化石能源枯竭和环境恶化问题日益突出,利用环境友好的生物质制备满足人们生产需求的各类炭材料,不仅可以降低生产成本,实现可持续发展,还可以带动新兴产业的经济发展。不同于煤、石油等传统化石能源,生物质资源作为基础材料具有来源广泛、资源丰富、生长周期短、所制得的高附加值产品具有良好可降解性等突出优点。由此,近些年来,以生物质为原料制备炭材料的研究引起来人们极大的兴趣,生物质炭材料领域得到了极大的发展。同时,由于生物质本身的结构特点和较高的碳元素含量,生物质经物理、化学处理或酶水解之后的剩余物中含有大量的木素,经高温活化后易形成丰富的微孔结构,使其成为炭制备领域最具前景的原料之一。生物质资源因具有资源丰富、可再生、环境友好、附加值高等特点开始受到活性炭制备领域的青睐,
目前,按照制造工艺不同,活性炭的制备方法分为化学法和物理法,不管是化学法还是物理法均需在高温下制备(400~1000℃)且伴随有机生物质的分解与有害尾气的产生。另外为了进一步提高活性炭的吸附性能,需要对活性炭进行表面改性。活性炭表面改性通常是将待改性活性碳与具有特定官能团的化学试剂及辅助试剂混合并在水热环境下进行加载,整个改性过程不仅消耗大量化学试剂且易造成环境污染;同时,活性炭制备与改性过程分开,使得活性炭成品的制备工艺变得复杂,制备周期明显延长。
发明内容
发明目的:针对以上问题,本发明提出一种玉米淀粉活性炭的制备方法,无需高温处理就能制备得到活性炭,还能同步实现淀粉碳化及活性炭表面改性,制备工艺简单,制备周期短,且制备过程无需消耗大量化学试剂,不会造成环境污染。
技术方案:本发明所述的玉米淀粉活性炭的制备方法,包括以下步骤:
(1)将玉米淀粉加入氢氧化钠水溶液中,搅拌均匀后放置,得淀粉浆,将淀粉浆离心分离,固体部分烘干,得碱激淀粉;
(2)将碱激淀粉进行低温等离子体照射,得玉米淀粉活性炭。
其中,所述步骤(1)中氢氧化钠水溶液的浓度为0.5~1.75mol/L,进一步优选为0.5~1.5mol/L;玉米淀粉与氢氧化钠水溶液的固液比为2~12:100,放置时间为0.5~1.5h,固体部分在50~150℃下烘干。
所述步骤(2)中低温等离子体照射的作用电压为10~52kV,进一步优选为10~50kV;作用气氛为硫化氢、氨气和氩气混合气体,所述硫化氢、氨气和氩气的体积比为4~15:2~4:100,进一步优选为4~12:2~4:100;作用时间为1~3h。
水溶液中的氢氧化钠水解成氢氧根和钠离子,氢氧根可缓解淀粉表面氢键作用,强化后期官能团或杂原子在颗粒表面加载效果。在硫化氢、氨气、氩气混合气体气氛中对碱激淀粉进行低温等离子体照射,高压电极端产生的高能电子束使得硫化氢气体和氨气发生电离和解离生成氢自由基、巯基自由基和活性胺基团。低温等离子体照射过程中伴随着大量热的释放,在局部热环境下氢自由基可诱发淀粉颗粒碳化。碳化过程中巯基自由基和活性胺基团加载在淀粉活性炭颗粒表面,从而实现活性炭颗粒表面的巯基改性和胺化。
有益效果:与现有技术相比,本发明的显著优点是:(1)本发明无需高温处理就能制备得到活性炭,解决了传统高温处理带来的有机生物质的分解与有害尾气产生的问题;(2)本发明可以同步实现淀粉碳化及活性炭表面改性,使得制备工艺简单,且改性过程无需额外添加含有巯基和胺基的化学试剂;(3)本发明制备的活性炭吸附性能高效,可去除垃圾渗滤液中96%的氨氮、99%COD、98%总磷和99%铅。
附图说明
图1是本发明的流程图。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明。
生活垃圾渗滤液采样与基本性质说明:试验用垃圾渗滤液取自常熟尚湖镇生活垃圾填埋场。该批次城市生活垃圾渗滤液的COD质量浓度为1267mg/L,总磷的浓度为189mg/L,氨氮的浓度为923mg/L,铅离子的浓度为0.56mg/L。
实施例1
氢氧化钠水溶液浓度对所制备玉米淀粉活性炭吸附性能的影响
玉米淀粉活性炭的制备:如图1所示,分别配制0.25、0.35、0.45、0.5、1、1.5、1.55、1.65、1.75mol/L氢氧化钠水溶液,按照玉米淀粉与氢氧化钠水溶液固液比2:100(g:mL)将玉米淀粉加入氢氧化钠水溶液中,搅拌均匀,放置0.5小时,得淀粉浆,将淀粉浆进行离心分离,倒掉液体部分,将固体部分在50℃条件下烘干,得碱激淀粉;对碱激淀粉进行低温等离子体照射1小时,得到玉米淀粉活性炭,其中低温等离子体照射的作用电压10kV,作用气氛为硫化氢、氨气、氩气混合气体,混合气体中硫化氢、氨气、氩气体积比为4:2:100。
吸附试验:将10g玉米淀粉活性炭投入到1L的生活垃圾渗滤液中,60rmp转速搅拌30min,再以5000rpm转速离心,固液分离。对分离后液体中的不同污染物浓度进行检测并计算去除率,具体检测及计算如下。
COD浓度检测及COD去除率的计算:渗滤液化学需氧量COD浓度按照国家标准《水质化学需氧量的测定重铬酸盐法》(GB 11914-1989)进行测定。COD去除率按照公式(1)计算,其中RCOD为COD去除率,c0和ct分别为生活垃圾渗滤液处置前和处置后的COD浓度(mg/L)。
Figure BDA0002586758700000031
总磷浓度检测及总磷去除率计算:渗滤液总磷浓度按照标准《水质磷酸盐和总磷的测定连续流动-钼酸铵分光光度法》(HJ 670-2013)进行测定。总磷去除率按照公式(2)计算,其中RTP为总磷去除率,cTP0和cTPt分别为生活垃圾渗滤液处置前和处置后的总磷浓度(mg/L)。
Figure BDA0002586758700000032
氨氮浓度检测及氨氮去除率计算:渗滤液氨氮的浓度按照《水质氨氮的测定水杨酸分光光度法》(HJ536-2009)进行测定。氨氮去除率按照公式(3)计算,其中RN为氨氮去除率,cN0和cNt为分别为生活垃圾渗滤液处置前和处置后的氨氮浓度(mg/L)。
Figure BDA0002586758700000033
铅离子浓度检测及去除率计算:渗滤液中铅离子浓度按照《水质32种元素的测定电感耦合等离子体发射光谱法》(HJ 776-2015)进行测定。铅离子去除率按照公式(4)计算,其中RPb为铅离子去除率,cPb0和CPbt分别为生活垃圾渗滤液处置前和处置后的铅离子浓度(mg/L)。
Figure BDA0002586758700000034
COD、总磷、氨氮、铅离子去除率结果见表1。
表1氢氧化钠水溶液浓度对所制备玉米淀粉活性炭吸附性能的影响
Figure BDA0002586758700000041
由表1可看出,当氢氧化钠水溶液浓度小于0.5mol/L(如表1中,氢氧化钠水溶液浓度=0.45、0.35、0.25mol/L时以及表1中未列举的更低值),氢氧化钠较少,淀粉表面氢键作用缓解效果较差,官能团或杂原子在颗粒表面加载效果不佳,导致渗滤液污染物COD、总磷、氨氮、铅离子去除率均随着氢氧化钠水溶液浓度减少而显著降低。当氢氧化钠水溶液浓度等于0.5~1.5mol/L(如表1中,氢氧化钠水溶液浓度=0.5、1、1.5mol/L时),氢氧化钠适量,氢氧根可缓解淀粉表面氢键作用,强化后期官能团或杂原子在颗粒表面加载效果,最终渗滤液污染物COD去除率均大于91%、总磷去除率均大于87%、氨氮去除率均大于86%、铅离子去除率均大于92%。当氢氧化钠水溶液浓度大于1.5mol/L(如表1中,氢氧化钠水溶液浓度=1.55、1.65、1.75mol/L时以及表1中未列举的更高值),氢氧化钠过量,渗滤液污染物COD、总磷、氨氮、铅离子去除率随着氢氧化钠水溶液浓度进一步增加变化均不显著。综合而言,结合效益与成本,当氢氧化钠水溶液浓度等于0.5~1.5mol/L时,最有利于提高所制备玉米淀粉活性炭吸附性能。
实施例2
低温等离子体照射的作用电压对所制备玉米淀粉活性炭吸附性能的影响
玉米淀粉活性炭的制备:配制1.0mol/L氢氧化钠水溶液,按照玉米淀粉与氢氧化钠水溶液固液比7:100(g:mL)将玉米淀粉加入氢氧化钠水溶液中,混合,搅拌均匀,放置1小时,得淀粉浆,将淀粉浆进行离心分离,倒掉液体部分,将固体部分在100℃条件下烘干,得碱激淀粉;对碱激淀粉进行低温等离子体照射2小时,得到玉米淀粉活性炭,其中低温等离子体照射的作用电压分别为5kV、7kV、9kV、10kV、30kV、50kV、52kV、55kV、60kV,作用气氛为硫化氢、氨气、氩气混合气体,混合气体中硫化氢、氨气、氩气体积比为8:3:100。
吸附试验、COD浓度检测及COD去除率的计算、总磷浓度检测及总磷去除率计算、氨氮浓度检测及氨氮去除率计算、铅离子浓度检测及去除率计算均同实施例1。试验结果见表2。
表2低温等离子体照射的作用电压对所制备玉米淀粉活性炭吸附性能的影响
Figure BDA0002586758700000051
由表2可看出,当低温等离子体照射的作用电压小于10kV(如表2中,作用电压=9kV、7kV、5kV时以及表2中未列举的更低值),作用电压较小,高压电极端产生的高能电子束能量密度较低,硫化氢气体和氨气电离和解离不完全,活性炭颗粒表面改性效果较差,导致渗滤液污染物COD、总磷、氨氮、铅离子去除率均随着作用电压减少而显著降低。当作用电压等于10~50kV(如表2中,作用电压=10kV、30kV、50kV时),高压电极端产生的高能电子束使得硫化氢气体和氨气发生电离和解离生成氢自由、巯基自由基和活性胺基团,碳化过程中巯基自由基和活性胺基团加载在淀粉活性炭颗粒表面,从而实现活性炭颗粒表面的巯基改性和胺化,最终渗滤液污染物COD去除率均大于94%、总磷去除率均大于91%、氨氮去除率均大于91%、铅离子去除率均大于94%。当作用电压大于50kV(如表2中,作用电压=52kV、55kV、60kV时以及表2中未列举的更高值),低温等离子体作用电压过大,放电通道对活性炭颗粒表面冲击力过大,使得巯基自由基和活性胺基团在淀粉活性炭颗粒表面的加载效果变差,导致渗滤液污染物COD、总磷、氨氮、铅离子去除率随着低温等离子体作用电压进一步增加而显著降低。综合而言,结合效益与成本,当低温等离子体作用电压等于10~50kV时,最有利于提高所制备玉米淀粉活性炭吸附性能。
实施例3
混合气体中硫化氢、氨气、氩气体积比对所制备玉米淀粉活性炭吸附性能的影响
玉米淀粉活性炭的制备:配制1.5mol/L氢氧化钠水溶液,按照玉米淀粉与氢氧化钠水溶液固体液体比12:100g(g:mL)将玉米淀粉加入氢氧化钠水溶液中,混合,搅拌均匀,放置1.5小时,得淀粉浆,将淀粉浆进行离心分离,倒掉液体部分,将固体部分在150℃条件下烘干,得碱激淀粉;对碱激淀粉进行低温等离子体照射3小时,得到玉米淀粉活性炭,其中低温等离子体照射的作用电压为50kV,作用气氛为硫化氢、氨气、氩气混合气体,混合气体中硫化氢、氨气、氩气体积比分别为1:2:100、2:2:100、3:2:100、4:0.5:100、4:1:100、4:1.5:100、4:2:100、4:3:100、4:4:100、8:2:100、8:3:100、8:4:100、12:2:100、12:3:100、12:4:100、12:4.5:100、12:5:100、12:6:100、13:4:100、14:4:100、15:4:100。
吸附试验、COD浓度检测及COD去除率的计算、总磷浓度检测及总磷去除率计算、氨氮浓度检测及氨氮去除率计算、铅离子浓度检测及去除率计算均同实施例1,试验结果见表3。
表3混合气体中硫化氢、氨气、氩气体积比对所制备玉米淀粉活性炭吸附性能的影响
Figure BDA0002586758700000071
由表3可看出,当混合气体中硫化氢、氨气、氩气体积比小于4:2:100(如表3中,低温等离子体作用电压=4:1.5:100、4:1:100、4:0.5:100、3:2:100、2:2:100、1:2:100时以及表3中未列举的更低比值),硫化氢和氨气较少,低温等离子体照射过程中生成的巯基自由基和活性胺基团较少,活性炭颗粒表面的巯基改性和胺化不充分,导致渗滤液污染物COD、总磷、氨氮、铅离子去除率均随着混合气体中硫化氢、氨气、氩气体积比减少而显著降低。当混合气体中硫化氢、氨气、氩气体积比等于4~12:2~4:100(如表3中,低温等离子体作用电压=4:2:100、4:3:100、4:4:100、8:2:100、8:3:100、8:4:100、12:2:100、12:3:100、12:4:100时),在硫化氢、氨气、氩气混合气体气氛中对碱激淀粉进行低温等离子体照射,高压电极端产生的高能电子束使得硫化氢气体和氨气发生电离和解离生成氢自由、巯基自由基和活性胺基团,碳化过程中巯基自由基和活性胺基团加载在淀粉活性炭颗粒表面,从而实现活性炭颗粒表面的巯基改性和胺化,最终渗滤液污染物COD去除率均大于95%、总磷去除率均大于93%、氨氮去除率均大于91%、铅离子去除率均大于94%。当混合气体中硫化氢、氨气、氩气体积比大于12:4:100(如表3中,低温等离子体作用电压=12:4.5:100、12:5:100、12:6:100、13:4:100、14:4:100、15:4:100时以及表3中未列举的更高比值),随着氨气比例的增加,过量的氨气与硫化氢反应生成硫化铵,硫化铵生成量增加从而使得活性炭颗粒表面的巯基加载量减少,导致滤液污染物COD、总磷、氨氮、铅离子去除率随着混合气体中氨气比例的进一步增加而显著降低。随着硫化氢气体比例的增加,渗滤液污染物COD、总磷、氨氮、铅离子去除率变化均不显著。因此,综合而言,结合效益与成本,当混合气体中硫化氢、氨气、氩气体积比等于4~12:2~4:100时,最有利于提高所制备玉米淀粉活性炭吸附性能。
不同工艺条件下制备的玉米淀粉活性炭吸附性能对比
实施例5(本发明)
配制1.5mol/L氢氧化钠水溶液,按照玉米淀粉与氢氧化钠水溶液固体液体比12:100(g:mL)将玉米淀粉加入氢氧化钠水溶液中,混合,搅拌均匀,放置1.5小时,得淀粉浆,将淀粉浆进行离心分离,倒掉液体部分,将固体部分在150℃条件下烘干,得碱激淀粉;对碱激淀粉进行低温等离子体照射3小时,得到玉米淀粉活性炭,其中低温等离子体照射的作用电压为50kV,作用气氛为硫化氢、氨气、氩气混合气体,混合气体中硫化氢、氨气、氩气体积比为12:4:100。
对比例1(无氢氧化钠水溶液)
对淀粉进行低温等离子体照射3小时,得玉米淀粉活性炭,其中低温等离子体照射作用电压为50kV,低温等离子体曝气气氛为硫化氢、氨气、氩气混合气体,混合气体中硫化氢、氨气、氩气体积比为12:4:100。
对比例2(作用气氛为氩气)
配制1.5mol/L氢氧化钠水溶液,按照玉米淀粉与氢氧化钠水溶液固体液体比12:100(g:mL)将玉米淀粉加入氢氧化钠水溶液中,混合,搅拌均匀,放置1.5小时,得淀粉浆,将淀粉浆进行离心分离,倒掉液体部分,将固体部分在150℃条件下烘干,得碱激淀粉;对碱激淀粉进行低温等离子体照射3小时,得到玉米淀粉活性炭,其中低温等离子体照射的作用电压为50kV,作用气氛为氩气。
对比例3(作用气氛为硫化氢和氩气混合气体)
配制1.5mol/L氢氧化钠水溶液,按照玉米淀粉与氢氧化钠水溶液固体液体比12:100(g:mL)将玉米淀粉加入氢氧化钠水溶液中,混合,搅拌均匀,放置1.5小时,得淀粉浆,将淀粉浆进行离心分离,倒掉液体部分,将固体部分在150℃条件下烘干,得碱激淀粉;对碱激淀粉进行低温等离子体照射3小时,得到玉米淀粉活性炭,其中低温等离子体照射的作用电压为50kV,作用气氛为硫化氢和氩气混合气体,混合气体中硫化氢和氩气体积比为12:100。
对比例4(作用气氛为氨气和氩气混合气体)
配制1.5mol/L氢氧化钠水溶液,按照玉米淀粉与氢氧化钠水溶液固体液体比12:100(g:mL)将玉米淀粉加入氢氧化钠水溶液中,混合,搅拌均匀,放置1.5小时,得淀粉浆,将淀粉浆进行离心分离,倒掉液体部分,将固体部分在150℃条件下烘干,得碱激淀粉;对碱激淀粉进行低温等离子体照射3小时,得到玉米淀粉活性炭,其中低温等离子体照射的作用电压为50kV,作用气氛为氨气和氩气混合气体,混合气体中氨气和氩气体积比为4:100。
吸附试验、COD浓度检测及COD去除率的计算、总磷浓度检测及总磷去除率计算、氨氮浓度检测及氨氮去除率计算、铅离子浓度检测及去除率计算均同实施例1,试验结果见表4。
表4不同工艺条件下制备的玉米淀粉活性炭吸附性能对比
吸附剂 R<sub>COD</sub> R<sub>TP</sub> R<sub>N</sub> R<sub>Pb</sub>
实施例5 99.52% 98.73% 96.32% 99.27%
对比例1 33.32% 30.56% 25.74% 32.08%
对比例2 39.24% 35.74% 32.83% 37.93%
对比例3 51.06% 48.43% 46.39% 50.27%
对比例4 43.43% 41.95% 38.02% 44.93%
由表4可看出,采用本发明方法制备的玉米淀粉活性炭对渗滤液污染物COD、总磷、氨氮、铅离子去除率均远大于对比例1、2、3和4且高于对比例3和对比例4对渗滤液任一类污染物去除率之和。另外,对比例2、3和4对渗滤液污染物COD、总磷、氨氮、铅离子去除率均大于对比例1,这是由于水溶液中的氢氧化钠水解成氢氧根和钠离子,氢氧根可缓解淀粉表面氢键作用,强化后期官能团或杂原子在颗粒表面加载效果,由于对比例1不含氢氧化钠,因此碳化过程中巯基自由基和活性胺基团加载在淀粉活性炭颗粒表面的效果较差,从而导致滤液中的污染物去除率很低。对比例3和4对渗滤液污染物COD、总磷、氨氮、铅离子去除率均大于对比例2,这是因为对比例2低温等离子体照射的作用气氛仅为氩气,不含硫化氢或氩气,因此碳化过程中无法实现对活性炭颗粒表面的巯基改性和胺化,即未对制备得到的活性炭进行改性处理,导致渗滤液中的污染物去除率有限。综上,氢氧化钠溶液的加入以及低温等离子体照射中采用硫化氢、氨气、氩气混合气体是本发明制备工艺的关键。

Claims (9)

1.一种玉米淀粉活性炭的制备方法,其特征在于,包括以下步骤:
(1)将玉米淀粉加入氢氧化钠水溶液中,放置,得淀粉浆,将淀粉浆离心分离,固体部分烘干,得碱激淀粉;
(2)将碱激淀粉进行低温等离子体照射,得玉米淀粉活性炭。
2.根据权利要求1所述的玉米淀粉活性炭的制备方法,其特征在于,所述步骤(1)中氢氧化钠水溶液的浓度为0.5~1.75mol/L。
3.根据权利要求2所述的玉米淀粉活性炭的制备方法,其特征在于,所述步骤(1)中氢氧化钠水溶液的浓度为0.5~1.5mol/L。
4.根据权利要求1所述的玉米淀粉活性炭的制备方法,其特征在于,所述步骤(2)中低温等离子体照射的作用电压为10~52kV。
5.根据权利要求4所述的玉米淀粉活性炭的制备方法,其特征在于,所述步骤(2)中低温等离子体照射的作用电压为10~50kV。
6.根据权利要求1所述的玉米淀粉活性炭的制备方法,其特征在于,所述步骤(2)中低温等离子体照射的作用气氛为硫化氢、氨气和氩气混合气体,所述硫化氢、氨气和氩气的体积比为4~15:2~4:100。
7.根据权利要求6所述的玉米淀粉活性炭的制备方法,其特征在于,所述硫化氢、氨气和氩气的体积比为4~12:2~4:100。
8.根据权利要求1所述的玉米淀粉活性炭的制备方法,其特征在于,所述步骤(1)中玉米淀粉与氢氧化钠水溶液的固液比为2~12:100,放置时间为0.5~1.5h,固体部分在50~150℃下烘干。
9.根据权利要求1所述的玉米淀粉活性炭的制备方法,其特征在于,所述步骤(2)中低温等离子体照射的作用时间为1~3h。
CN202010683811.1A 2020-07-16 2020-07-16 一种玉米淀粉活性炭的制备方法 Active CN111747407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010683811.1A CN111747407B (zh) 2020-07-16 2020-07-16 一种玉米淀粉活性炭的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010683811.1A CN111747407B (zh) 2020-07-16 2020-07-16 一种玉米淀粉活性炭的制备方法

Publications (2)

Publication Number Publication Date
CN111747407A true CN111747407A (zh) 2020-10-09
CN111747407B CN111747407B (zh) 2022-03-29

Family

ID=72711005

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010683811.1A Active CN111747407B (zh) 2020-07-16 2020-07-16 一种玉米淀粉活性炭的制备方法

Country Status (1)

Country Link
CN (1) CN111747407B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112337463A (zh) * 2020-10-22 2021-02-09 常熟理工学院 一种利用无纺布废布制备金载碳布的方法
CN112495337A (zh) * 2020-11-11 2021-03-16 常熟理工学院 利用含油污泥制备陶粒滤料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983053A (en) * 1973-07-05 1976-09-28 The University Of Strathclyde Coated adsorbent materials
CN101723364A (zh) * 2010-01-22 2010-06-09 浙江大学 利用等离子体裂解煤固体产物制备活性炭的方法
CN105060293A (zh) * 2015-07-17 2015-11-18 安徽中烟工业有限责任公司 一种基于低温等离子体改性制取烟草活性炭的方法
CN105593167A (zh) * 2013-07-26 2016-05-18 康宁股份有限公司 使用rf和dc等离子体的碳的化学活化
CN107034241A (zh) * 2017-05-17 2017-08-11 华中农业大学 一种甘蔗渣糖化利用的预处理工艺
CN109534339A (zh) * 2018-11-21 2019-03-29 常熟理工学院 一种松鳞基活性炭及其纳米复合材料的制备方法
CN111285372A (zh) * 2020-02-19 2020-06-16 中国铝业股份有限公司 一种超级电容器用活性炭的改性方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3983053A (en) * 1973-07-05 1976-09-28 The University Of Strathclyde Coated adsorbent materials
CN101723364A (zh) * 2010-01-22 2010-06-09 浙江大学 利用等离子体裂解煤固体产物制备活性炭的方法
CN105593167A (zh) * 2013-07-26 2016-05-18 康宁股份有限公司 使用rf和dc等离子体的碳的化学活化
CN105060293A (zh) * 2015-07-17 2015-11-18 安徽中烟工业有限责任公司 一种基于低温等离子体改性制取烟草活性炭的方法
CN107034241A (zh) * 2017-05-17 2017-08-11 华中农业大学 一种甘蔗渣糖化利用的预处理工艺
CN109534339A (zh) * 2018-11-21 2019-03-29 常熟理工学院 一种松鳞基活性炭及其纳米复合材料的制备方法
CN111285372A (zh) * 2020-02-19 2020-06-16 中国铝业股份有限公司 一种超级电容器用活性炭的改性方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙庆杰: "《米粉加工原理与技术》", 31 January 2006, 中国轻工业出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112337463A (zh) * 2020-10-22 2021-02-09 常熟理工学院 一种利用无纺布废布制备金载碳布的方法
CN112495337A (zh) * 2020-11-11 2021-03-16 常熟理工学院 利用含油污泥制备陶粒滤料的方法

Also Published As

Publication number Publication date
CN111747407B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
US20220126267A1 (en) Co-pyrolyzed sludge biochar modified by lanthanum carbonate, preparation method and use thereof
CN111747407B (zh) 一种玉米淀粉活性炭的制备方法
WO2015106720A1 (zh) 以生物质电厂灰为原料制备超级活性炭的方法
CN109809403B (zh) 一种具有高吸附性能的沼渣基活性炭的制备方法和应用
CN104069810B (zh) 一种利用造纸污泥与松木共热解制备活性生物炭的方法
CN102745683B (zh) 一种生物氧化石墨及其制备方法
CN113307250A (zh) 有序木质素碳-碳纳米管复合材料的制备方法及其应用
CN114213140B (zh) 用于磷吸附的煤矸石基陶粒及其制备方法和水处理设备
CN100509141C (zh) 一种药剂活化法制备活性炭基材料so2吸附剂的方法
CN109851002A (zh) 一种实现铁泥资源化的微电解填料及其制备方法和用途
CN107349920A (zh) 一种改性石灰石粉的制备方法
CN115092926B (zh) 一种基于NaOH-HCl常压水热法利用煤气化细灰制备活性炭的方法
CN108584905B (zh) 一种氮-磷共掺杂碳材料及其制备方法和应用
CN114522532B (zh) 一种脱硫剂及其制备方法
CN112691640B (zh) 鸡腿菇菌渣多孔碳吸附剂及其制备方法和应用
CN115449815A (zh) 一种用于电催化水分解制氢的稀土铕和氧空位缺陷共掺杂的四氧化三钴催化剂的制备方法
CN112023967A (zh) 一种硒、氮共掺杂生物炭催化材料及其制备方法和应用
CN112263993A (zh) 一种用于水中含芳环化合物吸附的硼磷共掺杂活性炭及其制备方法
CN115672306B (zh) 一种脱硫脱硝用改性活性炭及其制备工艺
CN111408265A (zh) 一种具有烟气脱硫脱硝性能的冶金粉尘改性活性炭及其制备方法
CN115849658B (zh) 一种水处理污泥循环利用方法及碳基多孔材料的应用
CN115504467B (zh) 一种基于含氯有机物和碱溶液预处理多孔碳材料的制备方法和应用
CN116062886B (zh) 一种污染河道水深度脱氮填料及其制备方法
CN112844324B (zh) 木质素/锰氧化物复合吸附材料及其制备方法和应用
CN109999793B (zh) 一种TiO2/WO4光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant