CN111682086A - 一种自由运行模式下的负反馈雪崩光电二极管 - Google Patents

一种自由运行模式下的负反馈雪崩光电二极管 Download PDF

Info

Publication number
CN111682086A
CN111682086A CN202010728040.3A CN202010728040A CN111682086A CN 111682086 A CN111682086 A CN 111682086A CN 202010728040 A CN202010728040 A CN 202010728040A CN 111682086 A CN111682086 A CN 111682086A
Authority
CN
China
Prior art keywords
quenching
running mode
free running
inp
negative feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010728040.3A
Other languages
English (en)
Inventor
史衍丽
杨雪艳
朱泓遐
刘辰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan University YNU
Original Assignee
Yunnan University YNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan University YNU filed Critical Yunnan University YNU
Priority to CN202010728040.3A priority Critical patent/CN111682086A/zh
Publication of CN111682086A publication Critical patent/CN111682086A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种自由运行模式下的负反馈雪崩光电二极管,包括外延结构,所述外延结构包括InP衬底,InGaAs吸收层,InGaAsP缓冲层,倍增区,势垒区以及外延集成在器件表面的淬灭薄膜电阻。本发明的外延结构无需使用外部淬灭电路在保证器件性能的同时,加入内部势垒区对雪崩电流进行淬灭,同时在外部外延集成的淬灭薄膜电阻进行二次淬灭,两次淬灭既保证了雪崩电流淬灭完全又抑制了增益的波动性,同时也简化了器件的外部电路,可用于自由运行模式。

Description

一种自由运行模式下的负反馈雪崩光电二极管
技术领域
发明涉及光电探测器领域,具体涉及一种自由运行模式下的负反馈雪崩光电二极管。
背景技术
单光子探测器是目前量子保密通信应用中的关键器件。具有高性价比的InGaAs/InP单光子雪崩光电二极管(Single Photon Avalanche Photodiodes:SPAD)是应用广泛的主流单光子探测器。基于其工作模式的不同,可以基本划分为门控模式和自由运行模式两类。其中,门控模式的SPAD需要门脉冲淬灭电路来防止热失控导致的雪崩击穿,使器件的偏置电压只有在单光子到来时处于雪崩电压之上,该模式要求光子到达时间已知。而应用广泛的自由运行模式中光子到达时间是未知的,需要SPAD时刻处于准“准备探测状态”。引入负反馈机制,可以在无外部淬灭电路的情况下实现器件的自淬灭和自恢复,具有驱动电路简单、响应时间快,能应用于自由运行模式等优点。
目前InGaAs/InP单光子雪崩光电二极管主要采用(Separate absorption,grading,charge and multiplication,简写为SAGCM:分离吸收、渐变、电荷、倍增型)SAGCM结构。在此结构中可以进行自淬灭或自恢复的结构有,以及在器件内部引入异质结势垒进行器件的自淬灭和自恢复两种。NFAD结构的器件过剩噪声低无需外部淬灭电路,但存在持续电流、恢复时间的问题;而自淬灭自恢复器件增益稳定并降低了过剩噪声,但器件异质结的势垒区的层厚度和势垒高度设计是关键,它们决定了自淬灭时间和器件增益,势垒阻挡层越高,雪崩淬灭越快,但增益越低,反之亦然,两者之间存在矛盾。因此新型负反馈雪崩二极管,通过一个小的异质结势垒高度,完成第一次淬灭,使器件处于较高且稳定的雪崩增益状态下;再在器件表面集成中等阻值的薄膜电阻完成第二次淬灭,采用两次淬灭的方式实现器件的彻底自淬灭。通过将异质结势垒和外部集成淬灭电阻相结合,合理分配两次淬灭在总淬灭中的比例,可以降低器件自淬灭对异质结势垒高度的需求,既维持了高稳定增益还改善了持续电流,进而提高器件的探测效率。
发明内容
针对上述技术问题,本发明的目的在于提供一种无需外部淬灭电路,增益可控的自由运行模式的雪崩光电二极管。
为实现上述目的,本发明提供了一种自由运行模式下的负反馈雪崩光电二极管,包括外延结构;所述外延结构包括InP衬底,InGaAs吸收层,InGaAsP缓冲层,倍增区,势垒区以及外延集成在器件表面的淬灭薄膜电阻。
所述势垒区有三层,分别为InGaAlAs材料层、InAlAs材料层和InP材料层。所述的势垒区每层厚度在0.1~0.5μm范围。
所述倍增区为InP材料,从下到上依次为n-InP,i-InP和P-InP共三层。所述倍增区每层厚度在0.1~3.5μm范围。
所述的器件表面外延集成的淬灭薄膜电阻为外延集成的NiCr的合金薄膜电阻,厚度为40nm~1μm。
本发明具有的有益效果:
(1)相比现有的传统的SPAD器件,本发明无需外部复杂的淬灭电路,可以简化SPAD电路***、有效控制增益降低器件过剩噪声,且可以用于自由运行模式;
(2)本发明的外延结构具有直流偏置、增益稳定、低噪声的特性,重新优化了各层的厚度与掺杂,使器件特性达到自由运行模式的工作要求;
(3)本发明的外延结构优化了倍增区的设计,在保证器件工作特性的同时,加入势垒区,使得雪崩后的载流子在价带偏移造成的势垒处迅速堆积空穴以形成电场屏蔽,导致倍增区中的电场减小以达到自淬灭;在雪崩脉冲信号被自淬灭之后,InAlAs和InP界面处的累积空穴通过热激发和隧道效应逃离能垒,并最终离开器件,实现自恢复;
(4)本发明的外延结构还在器件表面外延集成了淬灭薄膜电阻,在加入势垒区实现控制器件雪崩增益的基础上,加入淬灭薄膜电阻使得淬灭雪崩电流更快速、更彻底,从而减小后脉冲效应,达到更好的自淬灭自恢复效果。
附图说明
图1为本发明的器件结构简图;
图2为实施例的器件结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
根据本发明的基本构思,提供一种自由运行模式下的负反馈雪崩光电二极管。
如图1所示,自由运行模式下的负反馈雪崩光电二极管,包括外延结构;所述外延结构包括InP衬底,InGaAs吸收层4和InGaAsP缓冲层,倍增区3,势垒区2以及外延集成在器件表面的淬灭薄膜电阻1。
针对自由运行模式SPAD的高探测效率的要求,在外延结构设计中加入异质结势垒和集成淬灭薄膜电阻片负反馈结构,通过异质结势垒和淬灭电阻同时进行雪崩电荷流淬灭,使得器件在合适的势垒高度和薄膜电阻值下雪崩淬灭更快,达到高稳定增益,从而实现器件的高探测效率。
本实施例的具体结构,如图2所示,自下到上依次包括InP衬底5,InGaAs吸收层4和InGaAsP缓冲层,倍增区3,势垒区2,淬灭薄膜电阻1。
在一些实施实例中,通过调节异质结势垒高度,控制异质结对雪崩后的载流子进行合适的阻挡;势垒的实现可以通过倍增区和势垒区之间形成适当的导带或价带偏移,以形成电子或空穴的能量屏障。沿着倍增载流子输运的方向,当势垒区位于倍增区之后,势垒区主要是阻挡雪崩载流子;当势垒区位于吸收层和倍增区之前,势垒区主要阻挡的是不期望参加雪崩倍增的载流子。例如:用InP做倍增区材料时,利用的是空穴倍增,当势垒区处于InGaAs吸收层和倍增区时,势垒区形成电子势垒阻挡电子;而势垒区位于倍增区之上,则形成空穴势垒阻挡空穴。
在一些实施实例中,倍增区3材料为n-InP,i-InP和P-InP,势垒区2位于倍增区之上,势垒区2材料为InGaAlAs和InAlAs两层,且InGaAlAs和InAlAs材料均为本征掺杂,势垒区用于阻挡空穴。
在一些实施实例中,势垒区2也可以放在吸收层4与倍增区3之间;如,器件从InGaAs吸收层往上开始为,过渡层InGaAsP,势垒区InAlAs,过渡层InGaAsP,倍增区InP,势垒区用于阻挡电子。
在一些实施实例中,倍增区3材料也可采用InAlAs作为电子倍增。倍增区3材料为n-InAlAs,i-InAlAs和P-InAlAs。势垒区2材料为InGaAsP,InAlAs,InGaAs,均采用本征掺杂。
在一些实施实例中,采用InAlAs作为倍增区3材料的电子倍增器件中,势垒区2材料还可采用均为本征掺杂的InGaAsP,InAlAs,InGaAsP。
在一些实施实例中,采用InAlAs作为倍增区3材料的电子倍增器件中,势垒区2材料还可采用i-InP,i-InAlAs,i-InP。
在一些实施实例中,不仅需要设计合适的势垒高度,还需选择合适的淬灭电阻阻值。淬灭薄膜电阻1将选择Ni-Cr薄膜合金材料,薄膜电阻阻值大小为50~500KΩ。
以下通过实施例对本发明进行实例说明,但本发明的保护范围不限于此。
实施例1
(1)器件层结构构建:InP衬底5为衬底n-InP,掺杂浓度为2×1018cm-3,层厚0.4μm。
(2)吸收层,材料为本征掺杂的InGaAs材料,层厚度为2.0μm。
(3)缓冲层,材料为n-InGaAsP,掺杂浓度为1×1016cm-3,层厚为0.09μm,共三层。
(4)倍增区3,材料为n-InP,i-InP和P-InP,共三层,层厚分别为为0.2μm、0.6μm、1μm,n-InP和P-InP掺杂浓度分别为1.2×1017cm-3和1×1018cm-3
(5)势垒区2共两层,材料分别为本征掺杂的InGaAlAs、InAlAs和InP,层厚分别为0.2μm,0.3μm,0.2μm。
(6)淬灭薄膜电阻1,电阻片材料采用Ni-Cr薄膜,阻值大小为50KΩ。
以上内容仅为本发明的较佳具体模拟实施例,不能以此来限定本发明的权利范围,因此依本发明权利要求所做的等同变化,仍属本发明所涵盖的范围。

Claims (6)

1.一种自由运行模式下的负反馈雪崩光电二极管,包括外延结构,其特征在于,所述外延结构包括InP衬底,InGaAs吸收层,InGaAsP缓冲层,倍增区,势垒区以及外延集成在器件表面的淬灭薄膜电阻。
2.根据权利要求1所述的自由运行模式下的负反馈雪崩光电二极管,其特征在于,所述倍增区为InP材料,从衬底开始从下到上依次为n-InP,i-InP和P-InP共三层。
3.根据权利要求2所述的自由运行模式下的负反馈雪崩光电二极管,其特征在于,所述倍增区每层厚度在0.1~3.5μm范围。
4.根据权利要求1所述的自由运行模式下的负反馈雪崩光电二极管,其特征在于,所述的势垒区有两层,分别为InGaAlAs材料层、InAlAs材料层和InP材料层。
5.根据权利要求4所述的自由运行模式下的负反馈雪崩光电二极管,其特征在于,所述的势垒区每层厚度在0.1~0.5μm范围。
6.根据权利要求1所述的自由运行模式下的负反馈雪崩光电二极管,其特征在于,所述的器件表面外延集成的淬灭薄膜电阻外延集成的NiCr的合金薄膜电阻,厚度为40nm~1μm。
CN202010728040.3A 2020-07-23 2020-07-23 一种自由运行模式下的负反馈雪崩光电二极管 Pending CN111682086A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010728040.3A CN111682086A (zh) 2020-07-23 2020-07-23 一种自由运行模式下的负反馈雪崩光电二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010728040.3A CN111682086A (zh) 2020-07-23 2020-07-23 一种自由运行模式下的负反馈雪崩光电二极管

Publications (1)

Publication Number Publication Date
CN111682086A true CN111682086A (zh) 2020-09-18

Family

ID=72458004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010728040.3A Pending CN111682086A (zh) 2020-07-23 2020-07-23 一种自由运行模式下的负反馈雪崩光电二极管

Country Status (1)

Country Link
CN (1) CN111682086A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091923A (zh) * 2021-04-09 2021-07-09 云南大学 双脉冲叠加雪崩信号提取方法
CN114388632A (zh) * 2022-01-12 2022-04-22 中国电子科技集团公司第四十四研究所 基于浮置环的多像素自由运行单光子探测器及制备方法
CN117673187A (zh) * 2024-02-01 2024-03-08 云南大学 高温自淬灭单光子探测器及制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070303A (ja) * 1996-08-26 1998-03-10 Fuji Xerox Co Ltd 半導体受光素子
WO1998028799A1 (en) * 1996-12-20 1998-07-02 Board Of Regents, The University Of Texas System Wide wavelength range high efficiency avalanche light detector with negative feedback
JPH11121785A (ja) * 1997-10-16 1999-04-30 Toshiba Electronic Engineering Corp 化合物半導体素子およびその製造方法
US20080283953A1 (en) * 2007-05-17 2008-11-20 Princeton Lightwave, Inc. Negative Feedback Avalanche Diode
WO2011118571A1 (ja) * 2010-03-25 2011-09-29 トヨタ自動車株式会社 光検出器
US20120248562A1 (en) * 2009-10-16 2012-10-04 First Sensor AG Semiconductor Photodetector and Radiation Detector System
US20140117484A1 (en) * 2012-10-29 2014-05-01 Hamamatsu Photonics K.K. Photodiode array
CN105830232A (zh) * 2013-12-19 2016-08-03 浜松光子学株式会社 光检测器
CN106098836A (zh) * 2016-08-19 2016-11-09 武汉华工正源光子技术有限公司 通讯用雪崩光电二极管及其制备方法
CN106298816A (zh) * 2016-10-11 2017-01-04 天津大学 集成淬灭电阻的单光子雪崩二极管及其制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070303A (ja) * 1996-08-26 1998-03-10 Fuji Xerox Co Ltd 半導体受光素子
WO1998028799A1 (en) * 1996-12-20 1998-07-02 Board Of Regents, The University Of Texas System Wide wavelength range high efficiency avalanche light detector with negative feedback
JPH11121785A (ja) * 1997-10-16 1999-04-30 Toshiba Electronic Engineering Corp 化合物半導体素子およびその製造方法
US20080283953A1 (en) * 2007-05-17 2008-11-20 Princeton Lightwave, Inc. Negative Feedback Avalanche Diode
US20120248562A1 (en) * 2009-10-16 2012-10-04 First Sensor AG Semiconductor Photodetector and Radiation Detector System
WO2011118571A1 (ja) * 2010-03-25 2011-09-29 トヨタ自動車株式会社 光検出器
US20140117484A1 (en) * 2012-10-29 2014-05-01 Hamamatsu Photonics K.K. Photodiode array
CN105830232A (zh) * 2013-12-19 2016-08-03 浜松光子学株式会社 光检测器
CN106098836A (zh) * 2016-08-19 2016-11-09 武汉华工正源光子技术有限公司 通讯用雪崩光电二极管及其制备方法
CN106298816A (zh) * 2016-10-11 2017-01-04 天津大学 集成淬灭电阻的单光子雪崩二极管及其制造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ITZLER, MA 等: "InP-based Negative Feedback Avalanche Diodes", 《PROC. SPIE 7222, QUANTUM SENSING AND NANOPHOTONIC DEVICES VI》 *
K ZHAO: "III-V Single Photon Avalanche Detector with built-in negative feedback for NIR photon detection", 《UC SAN DIEGO ELECTRONIC THESES AND DISSERTATIONS》 *
KAI ZHAO 等: "InGaAs single photon avalanche detector with ultralow excess noise", 《APPLIED PHYSICS LETTERS》 *
KAI ZHAO 等: "Self-quenching and self-recovering InGaAs∕InAlAs single photon avalanche detector", 《APPLIED PHYSICS LETTERS》 *
XUDONG JIANG 等: "Shortwave infrared negative feedback avalanche diodes and solid-state photomultipliers", 《OPTICAL ENGINEERING》 *
史衍丽 等: "InP基自由运行模式单光子APD", 《红外与激光工程》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091923A (zh) * 2021-04-09 2021-07-09 云南大学 双脉冲叠加雪崩信号提取方法
CN113091923B (zh) * 2021-04-09 2021-12-24 云南大学 双脉冲叠加雪崩信号提取方法
CN114388632A (zh) * 2022-01-12 2022-04-22 中国电子科技集团公司第四十四研究所 基于浮置环的多像素自由运行单光子探测器及制备方法
CN114388632B (zh) * 2022-01-12 2023-11-14 中国电子科技集团公司第四十四研究所 基于浮置环的多像素自由运行单光子探测器及制备方法
CN117673187A (zh) * 2024-02-01 2024-03-08 云南大学 高温自淬灭单光子探测器及制备方法
CN117673187B (zh) * 2024-02-01 2024-05-03 云南大学 高温自淬灭单光子探测器及制备方法

Similar Documents

Publication Publication Date Title
CN111682086A (zh) 一种自由运行模式下的负反馈雪崩光电二极管
EP2446483B1 (en) Low-level signal detection by semiconductor avalanche amplification
Capasso et al. Staircase solid-state photomultipliers and avalanche photodiodes with enhanced ionization rates ratio
US7899339B2 (en) High-sensitivity, high-resolution detector devices and arrays
CA2201737C (en) Heterojunction energy gradient structure
EP3229279B1 (en) Avalanche photodiode
US7202102B2 (en) Doped absorption for enhanced responsivity for high speed photodiodes
US5077593A (en) Dark current-free multiquantum well superlattice infrared detector
Savich et al. Benefits and limitations of unipolar barriers in infrared photodetectors
KR20040094418A (ko) 전하제어된 애벌란시 광다이오드 및 그 제조방법
CN111540797A (zh) 中远红外雪崩光电探测器
Forrest et al. Performance of In 0.53 Ga 0.47 As/InP avalanche photodiodes
JP2005223022A (ja) アバランシ・フォトダイオード
US5459332A (en) Semiconductor photodetector device
US5561306A (en) Hetero-bipolar transistor having a plurality of emitters
JPH06224463A (ja) 半導体受光装置
JP3254532B2 (ja) アバランシェホトダイオード
JP2002231992A (ja) 半導体受光素子
CN116705892A (zh) 一种雪崩二极管
US4942436A (en) Superlattice avalanche photodetector
JPS63281480A (ja) 半導体受光素子及びその製造方法
JP2754652B2 (ja) アバランシェ・フォトダイオード
JP2995751B2 (ja) 半導体受光素子
Karimov et al. Physical Principles of Photocurrent Generation in Multi-Barrier Punch-Through-Structures
Capasso New graded band gap and superlattice structures and their applications to photodetectors, bipolar transistors and high-speed devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200918

RJ01 Rejection of invention patent application after publication