CN111663117A - 气体供给单元以及气体供给方法 - Google Patents

气体供给单元以及气体供给方法 Download PDF

Info

Publication number
CN111663117A
CN111663117A CN202010115771.0A CN202010115771A CN111663117A CN 111663117 A CN111663117 A CN 111663117A CN 202010115771 A CN202010115771 A CN 202010115771A CN 111663117 A CN111663117 A CN 111663117A
Authority
CN
China
Prior art keywords
gas
gas supply
supply unit
cooling
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010115771.0A
Other languages
English (en)
Other versions
CN111663117B (zh
Inventor
稲垣竹矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CKD Corp
Original Assignee
CKD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CKD Corp filed Critical CKD Corp
Publication of CN111663117A publication Critical patent/CN111663117A/zh
Application granted granted Critical
Publication of CN111663117B publication Critical patent/CN111663117B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0406Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases the gas being air
    • B05D3/0426Cooling with air
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明实现一种能缩短冷却时间、从而缩短半导体制造装置的工艺时间的气体供给单元。本发明的气体供给单元(1)中,在将控制在第1温度的第1气体经由上部设备(13)供给到腔室(5)之后要将开始化学反应的反应开始温度比第1温度低的第2气体经由上部设备(13)供给至腔室(5)的情况下,在将清洁气体经由上部设备(13)供给至腔室5之前从冷却板构件(3)对形成于基座板(10)与上部设备(13)之间的空间部(S)供给冷却空气,将上部设备(13)冷却至反应开始温度以下。

Description

气体供给单元以及气体供给方法
技术领域
本发明涉及气体供给单元以及气体供给方法。
背景技术
以往,使用半导体制造装置的半导体制造工序中包含大量在晶圆表面形成氧化硅膜或氮化硅膜等薄膜的工序。例如使用CVD装置来形成薄膜。在CVD装置中,向晶圆上供给由构成薄膜材料的元素构成的1种或几种工艺气体。为了在晶圆表面形成期望的薄膜,在CVD装置上装有供给气体的气体供给单元(例如参考专利文献1)。
工艺气体当中,有的在常温下会液化。为了保持工艺气体的气化状态,气体供给单元通过加热器将工艺气体所流动的流体设备加热至与工艺气体相同程度的温度。
当使用工艺气体来成膜时,不仅在晶圆表面,在腔室(反应容器)的内表面或者连接至腔室的管道内面也会出现沉积膜或副产物的沉积。这些沉积物会导致薄膜品质降低、在腔室内产生微粒。因此会进行如下清洁,即,将清洁气体适时供给至气体供给单元和腔室,由此使得沉积在腔室内表面和管道内面的沉积物与清洁气体发生化学反应而予以去除。
[现有技术文献]
[专利文献]
[专利文献1]日本专利特开2008-234027号公报
发明内容
[发明要解决的问题]
然而,上述现有技术存在以下问题。即,清洁气体当中,有的清洁气体若温度不低于工艺气体的温度便会在流至腔室之前与沉积物反应而腐蚀管道内面或者在管道内面生长沉积膜。在使用这种清洁气体的情况下,以往的气体供给单元是使流体设备自然冷却直至变成清洁气体的反应开始温度以下为止。在进行自然冷却的期间内,清洁作业便停滞下来。因此,半导体制造装置在工艺时间的缩短上有改善的余地。
本发明是为了解决上述问题而成,其目的在于提供一种能缩短冷却时间、从而缩短半导体制造装置的工艺时间的气体供给单元以及气体供给方法。
[解决问题的技术手段]
本发明的一形态具有如下构成。
(1)一种气体供给单元,其选择性地得到控制在第1温度的第1气体或者开始化学反应的反应开始温度比所述第1温度低的第2气体的供给,并将所述第1气体或所述第2气体供给至腔室,该气体供给单元的特征在于,具有:基座板;上部设备,其支承在所述基座板上,具有供所述第1气体和所述第2气体选择性地流动的流路;多个中间块,它们配设在所述基座板与所述上部设备之间,具有与所述上部设备的流路相连的流路,而且在所述基座板与所述上部设备之间形成空间部;第1加热器,其将所述上部设备加热至所述第1温度;以及冷却构件,其对所述空间部供给冷却空气,将所述上部设备冷却至所述反应开始温度以下。
在上述构成的气体供给单元中,在通过第1加热器加热上部设备而对腔室供给第1气体之后要对腔室供给第2气体来进行气体供给单元、腔室、管道的清洁的情况下,在供给第2气体之前对空间部供给冷却空气。供给到空间部的冷却空气与被第1加热器加热后的上部设备进行换热,从而冷却上部设备。因此,根据本形态的气体供给单元,与对上部设备进行自然冷却的情况相比,可以缩短上部设备的冷却时间,从而能缩短半导体制造装置的工艺时间。
(2)根据(1)所述的气体供给单元,优选为,所述第1加热器为面状加热器,所述冷却构件配置在所述第1加热器与所述上部设备之间,是分别与所述第1加热器和所述上部设备面接触的铝制冷却板构件。
在上述构成的气体供给单元中,以传热性高于不锈钢的铝为材质的冷却板构件与上部设备和第1加热器面接触。在第1加热器通电而发热的情况下,冷却板构件迅速升温至与第1加热器相同程度的温度,与第1加热器一体地加热上部设备。另一方面,在第1加热器的通电被切断而不再发热、冷却空气供给至空间部的情况下,冷却板构件被冷却空气迅速冷却,从而冷却上部设备。因此,根据上述构成的气体供给单元,即便在上部设备与第1加热器之间配设有冷却板构件,也能高效地加热、冷却上部设备。
(3)根据(2)所述的气体供给单元,优选为,所述冷却板构件中沿所述第1气体在所述气体供给单元中流动的方向形成有对所述空间部供给所述冷却空气的冷却流路。
在上述构成的气体供给单元中,由于冷却空气沿所述第1气体在所述气体供给单元中流动的方向在冷却板构件中流动,因此能均匀地冷却上部设备、缩短冷却时间。
(4)根据(1)至(3)中任一项所述的气体供给单元,优选为,进而具有以抵接至所述上部设备的方式配置的面状的第2加热器,所述空间部具有从所述冷却构件得到所述冷却空气的供给的第1开口部和相反侧的第2开口部,所述第2开口部被所述第2加热器堵住。
上述构成的气体供给单元可以使冷却空气遍布整个空间部,因此能均匀地冷却上部设备和多个中间块、缩短冷却时间。
进而,本发明的另一形态为一种气体供给方法,其特征在于,具有:第1气体供给工序,即,在使用加热器将选择性地流动控制在第1温度的第1气体和开始化学反应的反应开始温度比所述第1温度低的第2气体的上部设备加热后的状态下,经由所述上部设备将所述第1气体供给至腔室;冷却工序,即,对所述上部设备与支承所述上部设备的基座板之间所形成的空间部供给冷却空气,冷却所述上部设备;以及第2气体供给工序,即,在通过所述冷却工序使得所述上部设备的温度变成所述反应开始温度以下之后,将所述第2气体供给至所述腔室。
[发明的效果]
根据本发明的气体供给单元,可以实现一种能缩短冷却时间、从而缩短半导体制造装置的工艺时间的气体供给单元以及气体供给方法。
附图说明
图1为本发明的实施方式的气体供给单元的外观立体图。
图2为气体供给单元的俯视图。
图3为气体供给单元的侧视图。
图4为图1的A-A截面图。
图5为说明冷却空气的流动的图。
具体实施方式
下面,根据附图,对本发明的气体供给单元以及气体供给方法的一实施方式进行说明。图1为本发明的实施方式的气体供给单元1的外观立体图。图2为气体供给单元1的俯视图。图3为气体供给单元1的侧视图。图4为图1的A-A截面图。图5为说明冷却空气的流动的图。再者,在以下的说明中,将基座板10的厚度方向作为上下方向来进行说明。
图1及图2所示的气体供给单元1在气体流动的方向(图2中为左右方向)上以直列方式一体地连结有压力传感器16和阀门17。气体供给单元1例如在半导体制造装置中用于在晶圆上形成薄膜的CVD装置。例如,对连接至CVD装置的腔室(反应容器)5的共通***以分支方式设置有供给工艺气体的第1气体供给***、供给吹扫气体的第2气体供给***、以及供给清洁气体的第3气体供给***。气体供给单元1配设在共通***中。在第1气体供给***~第3气体供给***连接至共通***的连接点上配设有未图示的切换阀。气体供给单元1以与第1气体供给***~第3气体供给***中的任一方连接的方式由未图示的切换阀加以切换,控制供给至腔室5的气体。工艺气体为第1气体的一例,清洁气体为第2气体的一例。
如图3所示,气体供给单元1具备基座板10、第1中间块12、第2中间块13、第3中间块14、压力传感器16及阀门17,控制供给至腔室5的气体。压力传感器16及阀门17中形成有供第1气体及第2气体选择性地流动的流路。再者,压力传感器16和阀门17为“上部设备”的一例,在本实施方式中,是隔着中间块12~14支承在基座板10上。再者,在本实施方式中,压力传感器16及阀门17分别具有用于连接至中间块12~14的设备块161及设备块171。此外,气体供给单元1具备第1加热器2A、第2加热器2B及冷却板构件3,根据薄膜形成工艺被加热或冷却。冷却板构件3为冷却构件的一例。再者,上述设备的机型和数量、中间块的数量不限定于本实施方式。
第1中间块12、第2中间块13、第3中间块14、设备块161及设备块171是将不锈钢等传热性好的金属形成为长方体形状得到的。第1中间块12、第2中间块13及第3中间块14空出规定间隔配置在基座板10的上表面,以螺钉固定。
压力传感器16检测供给至腔室5的气体的压力,以螺钉固定在第1中间块12和第2中间块13的上表面。阀门17控制供给至腔室5的气体的供给和切断,以螺钉固定在第2中间块13和第4中间块14的上表面。通过第1中间块12~第3中间块14,在基座板10与压力传感器16及阀门17之间形成了空间部S1、S2。
第1中间块12在图中左侧面一体地设置有第1接头11,并且形成有将第1接头11连接至压力传感器16的流路用的流路121。第2中间块13形成有连接压力传感器16与阀门17的流路用的V字形流路131。第3中间块14在图中右侧面设置有第2接头15,并且形成有将阀门17的流路连接至第2接头15用的流路141。
本实施方式的工艺气体为含有薄膜形成材料的气体,是例如像氯化钛(TiCl4)这样在常温下会液化的气体。为了保持这种工艺气体的气化状态,气体供给单元1像图2所示那样在控制在规定温度(第1温度)的工艺气体所流动的压力传感器16和阀门17的两侧也就是隔着气体流动的流路而在两侧配设有第1加热器2A和第2加热器2B,通过加热压力传感器16和阀门17而将工艺气体维持于规定温度。
此外,本实施方式的清洁气体是含有与气体供给单元1的流路面、腔室5的内表面、连接气体供给单元1与腔室5的管道的内周面等上面附着的沉积物反应而去除沉积物的材料的气体,是开始化学反应的反应开始温度比工艺气体的设定温度低的气体。清洁气体例如为三氟化氯(ClF3)等氟化气体。气体供给单元1上,在第1加热器2A与压力传感器16及阀门17之间配设有冷却板构件3。详细而言,配置成冷却板构件3的一面与第1加热器2A面接触、而且另一面与压力传感器16及阀门17接触。冷却板构件3为冷却构件的一例。
如图1所示,第1加热器2A为矩形状的面状加热器,根据线路21、22之间的通电量而发热。如图2及图3所示,第1加热器2A以能直接或间接地抵接至基座板10、第1中间块12的第1侧面122、第2中间块13的第1侧面132、第3中间块14的第1侧面142、设备块161的第1侧面1612以及设备块171的第1侧面1712的大小进行设置。第2加热器2B以与第1加热器2A相同的方式构成,以能抵接至基座板10、第1中间块12的第2侧面123、第2中间块13的第2侧面133、第3中间块14的第2侧面143、设备块161的第2侧面1613以及设备块171的第2侧面1713的大小进行设置。
如图4及图5所示,冷却板构件3是将传热性高于不锈钢的铝形成为具有与第1加热器2A相同程度的大小的板状得到的。冷却板构件3具有能形成冷却流路30的程度的厚度。冷却流路30具有主流路31和分支流路32a、32b。主流路31沿压力传感器16与阀门17的连结方向也就是气体在气体供给单元1中流动的方向以规定长度形成。在本实施方式中,主流路31的一端在冷却板构件3的侧面(图4中为左侧面)开口而连接至未图示的冷却空气供给源,另一方面,主流路31的另一端对应于至少具有连接至第2接头15的流路的上部设备(本实施方式中为阀门17)进行配置。分支流路32a、32b以从主流路31分支而分别连通至空间部S1、S2的方式形成。
再者,在本实施方式中,是对应于空间部S1、S2而各设置1个分支流路32a、32b,但也可对应于各空间部S1、S2而设置2个以上的分支流路32a、32b。此外,主流路31和分支流路32a、32b是设置在沿水平方向切出的同一截面上,但是,例如也可相对于主流路31而倾斜地形成分支流路32a、32b。
如图5所示,冷却板构件3具备在其厚度方向上贯通的通孔33。热电偶4贯穿第1加热器2A和冷却板构件3的通孔33,顶端部抵在设备块171的第1侧面1712上。使用第1加热器2A和第2加热器2B来一体地加热第1中间块12~第3中间块14和设备块161、171。因此,热电偶4经由设备块171检测气体供给单元1整体的温度。
再者,气体供给单元1通过连接至热电偶4、第1加热器2A及第2加热器2B的未图示的控制器来控制温度。未图示的控制器可与气体供给单元1设置成一体,也可作为上位控制器等与气体供给单元1设置成不同个体。
接着,对气体供给单元1的气体供给动作进行说明。此处,使用氯化钛作为工艺气体,使用三氟化氯作为清洁气体,使用氮气作为吹扫气体。
在CVD装置进行薄膜形成的情况下,气体供给单元1使用第1加热器2A和第2加热器2B来加热第1中间块12~第3中间块14和设备块161、171。第1加热器2A隔着冷却板构件3配置在气体供给单元1的侧面。但是,冷却板构件3是由热导率高的材料形成的,因此与第1加热器2A一体地升温。因此,气体供给单元1与没有冷却板构件3的情况同样地被第1加热器2A和第2加热器2B加热。在热电偶4检测到已加热到与工艺气体的设定温度相同程度的温度之前,气体供给单元1关闭阀门17,不对腔室5供给工艺气体(预热工序)。此处,工艺气体的设定温度取150℃。
当热电偶4检测到与工艺气体的设定温度相同程度的温度时,气体供给单元1打开阀门17。当阀门17打开时,工艺气体经由气体供给单元1供给至腔室5。在这期间内,气体供给单元1通过第1加热器2A和第2加热器2B而维持在与工艺气体的设定温度相同程度的温度。当对腔室5供给了规定量的工艺气体时,气体供给单元1关闭阀门17(工艺气体供给工序)。工艺气体供给工序为第1气体供给工序的一例。
当腔室5内形成薄膜的工序结束时,在气体供给单元1的上游侧将供给至气体供给单元1的气体从工艺气体切换为吹扫气体。气体供给单元1在被第1加热器2A和第2加热器2B加热的状态下打开阀门17而将吹扫气体供给至腔室5(吹扫气体供给工序)。
腔室5像上述那样一边切换工艺气体和吹扫气体的供给、一边进行形成薄膜的工艺。
在进行气体供给单元1、腔室5、管道的清洁的情况下,气体供给单元1在阀门17关闭的状态下停止对第1加热器2A和第2加热器2B的通电而不再被加热。继而,气体供给单元1将常温的冷却空气从冷却板构件3供给至空间部S1、S2(冷却工序)。
冷却空气经由主流路31和分支流路32a、32b以规定流量供给至空间部S1、S2。由于空间部S1、S2的与从冷却板构件3得到冷却空气的供给的第1开口部S11、S21相反那一侧的第2开口部S12、S22被第2加热器2B堵住,因此冷却空气遍布整个空间部S1、S2。此外,分支流路32a、32b是在流路121、131、141的下端位置或者该下端位置的下侧位置朝空间部S1、S2开口。因此,冷却空气使空间部S1、S2产生热对流,从而高效地冷却第1中间块12~第3中间块14、压力传感器16以及阀门17。
第2加热器2B虽然抵接在基座板10、第1中间块12~第3中间块14、压力传感器16、阀门17上,但并未以气密方式密接,而是以与它们之间形成间隙的方式配置。因此,空间部S1、S2内的空气在冷却空气的压力下导入至该间隙而挤出至大气中。也就是说,冷却空气在空间部S1、S2中形成从第1加热器2A侧去往第2加热器2B侧的流动,从而促进与被第1加热器2A和第2加热器2B加热后的第1中间块12~第3中间块14、压力传感器16以及阀门17的换热。因此,在气体供给单元1中,在对腔室5供给清洁气体之前使冷却空气流过空间部S1、S2而迅速降低气体供给单元1的温度。
当热电偶4检测到气体供给单元1的温度已变成清洁气体的反应开始温度以下例如80℃以下的温度时,从单元上游侧供给清洁气体。气体供给单元1打开阀门17对腔室5作规定时间的清洁气体供给。当经过规定时间时,气体供给单元1关闭阀门17而停止清洁气体的供给(清洁气体供给工序)。清洁气体供给工序为第2气体供给工序的一例。气体供给单元1、管道、腔室5通过清洁气体的流动来去除沉积物。
清洁气体在已降温到反应开始温度以下的气体供给单元1中流动。因此,清洁气体以维持反应开始温度以下的低温状态的状态从气体供给单元1流入至腔室5。因此,清洁气体在不与气体供给单元1、腔室5的内表面、连接气体供给单元1与腔室5的管道内面等上面附着的沉积物发生化学反应的情况下将沉积物去除。
在进行下一薄膜形成的情况下,气体供给单元1依序进行上述的预热工序、工艺气体供给工序、吹扫气体供给工序。再者,冷却工序和清洁工序可在每当形成薄膜的工艺完成时进行,也能以1日1次或1周1次等定期方式进行。
(1)如以上所说明,本实施方式的气体供给单元1选择性地得到控制在第1温度的工艺气体或者开始化学反应的反应开始温度比第1温度低的清洁气体的供给,并将工艺气体或清洁气体供给至腔室,该气体供给单元1具有:基座板10;压力传感器16及阀门17,它们支承在基座板10上,具有供工艺气体和清洁气体选择性地流动的流路;第1中间块12~第3中间块14,它们配设在基座板10与压力传感器16及阀门17之间,具有与压力传感器16及阀门17的流路相连的流路,而且在基座板10与压力传感器16及阀门17之间形成空间部S1、S2;第1加热器2A,其将压力传感器16及阀门17加热至第1温度;以及冷却板构件3,其对空间部S1、S2供给冷却空气,将压力传感器16及阀门17冷却至反应开始温度以下。
在这样的本实施方式的气体供给单元1中,在通过第1加热器2A加热压力传感器16及阀门17而将工艺气体供给到腔室5之后要对腔室5供给清洁气体来进行气体供给单元1、管道、腔室5的清洁的情况下,在供给清洁气体之前对空间部S1、S2供给冷却空气。供给到空间部S1、S2的冷却空气与被第1加热器2A加热后的压力传感器16及阀门17进行换热,从而冷却压力传感器16及阀门17。因此,根据本实施方式的气体供给单元1,与对压力传感器16及阀门17进行自然冷却的情况相比,可以缩短压力传感器16及阀门17的冷却时间,从而能缩短半导体制造装置的工艺时间。
如上所述,在使用氯化钛作为工艺气体、使用三氟化氯作为清洁气体的情况下,由于氯化钛的沸点高达136.4℃,因此,在薄膜形成工艺时,气体供给单元1使用第1加热器2A和第2加热器2B加热到150℃。在进行清洁时,若压力传感器16及阀门17保持150℃不变,则三氟化氯在流过压力传感器16及阀门17时会被加热,在流入至腔室5之前便与气体供给单元1的流路面、连接气体供给单元1与腔室5的管道的内周面等上面附着的沉积物发生化学反应,或者在流入到腔室5之后与附着在腔室5内表面的沉积物发生化学反应,促进腐蚀或者沉积膜的生长。为了防止这一情况,压力传感器16及阀门17须在供给三氟化氯之前冷却至80℃以下。
在通过自然冷却使压力传感器16及阀门17从150℃降温至80℃以下的情况下,冷却时间约耗费2小时。但是,在将冷却空气供给至空间部S1、S2而将压力传感器16及阀门17强制冷却至80℃以下的情况下,冷却时间约为15分钟。如此,本实施方式的气体供给单元1与对压力传感器16及阀门17进行自然冷却的情况相比,能够大幅缩短压力传感器16及阀门17的冷却时间,因此能缩短半导体制造装置的工艺时间。
(2)根据(1)所述的气体供给单元1,其中,压力传感器16及阀门17的材质为不锈钢,第1加热器2A为面状加热器,冷却板构件3配置在第1加热器2A与一系列上部设备(压力传感器16及阀门17)之间,是与第1加热器2A和压力传感器16及阀门17面接触的铝制冷却板构件3。
在这样的本实施方式的气体供给单元1中,以传热性高于不锈钢的铝为材质的冷却板构件3与压力传感器16及阀门17和第1加热器2A面接触。在第1加热器2A通电而发热的情况下,冷却板构件3迅速升温至与第1加热器2A相同程度的温度,与第1加热器2A一体地加热压力传感器16及阀门17。另一方面,在第1加热器2A的通电被切断而不再发热、冷却空气供给至空间部S1、S2的情况下,冷却板构件3被冷却空气迅速冷却,从而冷却压力传感器16及阀门17。因此,根据本实施方式的气体供给单元1,即便在压力传感器16及阀门17与第1加热器2A之间配设有冷却板构件3,也能高效地加热、冷却压力传感器16及阀门17。
(3)根据(2)所述的气体供给单元1,其中,冷却板构件3沿工艺气体在气体供给单元1中流动的方向形成有对空间部S1、S2供给冷却空气的冷却流路30。
在这样的本实施方式的气体供给单元1中,冷却空气沿工艺气体在气体供给单元1中流动的方向也就是沿压力传感器16及阀门17的配置方向在冷却板构件3中流动,因此,能够均匀地冷却压力传感器16及阀门17、缩短冷却时间。
(4)根据(1)至(3)中任一项所述的气体供给单元1,其中,进而设置有以抵接至压力传感器16及阀门17的方式配置的面状的第2加热器2B,空间部S1、S2的与从冷却板构件3得到冷却空气的供给的第1开口部S11、S21相反那一侧的第2开口部S12、S22被以抵接至压力传感器16及阀门17的方式配置的面状的第2加热器2B堵住。
这样的本实施方式的气体供给单元1可以使冷却空气遍布整个空间部S1、S2,因此能均匀地冷却压力传感器16及阀门17和第1中间块12~第3中间块14、缩短冷却时间。
再者,本发明可以进行各种应用,并不限定于上述实施方式。
(1)例如,在上述实施方式中,是从配设于压力传感器16及阀门17与第1加热器2A之间的冷却板构件3对空间部S1、S2供给冷却空气,但也可设置对空间部S1、S2喷出冷却空气的喷嘴作为冷却构件并安装在第1加热器2A上。但是,通过利用冷却板构件3来构成冷却构件,能以宽阔面积来冷却压力传感器16及阀门17、缩短冷却时间。此外,通过在冷却板构件3上形成冷却流路30,可以省略连接至喷嘴的管道的管道空间、使得气体供给单元1变得紧凑。
(2)例如,在上述实施方式中,是以铝形成冷却板构件3,但也能以不锈钢形成。但是,通过将冷却板构件3的材质设为铝,可以缩短冷却板构件3的升温时间和冷却时间,从而缩短半导体制造装置的工艺时间。
(3)例如,在上述实施方式中,利用冷却板构件3和第2加热器2B封闭了空间部S1、S2的两端开口部(第1开口部S11、S21及第2开口部S12、S22)。相对于此,也可不配置第2加热器2B。即,也可不堵住与冷却板构件3相反那一侧的开口部(第2开口部S12、S22)。但是,通过堵住与冷却板构件3相反那一侧的开口部而像房间那样隔开压力传感器16及阀门17下方的空间部S1、S2,能使冷却空气遍布压力传感器16及阀门17的下表面而高效地冷却压力传感器16及阀门17、缩短冷却时间。
(4)例如,在上述实施方式中,是将气体供给单元1连接至CVD装置的腔室5而用于工艺气体和清洁气体的供给,但气体供给单元1也可连接至不同工序的腔室而用于不同种类的工艺气体等的供给。
(5)例如,也可没有吹扫气体供给工序。也就是说,气体供给单元1也可仅进行工艺气体的供给。
(6)气体供给单元1的上部设备例如也可像流量传感器和比例阀或者流量控制阀和开闭阀这样不同于上述实施方式。此外,气体供给单元1中,上部设备的数量也可为1个或者3个以上。进而,中间块的数量也可根据上部设备的数量、流路构成酌情加以变更。例如,也可在岐管块上安装流体设备来构成上部设备,并在岐管块与配置于该岐管块下部的基座板之间配置多个中间块。
(7)也可将切换工艺气体与吹扫气体的切换阀设置在气体供给单元1上而让气体供给单元1控制多种气体的选择性供给。
符号说明
1 气体供给单元
2A 第1加热器
2B 第2加热器
3 冷却板构件
5 腔室
10 基座板
12 第1中间块
13 第2中间块
14 第3中间块
30 冷却流路

Claims (5)

1.一种气体供给单元,其选择性地得到控制在第1温度的第1气体或者开始化学反应的反应开始温度比所述第1温度低的第2气体的供给,并将所述第1气体或所述第2气体供给至腔室,该气体供给单元的特征在于,具有:
基座板;
上部设备,其支承在所述基座板上,具有供所述第1气体和所述第2气体选择性地流动的流路;
多个中间块,它们配设在所述基座板与所述上部设备之间,具有与所述上部设备的所述流路相连的流路,而且在所述基座板与所述上部设备之间形成空间部;
第1加热器,其将所述上部设备加热至所述第1温度;以及
冷却构件,其对所述空间部供给冷却空气,将所述上部设备冷却至所述反应开始温度以下。
2.根据权利要求1所述的气体供给单元,其特征在于,
所述第1加热器为面状加热器,
所述冷却构件配置在所述第1加热器与所述上部设备之间,是分别与所述第1加热器和所述上部设备面接触的铝制冷却板构件。
3.根据权利要求2所述的气体供给单元,其特征在于,
所述冷却板构件中沿所述第1气体在所述气体供给单元中流动的方向形成有对所述空间部供给所述冷却空气的冷却流路。
4.根据权利要求1至3中任一项所述的气体供给单元,其特征在于,
进而具有以抵接至所述上部设备的方式配置的面状的第2加热器,
所述空间部具有从所述冷却构件得到所述冷却空气的供给的第1开口部和相反侧的第2开口部,所述第2开口部被所述第2加热器堵住。
5.一种气体供给方法,其特征在于,具有:
第1气体供给工序,即,在使用加热器将选择性地流动控制在第1温度的第1气体和开始化学反应的反应开始温度比所述第1温度低的第2气体的上部设备加热后的状态下,经由所述上部设备将所述第1气体供给至腔室;
冷却工序,即,对所述上部设备与支承所述上部设备的基座板之间所形成的空间部供给冷却空气,冷却所述上部设备;以及
第2气体供给工序,即,在通过所述冷却工序使得所述上部设备的温度变成所述反应开始温度以下之后,将所述第2气体供给至所述腔室。
CN202010115771.0A 2019-03-06 2020-02-25 气体供给单元以及气体供给方法 Active CN111663117B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019040460A JP6966499B2 (ja) 2019-03-06 2019-03-06 ガス供給ユニット及びガス供給方法
JP2019-040460 2019-03-06

Publications (2)

Publication Number Publication Date
CN111663117A true CN111663117A (zh) 2020-09-15
CN111663117B CN111663117B (zh) 2022-06-14

Family

ID=72335983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010115771.0A Active CN111663117B (zh) 2019-03-06 2020-02-25 气体供给单元以及气体供给方法

Country Status (4)

Country Link
US (1) US11459657B2 (zh)
JP (1) JP6966499B2 (zh)
KR (1) KR102247554B1 (zh)
CN (1) CN111663117B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7134020B2 (ja) * 2018-08-17 2022-09-09 東京エレクトロン株式会社 バルブ装置、処理装置、および制御方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222805A (ja) * 2001-01-25 2002-08-09 Hitachi Kokusai Electric Inc 基板処理装置
JP2016084526A (ja) * 2014-10-28 2016-05-19 東京エレクトロン株式会社 原料ガス供給装置、原料ガス供給方法及び成膜装置
CN106661730A (zh) * 2014-07-17 2017-05-10 东京毅力科创株式会社 气体供给装置和阀装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3360098B2 (ja) * 1995-04-20 2002-12-24 東京エレクトロン株式会社 処理装置のシャワーヘッド構造
JP3665708B2 (ja) 1998-12-10 2005-06-29 シーケーディ株式会社 集積弁
DE10005820C1 (de) * 2000-02-10 2001-08-02 Schott Glas Gasversorungsvorrichtung für Precursoren geringen Dampfdrucks
AU2003238853A1 (en) * 2002-01-25 2003-09-02 Applied Materials, Inc. Apparatus for cyclical deposition of thin films
KR100505670B1 (ko) * 2003-02-05 2005-08-03 삼성전자주식회사 부산물 제거용 고온 유체 공급 장치를 구비한 반도체 소자제조 장치
US6907897B2 (en) * 2003-06-26 2005-06-21 Planar Systems, Inc. Diaphragm valve for high-temperature precursor supply in atomic layer deposition
JP4567370B2 (ja) * 2004-05-10 2010-10-20 シーケーディ株式会社 ガス供給集積ユニット
JP2006234110A (ja) 2005-02-25 2006-09-07 Ckd Corp ガス供給ユニット及びガス供給システム
JP5134841B2 (ja) 2007-03-16 2013-01-30 Ckd株式会社 ガス供給ユニット
US8741062B2 (en) * 2008-04-22 2014-06-03 Picosun Oy Apparatus and methods for deposition reactors
JP5410173B2 (ja) * 2009-06-30 2014-02-05 Ckd株式会社 ガス供給装置
CN102668032A (zh) * 2009-11-20 2012-09-12 京瓷株式会社 沉积膜形成装置
JP5755958B2 (ja) * 2011-07-08 2015-07-29 株式会社フジキン 半導体製造装置の原料ガス供給装置
US9096931B2 (en) * 2011-10-27 2015-08-04 Asm America, Inc Deposition valve assembly and method of heating the same
US9388492B2 (en) * 2011-12-27 2016-07-12 Asm America, Inc. Vapor flow control apparatus for atomic layer deposition
JP5852147B2 (ja) * 2014-01-23 2016-02-03 株式会社日立国際電気 半導体装置の製造方法、基板処理装置、プログラム及び記録媒体
CN105714271B (zh) * 2014-12-22 2020-07-31 株式会社堀场Stec 汽化***
KR102326377B1 (ko) * 2016-06-07 2021-11-15 가부시키가이샤 코쿠사이 엘렉트릭 기판 처리 장치, 반도체 장치의 제조 방법 및 프로그램
JP6900640B2 (ja) * 2016-08-03 2021-07-07 東京エレクトロン株式会社 ガス供給装置及びガス供給方法
US11926894B2 (en) * 2016-09-30 2024-03-12 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
CN112005354A (zh) * 2018-03-22 2020-11-27 应用材料公司 用于精确流体递送的热稳定的流量计
JP7134020B2 (ja) 2018-08-17 2022-09-09 東京エレクトロン株式会社 バルブ装置、処理装置、および制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222805A (ja) * 2001-01-25 2002-08-09 Hitachi Kokusai Electric Inc 基板処理装置
CN106661730A (zh) * 2014-07-17 2017-05-10 东京毅力科创株式会社 气体供给装置和阀装置
JP2016084526A (ja) * 2014-10-28 2016-05-19 東京エレクトロン株式会社 原料ガス供給装置、原料ガス供給方法及び成膜装置

Also Published As

Publication number Publication date
US20200283899A1 (en) 2020-09-10
KR20200107817A (ko) 2020-09-16
JP2020145301A (ja) 2020-09-10
JP6966499B2 (ja) 2021-11-17
KR102247554B1 (ko) 2021-05-04
CN111663117B (zh) 2022-06-14
US11459657B2 (en) 2022-10-04

Similar Documents

Publication Publication Date Title
CN112342532A (zh) 温控化学品递送***及包括该***的反应器***
EP1182692B1 (en) Heat-processing apparatus and method for semiconductor processing
US7588804B2 (en) Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces
US20110030615A1 (en) Method and apparatus for dry cleaning a cooled showerhead
JP7134020B2 (ja) バルブ装置、処理装置、および制御方法
CN111663117B (zh) 气体供给单元以及气体供给方法
US7186313B2 (en) Plasma chamber wall segment temperature control
JP2005051205A (ja) ガス供給システム、弁アセンブリ、および弁アセンブリを操作することによる反応物質パルス形成方法
US7290572B2 (en) Method for purging a high purity manifold
JP2006319175A (ja) 基板処理装置
KR20080011284A (ko) 강력하고 높은 온도의 가스를 위한 차단 밸브
WO2004070801A1 (ja) 流体制御装置および熱処理装置
JP7383832B2 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法及びプログラム
JP5438266B2 (ja) 半導体装置の製造方法、クリーニング方法および基板処理装置
KR101450006B1 (ko) 기판처리장치
JPH111775A (ja) 成膜処理装置
JP3824301B2 (ja) 気相成長装置および気相成長方法
US20230183863A1 (en) Semiconductor processing device with heater
JP4754207B2 (ja) 熱処理システム
JPH1150257A (ja) プロセスガス供給ユニット
US20200258762A1 (en) Temperature control apparatus
CN116978814A (zh) 气体供给***、基板处理装置以及半导体装置的制造方法
JP2024085610A (ja) 成膜装置及び成膜方法
JP2009259907A (ja) 気相成長装置および半導体基板の製造方法
JP2000003906A (ja) 半導体製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant