CN111646500A - 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法 - Google Patents

一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法 Download PDF

Info

Publication number
CN111646500A
CN111646500A CN202010461227.1A CN202010461227A CN111646500A CN 111646500 A CN111646500 A CN 111646500A CN 202010461227 A CN202010461227 A CN 202010461227A CN 111646500 A CN111646500 A CN 111646500A
Authority
CN
China
Prior art keywords
preparation
ethanol
porous tio
solution
rich
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010461227.1A
Other languages
English (en)
Other versions
CN111646500B (zh
Inventor
姜德立
张乾晓
李娣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN202010461227.1A priority Critical patent/CN111646500B/zh
Publication of CN111646500A publication Critical patent/CN111646500A/zh
Application granted granted Critical
Publication of CN111646500B publication Critical patent/CN111646500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于纳米材料领域,公开一种富含表面缺陷的2D多孔TiO2纳米片光催化剂的制备方法,包括Hummers法制备氧化石墨烯,油浴法制备GO@Ti(OH)4,通过煅烧制备了2D多孔TiO2纳米片,并进一步通过氢气还原制取了富含表面缺陷的2D多孔TiO2纳米片。2D多孔TiO2纳米片和缺陷工程的协同,使纳米光催化剂的活性位点和边缘位点充分的暴露出来并减小了光生电子空穴复合率,提高了太阳光利用率,进而提升了其光催化性能。该材料可用于光催化分解水产氢,这对清洁能源的开发具有重要的意义。

Description

一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法
技术领域
本发明属于纳米材料领域,涉及一种富含表面缺陷的2D多孔TiO2纳米片的制备方法,具体说是一种以石墨烯为牺牲模板制得的表面富含氧空位的2D多孔TiO2纳米片及其制备方法与用途。
背景技术
二氧化钛(titanium dioxide,TiO2),作为一种被研究最广泛的半导体材料,具有价格低廉、性能稳定、储量丰富、无毒等特性,引起人们的广泛关注。然而,在实际应用中由于禁带宽度较大(3.0~3.2eV),暴露的活性位点较少,造成了太阳能利用率严重偏低,导致其光催化性能较低。
近年来,通过高温下氢气还原制备的二氧化钛因其带隙窄、阳光利用率高、载流子分离性能优异而被认为是提高光催化性能的有效方法。其光催化活性提高的关键因素是无序表面的带隙间产生了局域的中间态,能够有效的抑制光生载流子的复合。此外,氧空位能够促使电子陷阱的形成,使光生电子-空穴对的分离效率和光催化活性将进一步提升。但是,纳米材料表面较高比例的暴露原子导致其具有较大的表面能。目前合成的缺陷二氧化碳材料缺陷浓度较低,限制了其应用。2D多孔材料具有较大的比表面积,有利于构筑高浓度缺陷二氧化钛材料。据我们所知,目前还未见富含表面缺陷的2D多孔二氧化钛材料的报道。
发明内容
本发明针对TiO2光催化效率低的问题,提供了一种简单的富含表面缺陷的2D多孔TiO2纳米片材料制备方法。该制备方法通过油浴和煅烧合成富含表面缺陷的2D多孔TiO2纳米片,制备得到的光催化剂具有较好的光催化产氢效率。本专利所得的富含表面缺陷的2D多孔TiO2纳米片具有开放的多孔微观结构,能够有限的避免片与片之间的堆叠,提高了缺陷浓度。该纳米网筛纳米片展现出了良好的光催化产氢性能,在氢能开发上有潜在的应用前景。
本发明技术方案如下:
(1)制备氧化石墨烯GO粉末,备用:
在烧杯A中加入1~2g石墨粉,然后将100~200mL浓度为98%的H2SO4和10~30mL浓度为85%的H3PO4在250mL的烧杯B中混合并在温和的搅拌下缓慢沿杯壁加入烧杯A中。将溶液转移到事先预热的45~65℃的油浴锅中加热。随后,将5~10g KMnO4分批加入到混合液中,并使反应体系始终维持在45~65℃。在密封条件下剧烈搅拌6~15h后,从使用注射器吸取30%的H2O2并从烧杯底部缓入慢注,同时反应溶液仍然要保持在45~65℃。观察到溶液的颜色从黑色到紫色,再到亮黄色的转变,直到没有气泡产生时停止注射。所得样品使用蒸馏水反复冲洗并离心直至pH值为5~6,得到的固体经冷冻干燥并保存在干燥箱中。
(2)制备GO@Ti(OH)4复合材料:
取步骤1制备的GO置于无水乙醇中,并超声处理,得GO/乙醇混合溶液;
然后将TBOT的乙醇溶液,缓慢的加入到GO/乙醇混合溶液中,得TBOT/GO/乙醇混合溶液;
最后将乙醇水溶液,缓慢的加入到TBOT/GO/乙醇混合溶液中,再进行油浴回流,得到GO@Ti(OH)4;沉淀物用乙醇反复洗涤离心收集,在烘箱中干燥后研磨,保存在干燥箱中;
(3)将步骤(2)得到的GO@Ti(OH)4置于管式炉中,在空气氛围下程序升温至煅烧温度,煅烧,以除去GO模板、Ti(OH)4的结晶水并提升TiO2的结晶度,得到2D多孔TiO2纳米片;
(4)将步骤(3)得到的2D多孔TiO2纳米片在还原性气氛下程序升温至煅烧温度,煅烧,得到富含表面缺陷的2D多孔TiO2纳米片。
步骤(2)中,GO/乙醇混合溶液中,GO和无水乙醇的用量比例为:70~100mg:160~200mL;超声处理的时间为20~50min;
TBOT的乙醇溶液的配制方法为:将1~2mL TBOT分散于8~10mL乙醇中;
乙醇水溶液的配制方法为:将1~2mL H2O分散于8~10mL乙醇中。
步骤(2)中,油浴回流的温度为30~50℃,时间为10~24h。
步骤(3)中,煅烧温度为400~700℃,煅烧时间为2~5h;升温速率为2~5℃/min。
步骤(4)中,煅烧温度为400~700℃,煅烧时间为2~5h;升温速率为2~5℃/min。
步骤(4)中所述的还原性气氛为90vol.%氩气和10vol.%氢气的混合气。
将本发明制备的富含表面缺陷的2D多孔TiO2纳米片用于光催化分解水产氢的用途。
利用X射线衍射仪(XRD)、透射电子显微镜(TEM),对产物进行形貌结构分析,以甲醇溶液和Pt纳米颗粒分别作为空穴捕获剂和助催化剂进行光催化产氢实验,通过气相色谱测量其一定时间内的产氢量,以评估其光催化产氢活性;
本发明的有益效果为:
本发明采用油浴法和锻烧法首次成功制备了高活性的富含表面缺陷的2D多孔TiO2纳米片光催化剂,制备过程具有工艺简单、成本低廉、周期短、环境友好等优点。
所制备的富含表面缺陷的2D多孔TiO2纳米片有效提升了活性位点和边缘位点的暴露,进而提高了光催化产氢的性能,且复合光催化剂的可循环稳定性能良好,在清洁能源的开发领域具有潜在的应用前景。
附图说明
图1a、b、c、d分别为氢气氛围下煅烧0h、4h、5h、6h的2D多孔TiO2纳米片光催化剂的XRD衍射谱图。
图2a、b、c、d、e分别为所制备GO、GO@Ti(OH)4、2D多孔TiO2纳米片,富含表面缺陷的2D多孔TiO2纳米片的透射电镜照片和富含表面缺陷的2D多孔TiO2纳米片的高分辨电镜照片。
图3a、b、c、d分别为氢气氛围下煅烧0h、4h、5h、6h的2D多孔TiO2纳米片光催化产氢的时间-产率关系图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
实施例1
(1)制备氧化石墨烯GO粉末,备用:
在500mL的烧杯中加入1.5g石墨粉,然后将180mL浓度为98%的H2SO4和20mL浓度为85%的H3PO4混合并在温和的搅拌下缓慢滴入上述烧杯中。将溶液转移到油浴锅中50℃加热。随后,将9g KMnO4分批分散在混合液中并使反应体系始终保持在50±1℃。在密封条件下剧烈搅拌12h后,从烧杯底部缓慢注入30%的H2O2并使反应溶液保持在50±1℃。观察到溶液的颜色从黑色到紫色,再到亮黄色,直到没有气泡产生。所得样品经蒸馏水冲洗和离心直至pH值为5~6,得到的固体冷冻干燥并保存在干燥箱中。。
(2)制备GO@Ti(OH)4复合材料,备用:
将90mg GO分散于180mL无水乙醇中并超声处理30分钟。然后在快速的搅拌下加入含有1mL TBOT的9mL乙醇,随后加入含有2mL H2O的8mL乙醇。溶液在45℃下油浴12h得到GO@Ti(OH)4。沉淀物用乙醇反复洗涤离心收集后在在60℃烘箱中干燥10h。
(3)制备2D多孔TiO2纳米片材料,备用:
得到的GO@Ti(OH)4研磨后置于管式炉中,在空气下氛围下500℃煅烧2h以除去氧化石墨烯、结晶水并提高结晶度,升温速率为2℃/min。
(4)制备富含表面缺陷的2D多孔TiO2纳米片材料:
将步骤(3)制备的2D多孔TiO2纳米片在500℃还原气氛(90vol.%氩气和10vol.%氢气)下煅烧5h得到富含表面缺陷的2D多孔TiO2纳米片。升温速率为2℃/min。
实施例2
本实施例的步骤(1)和步骤(2)和步骤(3)同实施例1相同;
(4)制备富含表面缺陷的2D多孔TiO2纳米片材料:
将步骤(3)制备的2D多孔TiO2纳米片在500℃还原气氛(90vol.%氩气和10vol.%氢气)下煅烧4h得到富含表面缺陷的2D多孔TiO2纳米片。升温速率为2℃/min
实施例3
本实施例的步骤(1)和步骤(2)和步骤(3)同实施例1相同;
(4)制备富含表面缺陷的2D多孔TiO2纳米片材料:
将步骤(3)制备的2D多孔TiO2纳米片在500℃还原气氛(90vol.%氩气和10vol.%氢气)下煅烧6h得到富含表面缺陷的2D多孔TiO2纳米片。升温速率为2℃/min
实施例4
本实施例的步骤(1)和步骤(3)和步骤(4)同实施例1相同;
(2)制备GO@Ti(OH)4复合材料,备用:
将90mg GO分散于180mL无水乙醇中并超声处理30分钟。然后在快速的搅拌下加入含有2mL TBOT的8mL乙醇,随后加入含有2mL H2O的8mL乙醇。溶液在45℃下油浴12h得到GO@Ti(OH)4。沉淀物用乙醇反复洗涤离心收集后在在60℃烘箱中干燥10h。
实施例5
本实施例的步骤(1)和步骤(3)和步骤(4)同实施例1相同;
(2)制备GO@Ti(OH)4复合材料,备用:
将60mg GO分散于180mL无水乙醇中并超声处理30分钟。然后在快速的搅拌下加入含有2mL TBOT的8mL乙醇,随后加入含有2mL H2O的8mL乙醇。溶液在45℃下油浴12h得到GO@Ti(OH)4。沉淀物用乙醇反复洗涤离心收集后在在60℃烘箱中干燥10h。
实施例富含表面缺陷的2D多孔TiO2纳米片光催剂的表征分析
图1a、b、c、d分别为氢气氛围下煅烧0h、4h、5h、6h的2D多孔TiO2纳米片光催化剂的XRD衍射谱图。,从图中可以看出不同表面缺陷含量的TiO2网筛纳米片图谱都属于典型的瑞锐钛矿衍射峰,且没有发现其他相和杂质,表明缺陷的引入并没有影响TiO2网筛纳米片的主体晶型结构。
图2a、b、c、d、e分别为所制备GO、GO@Ti(OH)4、2D多孔TiO2纳米片,富含表面缺陷的2D多孔TiO2纳米片的透射电镜照片和富含表面缺陷的2D多孔TiO2纳米片的高分辨电镜照片,从图a可以看出单纯的GO呈现超薄的片状结构;TBOT的水解产物均匀的包裹在了GO的表面;图c展现的是经过煅烧后除去模板和结晶水的2D多孔TiO2纳米片;从图d可以清楚地看到氢气还原后的2D多孔TiO2纳米片形貌并没有发生改变,从图e可以看出晶格条纹的边缘出现了无序的结构,表明成功制备了富含表面缺陷的2D多孔TiO2纳米片材料。
图3a、b、c、d分别为氢气氛围下煅烧0h、4h、5h、6h的2D多孔TiO2纳米片光催化产氢的时间-产率关系图,从图中可以分析出氢气还原5h的2D多孔TiO2纳米片具有最优异的光催化活性,样品在催化反应5h后氢气的产量达到44955μmol·g-1

Claims (8)

1.一种富含表面缺陷的2D多孔TiO2纳米片的制备方法,其特征在于,包括如下步骤:
(1)制备氧化石墨烯GO粉末,备用:
(2)制备GO@Ti(OH)4复合材料:
取步骤1制备的GO置于无水乙醇中,并超声处理,得GO/乙醇混合溶液;
然后将TBOT的乙醇溶液,缓慢的加入到GO/乙醇混合溶液中,得TBOT/GO/乙醇混合溶液;
最后将乙醇水溶液,缓慢的加入到TBOT/GO/乙醇混合溶液中,再进行油浴回流,得到GO@Ti(OH)4;沉淀物用乙醇反复洗涤离心收集,在烘箱中干燥后研磨,保存在干燥箱中;
(3)将步骤(2)得到的GO@Ti(OH)4置于管式炉中,在空气氛围下程序升温至煅烧温度,煅烧,得到2D多孔TiO2纳米片;
(4)将步骤(3)得到的2D多孔TiO2纳米片在还原性气氛下程序升温至煅烧温度,煅烧,得到富含表面缺陷的2D多孔TiO2纳米片。
2.如权利要求1所述的制备方法,其特征在于,步骤(1)中,氧化石墨烯GO粉末的制备方法为:在烧杯A中加入1~2g石墨粉,然后将100~200mL浓度为98%的H2SO4和10~30mL浓度为85%的H3PO4在250mL的烧杯B中混合并在温和的搅拌下缓慢沿杯壁加入烧杯A中;将溶液转移事先预热的45~65℃的油浴锅中加热;随后,将5~10g KMnO4分批依次加入到混合液中,并使反应体系始终维持在45~65℃;在密封条件下剧烈搅拌6~15h后,使用注射器吸取30%的H2O2并从烧杯底部缓入慢注,同时反应溶液仍然要保持在45~65℃;观察到溶液的颜色从黑色到紫色,再到亮黄色的转变,直到没有气泡产生时停止注射;所得样品使用去离子水反复冲洗并离心直至pH值为5~6,得到的固体经冷冻干燥并保存在干燥箱中。
3.如权利要求1所述的制备方法,其特征在于,步骤(2)中,GO/乙醇混合溶液中,GO和无水乙醇的用量比例为:70~100mg:160~200mL;超声处理的时间为20~50min;
TBOT的乙醇溶液的配制方法为:将1~2mL TBOT分散于8~10mL乙醇中;
乙醇水溶液的配制方法为:将1~2mLH2O分散于8~10mL乙醇中。
4.如权利要求1所述的制备方法,其特征在于,步骤(2)中,油浴回流的温度为30~50℃,时间为10~24h。
5.如权利要求1所述的制备方法,其特征在于,步骤(3)中,煅烧温度为400~700℃,煅烧时间为2~5h;升温速率为2~5℃/min。
6.如权利要求1所述的制备方法,其特征在于,步骤(4)中,煅烧温度为400~700℃,煅烧时间为2~5h;升温速率为2~5℃/min。
7.如权利要求1所述的制备方法,其特征在于,步骤(4)中所述的还原性气氛为90vol.%氩气和10vol.%氢气的混合气。
8.如权利要求1~7任一所述制备方法制备的富含表面缺陷的2D多孔TiO2纳米片用于光催化产氢的用途。
CN202010461227.1A 2020-05-27 2020-05-27 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法 Active CN111646500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010461227.1A CN111646500B (zh) 2020-05-27 2020-05-27 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010461227.1A CN111646500B (zh) 2020-05-27 2020-05-27 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法

Publications (2)

Publication Number Publication Date
CN111646500A true CN111646500A (zh) 2020-09-11
CN111646500B CN111646500B (zh) 2023-09-26

Family

ID=72343277

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010461227.1A Active CN111646500B (zh) 2020-05-27 2020-05-27 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法

Country Status (1)

Country Link
CN (1) CN111646500B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973729A (zh) * 2021-02-05 2021-06-18 江苏大学 一种富含氧空位/AuCu合金的TiO2纳米方片的制备方法及用途
CN113735163A (zh) * 2021-09-28 2021-12-03 北京大学 一种含氧空位的多孔二氧化钛材料及其制备方法和应用
CN114427086A (zh) * 2022-01-08 2022-05-03 华中科技大学 一种Al2O3纳米片增强ZrO2阻氚涂层及其制备方法
CN114618535A (zh) * 2022-02-14 2022-06-14 江苏大学 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用
CN115254097A (zh) * 2022-09-05 2022-11-01 齐鲁工业大学 负载铂团簇的介孔黑二氧化钛纳米片光催化剂及制备方法
CN116889867A (zh) * 2023-06-20 2023-10-17 盐城工学院 一种MXene衍生多孔TiO2/RGO纳米片复合光催化剂的方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991903A (zh) * 2014-06-04 2014-08-20 江苏大学 一种混相二氧化钛纳米片光催化剂的制备方法
CN110013841A (zh) * 2019-04-23 2019-07-16 上海理工大学 一种二维二氧化钛纳米片光催化材料及其制备方法
CN110589883A (zh) * 2019-09-23 2019-12-20 安徽师范大学 一种富含氧空穴的二维层状二氧化钛纳米材料、制备方法及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103991903A (zh) * 2014-06-04 2014-08-20 江苏大学 一种混相二氧化钛纳米片光催化剂的制备方法
CN110013841A (zh) * 2019-04-23 2019-07-16 上海理工大学 一种二维二氧化钛纳米片光催化材料及其制备方法
CN110589883A (zh) * 2019-09-23 2019-12-20 安徽师范大学 一种富含氧空穴的二维层状二氧化钛纳米材料、制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PING WANG等: "Graphene oxide nanosheets as an effective template for the synthesis of porous TiO2 film in dye-sensitized solar cells", 《APPLIED SURFACE SCIENCE》 *
XIAOQIANG AN等: "Hierarchical Nanotubular Anatase/Rutile/TiO2(B) Heterophase Junction with Oxygen Vacancies for Enhanced Photocatalytic H2 Production", 《LANGMUIR》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112973729A (zh) * 2021-02-05 2021-06-18 江苏大学 一种富含氧空位/AuCu合金的TiO2纳米方片的制备方法及用途
CN113735163A (zh) * 2021-09-28 2021-12-03 北京大学 一种含氧空位的多孔二氧化钛材料及其制备方法和应用
CN114427086A (zh) * 2022-01-08 2022-05-03 华中科技大学 一种Al2O3纳米片增强ZrO2阻氚涂层及其制备方法
CN114427086B (zh) * 2022-01-08 2022-10-11 华中科技大学 一种Al2O3纳米片增强ZrO2阻氚涂层及其制备方法
CN114618535A (zh) * 2022-02-14 2022-06-14 江苏大学 一种富氧空位双金属氯氧化物纳米片的制备方法及其光催化co2还原应用
CN115254097A (zh) * 2022-09-05 2022-11-01 齐鲁工业大学 负载铂团簇的介孔黑二氧化钛纳米片光催化剂及制备方法
CN116889867A (zh) * 2023-06-20 2023-10-17 盐城工学院 一种MXene衍生多孔TiO2/RGO纳米片复合光催化剂的方法及其应用
CN116889867B (zh) * 2023-06-20 2024-04-05 盐城工学院 一种MXene衍生多孔TiO2/RGO纳米片复合光催化剂的方法及其应用

Also Published As

Publication number Publication date
CN111646500B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
CN111646500B (zh) 一种富含表面缺陷的2D多孔TiO2纳米片及其制备方法
Duan et al. TiO2 faceted nanocrystals on the nanofibers: Homojunction TiO2 based Z-scheme photocatalyst for air purification
Ke et al. In situ photochemical synthesis noble-metal-free NiS on CdS-diethylenetriamine nanosheets for boosting photocatalytic H2 production activity
Wu et al. Preparation of g-C3N4/TiO2 by template method and its photocatalytic performance
Zhu et al. Construction of 2D/2D TiO2/g-C3N4 nanosheet heterostructures with improved photocatalytic activity
CN103991903B (zh) 一种混相二氧化钛纳米片光催化剂的制备方法
Yu et al. NiO nanoparticles dotted TiO2 nanosheets assembled nanotubes PN heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution
Cheng et al. A novel protocol to design TiO2-Fe2O3 hybrids with effective charge separation efficiency for improved photocatalysis
CN103949234A (zh) 硼掺杂石墨烯/TiO2纳米棒光催化材料的制备方法
Zhou et al. Controllable doping of nitrogen and tetravalent niobium affords yellow and black calcium niobate nanosheets for enhanced photocatalytic hydrogen evolution
WO2019085532A1 (zh) 一种三价钛自掺杂二氧化钛纳米颗粒-部分还原氧化石墨烯纳米片复合材料及其制备方法
CN104588040A (zh) 一种光催化剂及其制备方法
Hu et al. Green solid-state synthesis and photocatalytic hydrogen production activity of anatase TiO 2 nanoplates with super heat-stability
Tanveer et al. Atypical BiOCl/Bi2S3 hetero-structures exhibiting remarkable photo-catalyst response
CN112619647A (zh) Co-MOF衍生的四氧化三钴复合二氧化钛异质结的制备方法及电解水应用
CN114772635B (zh) 一种二氧化钛纳米锥阵列/含硫空位的硫化铟锌光催化剂的制备方法
Wang et al. Ultrathin black TiO 2 nanosheet-assembled microspheres with high stability for efficient solar-driven photocatalytic hydrogen evolution
CN113751049B (zh) 一种碳化钛/氮化碳复合光催化剂的制备方法、产品及应用
Liu et al. Enhanced photocatalytic water splitting with surface defective SrTiO 3 nanocrystals
Zhang et al. Synthesis and photocatalytic activity of Cu2O hollow nanospheres/TiO2 nanosheets by an in-situ water-bath method
Lin et al. High-performance α-Bi2O3/CdS heterojunction photocatalyst: innovative design, electrochemical performance and DFT calculation
Huang et al. Morphology-dependent quasi 2D/2D point-flat-plate ternary CdS/MoS2/WS2 heterojunction with improved visible photocatalytic degradation of tetracycline
Han et al. Combination of theory and experiment achieving one-dimensional MWO4 (M= Zn, Ni, and Cu) photocatalysts with broad-spectrum degradation
CN110993355B (zh) 一种二维碳化钛衬底层优化α相氧化铁光阳极的制备方法
CN115110115B (zh) 一种C、N共掺杂TiO2基复合薄膜光电极及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant