CN111430155A - 一种石墨烯/CoOx复合电极的制备方法与应用 - Google Patents

一种石墨烯/CoOx复合电极的制备方法与应用 Download PDF

Info

Publication number
CN111430155A
CN111430155A CN202010139617.7A CN202010139617A CN111430155A CN 111430155 A CN111430155 A CN 111430155A CN 202010139617 A CN202010139617 A CN 202010139617A CN 111430155 A CN111430155 A CN 111430155A
Authority
CN
China
Prior art keywords
graphene
coo
composite
electrode
composite electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010139617.7A
Other languages
English (en)
Inventor
赵江
刘盼
徐荣青
嵇光晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202010139617.7A priority Critical patent/CN111430155A/zh
Publication of CN111430155A publication Critical patent/CN111430155A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种石墨烯/CoOx复合电极的制备方法与应用,该复合电极的制备方法,包括以下步骤:(1)将六水合氯化钴与聚酰亚胺溶液混合得到混合物;(2)将混合物涂覆在基底上,烘干后形成复合薄膜;(3)在复合薄膜上设定电极图案;(4)使用激光按照电极图案在复合薄膜上进行雕刻,得到石墨烯/CoOx复合电极;该电极能够应用在超级电容器中。本发明能够直接按照目标电极形状制备出石墨烯/CoOx复合电极,制备方法简单,制备成本低,制备出的石墨烯/CoOx复合电极容量高、导电性好。

Description

一种石墨烯/CoOx复合电极的制备方法与应用
技术领域
本发明涉及一种复合电极的制备方法与应用,更具体地,涉及石墨烯/CoOx复合电极的制备方法与应用。
背景技术
氧化钴作为典型的电池型电极材料,有很高的理论容量,优异的氧化还原性,同时相对于Fe、Ni等其他电池型电极材料有很好的稳定性,因此也被认为是非常有前景的超级电容器材料。但由于氧化钴电导率较低,且充放电速率较慢,进而严重阻碍了其在超级电容器的实际应用;石墨烯是由碳原子之间相互连接成六角网络而组成的独特的二维层状结构碳材料,具有较高的导电性和大的比表面积,石墨烯和氧化钴制成的复合材料具有高容量,高电导率,其在电容器领域具有广阔的应用前景。目前石墨烯/氧化钴复合材料的制备方法主要是液相激光辐照/烧蚀法,需要将氧化石墨烯与Co3O4粉末混合,然后再使用激光诱导还原石墨烯,不仅制备成本较高,且在制备成电容器电极时制备方法复杂、难以制备出精确的目标电极形状。
发明内容
发明目的:本发明的目的是提供一种制备方法简单、电极形状精确、制备成本低的石墨烯/CoOx复合电极,本发明的另一目的是提供该复合电极的制备方法,本发明的另一目的是提供该复合电极的应用。
技术方案:本发明所述的石墨烯/CoOx复合电极的制备方法,包括以下步骤:
(1)将六水合氯化钴与聚酰亚胺溶液混合得到混合物;
(2)将混合物涂覆在基底上,烘干后形成复合薄膜;
(3)在复合薄膜上设定电极图案;
(4)使用激光按照电极图案在复合薄膜上进行雕刻,得到石墨烯/CoOx复合电极。
其中,步骤1中六水合氯化钴与聚酰亚胺溶液的质量比为1:20~1:100;步骤2中烘干温度为50~160℃,烘干时间为3~6h,薄膜厚度为50~100μm,基底为柔性基底,柔性基底为柔性聚酰亚胺薄膜。
本发明所述的制备方法制备出的石墨烯/CoOx复合电极在超级电容器中的应用。
有益效果:本发明与现有技术相比,其显著优点是:1、能够直接按照目标电极形状制备出石墨烯/CoOx复合电极,制备方法简单;2、制备成本低;3、制备出的石墨烯/CoOx复合电极容量高、导电性好;4、能够在超级电容器中得到应用。
附图说明
图1是实施例3中石墨烯/CoOx复合电极的扫描电镜图;
图2是实施例3中石墨烯/CoOx复合电极的透射电镜图;
图3是实施例3中石墨烯/CoOx复合电极Co元素的X射线光电子能谱;
图4是实施例3中柔性超级电容器的循环伏安测试图;
图5是实施例3中柔性超级电容器的恒电流充放电测试图;
图6是实施例3中柔性超级电容器在不同弯曲角度下的比电容变化图。
具体实施方式
实施例1
取60g的聚酰亚胺溶液,称取3g的六水合氯化钴,将聚酰亚胺溶液和六水合氯化钴混合均匀得到混合材料,使用涂膜器将混合材料涂覆在柔性聚酰亚胺薄膜上,涂覆的厚度为100μm,将样品在80℃、120℃、160℃下分别烘干0.5h,得到石墨烯/氯化钴复合薄膜,使用绘图软件绘制出插指型电极图样,然后导入Nero Start Smart软件,将激光器功率设置为2.4瓦,波长30微米,利用激光器按照预设的图案对复合薄膜进行雕刻,得到激光诱导石墨烯/CoOx复合电极,在复合电极表面涂覆PVA/H2SO4凝胶电解质,得到柔性超级电容器,在电化学工作站上测试超级电容器的电化学储能特性,计算得到其面积比电容为5.31mF/cm2
实施例2
取60g的聚酰亚胺溶液,称取1.5g的六水合氯化钴,将聚酰亚胺溶液和六水合氯化钴混合均匀得到混合材料,使用涂膜器将混合材料涂覆在柔性聚酰亚胺薄膜上,涂覆的厚度为100μm,将样品在60℃、100℃、150℃下分别烘干1h,得到石墨烯/CoOx复合薄膜,使用绘图软件绘制出插指型电极图样,然后导入Nero Start Smart软件,将激光器功率设置为2.4瓦,波长30微米,利用激光器按照预设的图案对复合薄膜进行雕刻,得到激光诱导石墨烯/CoOx复合电极,在复合电极表面涂覆PVA/H2SO4凝胶电解质,得到柔性超级电容器,在电化学工作站上测试超级电容器的电化学储能特性,计算得到其面积比电容为7.27mF/cm2
实施例3
取60g的聚酰亚胺溶液,称取1g的六水合氯化钴,将聚酰亚胺溶液和六水合氯化钴混合均匀得到混合材料,使用涂膜器将混合材料涂覆在柔性聚酰亚胺薄膜上,涂覆的厚度为100μm,将样品在60℃、100℃、150℃下分别烘干1h,得到石墨烯/CoOx复合薄膜,使用绘图软件绘制出插指型电极图样,然后导入Nero Start Smart软件,将激光器功率设置为2.4瓦,波长30微米,利用激光器按照预设的图案对复合薄膜进行雕刻,得到激光诱导石墨烯/CoOx复合电极,从图1可以看出,其表面形态平整,从图2可以看出,CoOx均匀的分布在石墨烯的表面和内部,从图3可以看出,779.7eV和794.9eV的拟合峰对应于Co 2p3+,778.4eV和793.6ev的拟合峰对应Co 2p2+,说明复合电极中存在CoOx,在复合电极表面涂覆PVA/H2SO4凝胶电解质,得到柔性超级电容器,在电化学工作站上测试超级电容器的电化学储能特性,从图4中可以看出,在5mV每秒到80mV每秒的扫描速率下,CV曲线接近矩形,表明该超级电容器具有优异的电容行为和较低接触电阻,在5mV/s的扫描速率下比电容为10.9mF/cm2,从图5可得,恒电流充电和放电曲线的线性轮廓为对称的三角形形状,说明柔性超级电容器接近理想的电容特性,随着扫描速率的增加,充放电时间对应增加。将电容器弯折30~150°,测试其比电容,从图6可以看出,从0-150度,柔性超级电容器的电容一直保持近乎100%,显示出优异的特性,表明其容量不随弯曲角度变化。
实施例4
取60g的聚酰亚胺溶液,称取0.75g的六水合氯化钴,将聚酰亚胺溶液和六水合氯化钴混合均匀得到混合材料,使用涂膜器将混合材料涂覆在柔性聚酰亚胺薄膜上,涂覆的厚度为50μm,将样品在60℃、100℃、150℃下分别烘干1h,得到石墨烯/CoOx复合薄膜,使用绘图软件绘制出插指型电极图样,然后导入Nero Start Smart软件,将激光器功率设置为2.4瓦,波长30微米,利用激光器按照预设的图案对复合薄膜进行雕刻,得到激光诱导石墨烯/CoOx复合电极,在复合电极表面涂覆PVA/H2SO4凝胶电解质,得到柔性超级电容器,在电化学工作站上测试超级电容器的电化学储能特性,计算得到其面积比电容为7.65mF/cm2
实施例5
取60g的聚酰亚胺溶液,称取0.6g的六水合氯化钴,将聚酰亚胺溶液和六水合氯化钴混合均匀得到混合材料,使用涂膜器将混合材料涂覆在柔性聚酰亚胺薄膜上,涂覆的厚度为100μm,将样品在80℃、120℃、150℃下分别烘干2h,得到石墨烯/CoOx复合薄膜,使用绘图软件绘制出插指型电极图样,然后导入Nero Start Smart软件,将激光器功率设置为2.4瓦,波长30微米,利用激光器按照预设的图案对复合薄膜进行雕刻,得到激光诱导石墨烯/CoOx复合电极,在复合电极表面涂覆PVA/H2SO4凝胶电解质,得到柔性超级电容器,在电化学工作站上测试超级电容器的电化学储能特性,计算得到其面积比电容为5.10mF/cm2
实施例6
取60g的聚酰亚胺溶液,称取1g的六水合氯化钴,将聚酰亚胺溶液和六水合氯化钴混合均匀得到混合材料,使用涂膜器将混合材料涂覆在柔性聚酰亚胺薄膜上,涂覆的厚度为100μm,将样品在60℃、100℃、150℃下分别烘干2h,得到石墨烯/CoOx复合薄膜,使用绘图软件绘制出插指型电极图样,然后导入Nero Start Smart软件,将激光器功率设置为2.4瓦,波长30微米,利用激光器按照预设的图案对复合薄膜进行雕刻,得到激光诱导石墨烯/CoOx复合电极,在复合电极表面涂覆PVA/H2SO4凝胶电解质,得到柔性超级电容器,在电化学工作站上测试超级电容器的电化学储能特性,计算得到其面积比电容为10.3mF/cm2

Claims (8)

1.一种石墨烯/CoOx复合电极的制备方法,其特征在于,包括以下步骤:
(1)将六水合氯化钴与聚酰亚胺溶液混合得到混合物;
(2)将混合物涂覆在基底上,烘干后形成复合薄膜;
(3)在复合薄膜上设定电极图案;
(4)使用激光按照电极图案在复合薄膜上进行雕刻,得到石墨烯/CoOx复合电极。
2.根据权利要求1所述的石墨烯/CoOx复合电极的制备方法,其特征在于,所述步骤1中六水合氯化钴与聚酰亚胺溶液的质量比为1:20~1:100。
3.根据权利要求1所述的石墨烯/CoOx复合电极的制备方法,其特征在于,所述步骤2中烘干温度为50~160℃。
4.根据权利要求1所述的石墨烯/CoOx复合电极的制备方法,其特征在于,所述步骤2中烘干时间为1.5~6h。
5.根据权利要求1所述的石墨烯/CoOx复合电极的制备方法,其特征在于,所述步骤2中薄膜厚度为50~100μm。
6.根据权利要求1所述的石墨烯/CoOx复合电极的制备方法,其特征在于,所述步骤2中的基底为柔性基底。
7.根据权利要求6所述的石墨烯/CoOx复合电极的制备方法,其特征在于,所述柔性基底为柔性聚酰亚胺薄膜。
8.一种权利要求1~7所述的制备方法制得的石墨烯/CoOx复合电极在超级电容器中的应用。
CN202010139617.7A 2020-03-03 2020-03-03 一种石墨烯/CoOx复合电极的制备方法与应用 Pending CN111430155A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010139617.7A CN111430155A (zh) 2020-03-03 2020-03-03 一种石墨烯/CoOx复合电极的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010139617.7A CN111430155A (zh) 2020-03-03 2020-03-03 一种石墨烯/CoOx复合电极的制备方法与应用

Publications (1)

Publication Number Publication Date
CN111430155A true CN111430155A (zh) 2020-07-17

Family

ID=71546145

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010139617.7A Pending CN111430155A (zh) 2020-03-03 2020-03-03 一种石墨烯/CoOx复合电极的制备方法与应用

Country Status (1)

Country Link
CN (1) CN111430155A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758975A (zh) * 2021-09-10 2021-12-07 华东师范大学 一种激光诱导的石墨烯/金属氧化物敏感材料及其制备方法
CN114093682A (zh) * 2021-11-12 2022-02-25 西安交通大学 石墨烯/Co-CoO复合电极材料的激光制备方法及应用
CN114974936A (zh) * 2022-06-24 2022-08-30 安徽格兰科新材料技术有限公司 高赝电容负载量的石墨烯超级电容器复合电极的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944414A (zh) * 2014-03-27 2015-09-30 纳米新能源生命科技(唐山)有限责任公司 石墨烯薄膜、石墨烯超级电容器及其制备方法
CN109682872A (zh) * 2019-01-24 2019-04-26 青岛农业大学 一种激光诱导二氧化钛/三维多孔石墨烯复合光电极的制备及其光致电化学农残传感研究
KR20190097379A (ko) * 2018-02-12 2019-08-21 경희대학교 산학협력단 패턴화된 금속 산화물 나노로드를 제조하는 방법
CN110504111A (zh) * 2019-09-05 2019-11-26 大连理工大学 一种具有三维储能结构的纸基电容器激光雕刻制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104944414A (zh) * 2014-03-27 2015-09-30 纳米新能源生命科技(唐山)有限责任公司 石墨烯薄膜、石墨烯超级电容器及其制备方法
KR20190097379A (ko) * 2018-02-12 2019-08-21 경희대학교 산학협력단 패턴화된 금속 산화물 나노로드를 제조하는 방법
CN109682872A (zh) * 2019-01-24 2019-04-26 青岛农业大学 一种激光诱导二氧化钛/三维多孔石墨烯复合光电极的制备及其光致电化学农残传感研究
CN110504111A (zh) * 2019-09-05 2019-11-26 大连理工大学 一种具有三维储能结构的纸基电容器激光雕刻制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WENTAO WANG等: "Tailoring the surface morphology and nanoparticle distribution of laser-induced graphene/Co3O4 for high-performance flexible microsupercapacitors", 《APPLIED SURFACE SCIENCE》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758975A (zh) * 2021-09-10 2021-12-07 华东师范大学 一种激光诱导的石墨烯/金属氧化物敏感材料及其制备方法
CN114093682A (zh) * 2021-11-12 2022-02-25 西安交通大学 石墨烯/Co-CoO复合电极材料的激光制备方法及应用
CN114093682B (zh) * 2021-11-12 2022-10-25 西安交通大学 石墨烯/Co-CoO复合电极材料的激光制备方法及应用
CN114974936A (zh) * 2022-06-24 2022-08-30 安徽格兰科新材料技术有限公司 高赝电容负载量的石墨烯超级电容器复合电极的制备方法
CN114974936B (zh) * 2022-06-24 2023-09-08 安徽格兰科新材料技术有限公司 高赝电容负载量的石墨烯超级电容器复合电极的制备方法

Similar Documents

Publication Publication Date Title
Li et al. Hydrothermal synthesized of CoMoO 4 microspheres as excellent electrode material for supercapacitor
Liu et al. High performance hybrid supercapacitor based on hierarchical MoS2/Ni3S2 metal chalcogenide
Navale et al. Electrochemical supercapacitor development based on electrodeposited nickel oxide film
An et al. Novel three-dimensional NiCo 2 O 4 hierarchitectures: solvothermal synthesis and electrochemical properties
CN111430155A (zh) 一种石墨烯/CoOx复合电极的制备方法与应用
Wu et al. Fe 3 O 4-based core/shell nanocomposites for high-performance electrochemical supercapacitors
Pang et al. Comparison of α-NiMoO4 nanorods and hierarchical α-NiMoO4@ δ-MnO2 core-shell hybrid nanorod/nanosheet aligned on Ni foam for supercapacitors
Lu et al. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles
CN105280394A (zh) 一种基于多层结构的高功率密度和高能量密度的新概念电池型超级电容器及其制备方法
Ambare et al. Ru incorporation enhanced electrochemical performance of spray deposited Mn: Co3O4 nano-composite: Electrochemical approach
Cevik et al. Synthesis of hierarchical multilayer N-doped Mo2C@ MoO3 nanostructure for high-performance supercapacitor application
Gu et al. Behavior of electrical charge storage/release in polyaniline electrodes of symmetric supercapacitor
Li et al. Novel hierarchical structural SnS2 composite supported by biochar carbonized from chewed sugarcane as enhanced anodes for lithium ion batteries
CN108461719A (zh) 一种富锂材料/导电有机聚合物复合正极材料及电极的制备方法
Liu et al. Polyaniline/MnO2 composite with high performance as supercapacitor electrode via pulse electrodeposition
CN108565127B (zh) 一种可提高超级电容器比容量的电极材料、制备方法及应用
Cui et al. Novel LaFeO3 coating modification for a LiFePO4 cathode
CN111689523A (zh) 金属铬掺杂δ-MnO2纳米片的制备方法
Tong et al. NiCo2O4 Nanosheet arrays for high performance energy storage device
Xu et al. Mn (OH) 2 electrodeposited on secondary porous Ni nano-architecture foam as high-performance electrode for supercapacitors
US20240096564A1 (en) Method for incorporating molybdenum carbide nanoshoots into nanocomposite electrode
Xia et al. Electrochemical performances of Na 2 MnSiO 4 as an energy storage material in sodium-ion capacitors
Ren et al. Assembly of Mn3O4/carbon black composite and its supercapacitor application
CN113658809B (zh) 一种非晶氧化锰电极材料制备方法
CN104538206A (zh) 一类钙钛矿氧化物在超级电容器中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 210003 Gulou District, Jiangsu, Nanjing new model road, No. 66

Applicant after: NANJING University OF POSTS AND TELECOMMUNICATIONS

Address before: Yuen Road Qixia District of Nanjing City, Jiangsu Province, No. 9 210046

Applicant before: NANJING University OF POSTS AND TELECOMMUNICATIONS

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200717