CN111416002A - 一种电池背面氮化硅膜层、perc电池及制备方法 - Google Patents

一种电池背面氮化硅膜层、perc电池及制备方法 Download PDF

Info

Publication number
CN111416002A
CN111416002A CN202010329604.6A CN202010329604A CN111416002A CN 111416002 A CN111416002 A CN 111416002A CN 202010329604 A CN202010329604 A CN 202010329604A CN 111416002 A CN111416002 A CN 111416002A
Authority
CN
China
Prior art keywords
film layer
silicon nitride
layer
nitride film
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010329604.6A
Other languages
English (en)
Inventor
朱浩
万柳斌
吴朋朋
张基勇
蒋柱
方雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongwei Solar Hefei Co Ltd
Original Assignee
Tongwei Solar Hefei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongwei Solar Hefei Co Ltd filed Critical Tongwei Solar Hefei Co Ltd
Priority to CN202010329604.6A priority Critical patent/CN111416002A/zh
Publication of CN111416002A publication Critical patent/CN111416002A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Automation & Control Theory (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种电池背面氮化硅膜层、PERC电池及制备方法,属于单晶PERC电池制造领域。针对现有技术中存在的现有技术电池背膜反射率低,电池转换效率低,同时背膜制作工艺温度要求高,耗能大成本高的问题,本发明提供了一种PERC电池,所述电池包括正面氮化硅膜层,背面氧化铝膜层和背面氮化硅膜层,所述背面氮化硅膜层为五层结构,所述电池制作时先沉积背面氧化铝膜层,再沉积正面氮化硅膜层,最后沉积背面氮化硅膜层的顺序,使用低温制作工艺,不仅提升电池片光电转化效率,提高单晶PERC电池产品的性能,还降低制作过程中耗能,减少制作时间,提高生产效率,适于广泛应用。

Description

一种电池背面氮化硅膜层、PERC电池及制备方法
技术领域
本发明涉及单晶PERC电池制造领域,更具体地说,涉及一种电池背面氮化硅膜层、PERC电池及制备方法。
背景技术
晶硅太阳能电池目前的主流技术是PERC(Passivated Emitter Rear Cell)——发射极及背面钝化电池技术,它通过在电池的后侧上添加一个电介质钝化层来提高转换效率。PERC电池通过在电池背面实行钝化技术,增强光线在硅基的内背反射,降低了背面复合,最大化跨越了P-N结的电势梯度,使得电子更稳定的流动,减少了电子重组,从而使PERC电池的效率得到有效提高。
单晶PREC电池背面用氧化铝和氮化硅覆盖是核心技术,由于背膜在硅基片上沉积氧化铝钝化层较薄,需要在此氧化铝膜上沉积氮化硅作保护作用,同时增加背面的反射率,目的得到更优的钝化表面,从而提高长波响应的作用,以此提高Isc/Uoc,从而提升电池的转换效率。
背镀膜成膜质量好坏对电池片背面钝化效果及对氧化铝保护有着比较重要的影响,管式PECVD沉积氮化硅过程中,随着温度的升高使氧化铝薄膜中的羟基分解,薄膜中H含量会减少,使电池片表面钝化效果减弱,有效少子寿命降低,选择合适的生长温度,可使薄膜的结晶程度达到最佳。现有技术背膜主要为单层、三层膜,背面反射效果是瓶颈,短路电流上不去,同时背膜工艺温度在530度左右,耗能大成本较高。
中国专利申请,申请号CN 201910067978.2,公开日2019年5月21日,公开了一种抗PID双面PERC电池的背面减反钝化膜和双面PERC电池及其制备方法,背面减反钝化膜包括SiO2层;与SiO2层接触的氧化铝层;与氧化铝层接触的n层SiNx,1≤x≤1.5;从里指向外,n层SiNx的折射率呈下降趋势;n层SiNx的厚度呈增加趋势;n为正整数。本发明通过在硅片背面设置SiO2层和n层SiNx,n层SiNx的折射率呈下降趋势;n层SiNx的厚度呈增加趋势,使得钝化膜具有较好的抗PID效果。双面PERC电池在-1500V,85%湿度,85℃测试条件下,96h后正面衰减比为0.34%,背面衰减比为0.66%;192h后正面衰减比为1.65%,背面衰减比为2.10%,该发明硅氮比逐渐降低,即基硅底层起,从里到外膜层折射率逐渐降低、膜层厚度逐渐增加,此膜层结果对波长响应匹配相对不佳。
发明内容
1.要解决的技术问题
针对现有技术中存在的现有技术电池背膜反射率低,电池转换效率低,同时背膜制作工艺温度要求高,耗能大成本高的问题,本发明提供了一种电池背面氮化硅膜层、PERC电池及制备方法,它可以提升电池片光电转化效率,提高单晶PERC电池产品的性能。
2.技术方案
本发明的目的通过以下技术方案实现。
一种电池背面氮化硅膜层,包括五层结构,所述背面五层氮化硅膜层的厚度从里向外依次为α1、α2、α3、α4和α5,α1至α5的厚度为α5≥α3≥α1≥α4≥α2或α5≥α3≥α1≥α2≥α4;所述背面五层氮化硅膜层的折射率从里向外依次为β1、β2、β3、β4和β5,β1至β5的折射率为β1≥β3>β4>β2=β5。本发明电池背面氮化硅膜层设计五层结构,达到最佳的电池转化效率,所述背面氮化硅膜层的厚度和折射率与传统膜层厚度逐渐增加,折射率逐渐降低相比,本发明膜层对波长相应匹配更好,电流表现优势明显。
更进一步的,所述背面五层氮化硅膜层的厚度取值范围从里向外依次为25nm±5nm、10nm±5nm、30nm±5nm、20nm±5nm和45nm±5nm,所述背面五层氮化硅膜层的折射率取值范围从里向外依次为2.6±0.2、2.1±0.1、2.5±0.1、2.3±0.05和2.1±0.1。
更进一步的,所述背面五层氮化硅膜层的厚度从里向外依次为25nm、10nm、30nm、20nm和45nm,所述背面五层氮化硅膜层的折射率从里向外依次为2.6、2.1、2.5、2.3和2.1。
一种PERC电池,包括所述的一种电池背面氮化硅膜层,还包括硅片和设置在硅片背面的背面氧化铝膜层,所述背面氧化铝膜层位于硅片和所述背面氮化硅膜层之间。在背面氧化铝膜层上沉积背面氮化硅膜层,保护背面氧化铝膜层,同时增加背面的反射率,得到更优的钝化表面,提升电池的转换效率。
更进一步的,所述电池还包括设置在硅片正面的正面氮化硅膜层。正面氮化硅膜层为减少反射钝化膜。
一种PERC电池的制备方法,包括以下步骤:
步骤1:通过制绒、扩散、一次退火、刻蚀和二次退火操作,得到预处理硅片;
步骤2:在所述预处理硅片的背面沉积背面氧化铝膜层;
步骤3:在所述预处理硅片的正面沉积正面氮化硅膜层;
步骤4:在所述背面氧化铝膜层上沉积背面氮化硅膜层;
步骤5:采用激光对背面进行开槽,丝网印刷形成背电极、背电场、正电极;烧结,制备结束。
本发明电池制作先正膜后背膜,背面氧化铝在未镀膜的情况下经过自动化皮带传送以及石墨舟擦取片,高频次的物理接触有可能增加EL不良,通过设备与自动化厂家摸索实验,EL不良与先背膜后正膜的工艺方式持平。
本发明将原有的镀膜工序背背正改为背正背的镀膜顺序,通过镀膜顺序的改变,延长背面氧化铝的退火时间,提高背面氧化铝负电荷密度,提升氧化铝场钝化效应,钝化生成的Al2O3含有高密度的固定负电荷,形成的电场可以降低表面复合。在不增加任何额外投入的情况下,本发明电池片转化效率有0.05%-0.07%提升。
更进一步的,步骤4中沉积背面氮化硅膜层时工艺温度为470℃±20℃。本发明通过对比不同背膜温度条件对电池片效率的影响,同时研究不同温度与不同背膜膜层结构匹配性进一步提升电池片光电转化效率,证实背膜低温与背膜五层膜的工艺匹配性,为背膜工艺优化拓展新的方向;新匹配工艺对比常规制程工艺光电转化效率提升比较显著。
背面钝化后进行500℃退火,四面体从密度方面考虑明显优于八面体,可以得到更多的负电荷,增强背面钝化效果,同时有利于H2的释放。低温制作工艺使背膜退火时间缩短,提高了生产效率。
更进一步的,步骤4中背面氮化硅膜层使用等离子体增强型化学气相沉积。
更进一步的,所述等离子体增强型化学气相沉积为管式等离子体增强型化学气相沉积。
更进一步的,步骤2中正面氮化硅膜层使用等离子体增强型化学气相沉积。制作时通过提升背面氧化铝致密性,提升电池的竞争力。
更进一步的,步骤3中背面氧化铝膜层使用原子层沉积的方式形成。
更进一步的,步骤3中背面氮化硅膜层由NH3和SiH4等气氛提供原料,制作时通过调整NH3和SiH4流量配比控制五层膜各层的折射率。
本发明先正后背低温制作的背膜五层电池,较现有产线的背膜三层电池,在不增加任何额外投入的情况下,转化效率提升0.05%-0.07%,开路电压Uoc、短路电池Isc和填充因子FF等相关参数也均有明显改善。低温制作工艺不仅电池转化效率更好,还减少了背膜退火时间,提高了生产效率,适于广泛应用。
3.有益效果
相比于现有技术,本发明的优点在于:
(1)本发明背膜五层氮化硅膜层从里至外的折射率是高-低-高-低-低,从里之外膜层的厚度是厚-薄-厚-薄-厚,与传统的膜层厚度逐渐增加,折射率逐渐降低的膜层相比,本发明背面五层氮化硅膜层对波长相应匹配更好,表现的效率更优,电流表现优势明显。
(2)本发明的PERC太阳能电池,使用先正膜后背膜的镀膜顺序,采取低温工艺,沉积背面氮化硅膜层时工艺温度为470℃±20℃。背膜五层结构有利于背面接触和体表面钝化效果,提高开路电压,同时背面形成梯度镜面增加了长波的内反射,增强背面的反射率,提高了电池的少子寿命,增加了短路电流,从而提升光电转换效率,发明使用先正后背镀膜工艺,在不增加任何额外投入的情况下,本发明电池片转化效率有0.05%-0.07%提升,黑斑麻点不良比例降低约0.15%。
本发明的制作方法,可在不同PECVD沉积设备上实现背膜低温条件匹配背膜五层膜的制备,工艺步骤简单、工艺稳定易于控制;背膜工艺温度比常规工艺低50度,耗能降低明显。低温制作工艺使背膜退火时间压缩3分钟,产能增加4万片/班,提高生产效率。
附图说明
图1为本发明电池结构示意图;
图2为本发明电池背膜五层结构示意图。
具体实施方式
下面结合说明书附图和具体的实施例,对本发明作详细描述。
实施例1
本实施例以P型单晶硅为例,描述其PERC太阳能电池背膜的五层结构,以及对应的低温制备方法。
首先,本发明电池结构如图1所示,单晶电池的正面镀有正面氮化硅膜层用于减少反射,电池背膜包括背面氧化铝膜层和背面氮化硅膜层,背面氮化硅膜层对背面氧化铝膜层起保护作用,同时增加背面的反射率,得到更优的钝化表面,提高电池的转化效率。
表1
背面氮化硅膜层 膜厚 折射率
第一层 25nm±5nm 2.6±0.2
第二层 10nm±5nm 2.1±0.1
第三层 30nm±5nm 2.5±0.1
第四层 20nm±5nm 2.3±0.05
第五层 45nm±5nm 2.1±0.1
如图2所示,本实施例所述背面氮化硅膜层为五层膜,五层氮化硅膜层使用NH3和SiH4特气柜制作,制作时通过调整NH3和SiH4流量配比控制五层膜各层的折射率,所述背面五层氮化硅膜层的厚度从里向外依次为α1、α2、α3、α4和α5,α1至α5的厚度为α5≥α3≥α1≥α4≥α2或α5≥α3≥α1≥α2≥α4,所述五层膜中第二次和第四层与第一层、第三层和第五层相比,厚度略低,呈现厚-薄-厚-薄-厚状态,也就是说:五层膜中第一层、第三层和第五层均高于第二层;或第一层、第三层和第五层均高于第四层。所述背面五层氮化硅膜层的折射率从里向外依次为β1、β2、β3、β4和β5,β1至β5的折射率为β1≥β3>β4>β2=β5,五层膜的折射率大小分布为高-低-高-低-低。本实施例中,所述五层膜的厚度和折射率如表1所示,表1中固定值为实验过程测试的平均值,在测试平均值基础上,五层膜的厚度和折射率取值有相应范围。
所述背面氮化硅膜层通过调整硅烷或氨气的不同流量配比构建出五层膜结构,在现有技术中的单层膜、双层膜等结构基础上进行优化,通过五层膜结构的不同厚度及折射率数据的设定,增加沉积钝化效果,提升电池的开路电压Uoc和短路电流Isc,进而提升电池的转换效率。所述背膜五层结构搭配沉积470℃低温温度工艺,通过电池性能的测试,验证电池转化效率显著提升。
根据表1参数所示的背面氮化硅膜层五层膜的厚度和折射率,从里至外从第一层至第五层的折射率是高-低-高-低-低,膜层的厚度分别是厚-薄-厚-薄-厚。经过有限次的实验数据分析,本发明所述厚度和折射率的膜层,与折射率逐渐降低膜层厚度逐渐增加的膜层相比,PID合格,对波长相应匹配好,表现的效率更优,电流表现优势明显。
实施例2
实施例1所述的背膜五层结构电池,具体制作步骤如下:
步骤Ⅰ:通过制绒、扩散、一次退火、刻蚀和二次退火操作,得到预处理硅片;
a)、制绒:
用酸溶液进行各向同性腐蚀,获得表面存在许多凹坑的表面结构,同时能起到良好的陷光作用,对单晶硅片进行制绒处理,形成金字塔绒面,使硅片表面形成均匀的金字塔状结构,增强光的吸收,提高了电池的短路电流和转换效率。
反应方程式为:Si+4HNO3+6HF=H2SiF6+4NO3+4H2O。
b)、扩散制备PN结:
表面磷源推进,使用热推进方式形成PN结,通过气体携带POCL3溶液进入扩散炉管,使之反应生成磷沉淀在表层,磷在高温下渗入硅片内部形成N区。
反应方程式为:4POCL3+5O2=2P2O5+6CL2
2P2O5+5Si=4P↓+5SiO2
4PCL5+5O2=2P2O5+10CL2
4PCL3+5O2=2P2O5+6CL2
c)、一次退火;
在450℃左右,硅中的氧会转化为氧施主,对电阻率的正确测量带来影响,使P型单晶硅电阻率升高,甚至反型;使N型单晶硅电阻率降低。在700℃左右退火处理,可以使氧施主回到间隙氧状态,消除氧施主对电阻率测试的影响。
反应方程式为:Si+O2=SiO2(高温)
d)、刻蚀;
背面抛光、刻蚀、去磷硅玻璃;利用HNO3和HF的混合液体对扩散后硅片下表面和边缘进行腐蚀,去除边缘的N型硅,使得硅片的上下表面相互绝缘。
e)、二次退火;
同c)步骤,退火处理,可以使氧施主回到间隙氧状态,消除氧施主对电阻率测试的影响。
反应方程式为:Si+O2=SiO2(高温)
步骤Ⅱ:在所述预处理硅片的背面沉积背面氧化铝膜层;
ALD为原子层沉积(Atomic layer deposition),是一种可以将物质以单原子膜形式一层一层的镀在基底表面的方法。原子层沉积与普通的化学沉积有相似之处。
背面ALD制备双面氧化铝膜,通过将气相前驱体脉冲交替地通入反应器并在沉积基体上化学吸附以及反应并形成沉积膜的一种方法。当前躯体达到沉积基体表面,它们会在其表面化学吸附并发生表面反应。
原子层沉积的表面反应具有自限制性,即化学吸附自限制(CS)和顺次反应自限制(RS)过程,实际上这种自限制性特征正是原子层沉积技术的基础。不断重复这种自限制反应就形成所需要的薄膜。ALD制备的Al2O3薄膜中存在一定量的AL-OH键,经退火后AL-OH键转变成AL-O键,并释放出H原子,一部分进入硅表面,钝化表面悬挂键,一部分聚合形成H2
步骤Ⅲ:在所述预处理硅片的正面沉积正面氮化硅膜层;
等离子体增强型化学气相沉积(PECVD,Plasma Enhanced Chemical VaporDeposition),是借助微波或射频等使含有薄膜成分原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。
利用低温等离子体作能量源,样品置于低气压下辉光放电的阴极上,利用辉光发电(或另加发热体)使样品升温到预定的温度,然后通入适量的反应气体,气体经一系列化学反应和等离子体反应,在样品表面形成固态薄膜。
反应方程式为:4HN3+3SiH4=Si3N4↓+12H2
步骤Ⅳ:在所述背面氧化铝膜层上沉积背面氮化硅膜层;
在步骤Ⅱ背膜氧化铝、步骤Ⅲ正膜氮化硅膜、步骤Ⅳ背膜氮化硅膜基础上,背面五层膜结构的氮化硅膜使用NH3和SiH4特气柜制作,制作时通过调整NH3和SiH4流量配比控制五层膜各层的折射率;在此工艺过程中匹配低温五层膜氮化硅膜工艺,在470℃±20℃温度进行实施。
在管式PECVD沉积氮化硅过程中,随着温度的升高使氧化铝薄膜中的羟基分解,薄膜中的H含量会减少,使电池片表面钝化效果减弱,有效少子寿命降低,选择合适的生长温度,可使薄膜的结晶程度达到最佳,期间尝试不同的工艺温度梯度,以470℃温度的效率最佳。
ALD过程中Al2O3是以6个氮原子的八面体中心位置和4个氧原子的四面体中心位置两种配位形式存在的,退火热处理后八面体结构转化为四面体结构,四面体多了一个氧的负电荷,因此增加了Al2O3的负电荷密度,制备工序从背背正改为背正背的镀膜顺序,增加了退火时间,更有利于四面体氧化铝的形成,从而提高钝化效果。先正膜再背膜,电池转化效率提升0.05%,电池可靠性不变,效率增益较大,降本增效显著。
步骤Ⅴ:采用激光对背面进行开槽,丝网印刷形成背电极、背电场、正电极;烧结,制备结束。
i)、背面激光局部开槽;
硅片背表面的电流通过光刻槽导出被背电场吸收,传导到背电场。
ii)、丝网印刷形成背电极、背电场、正电极,印刷正银采用臭氧单面聚合浆料;
丝印主要是利用网版图文部分网孔透墨,非图文部分网孔不透墨的基本原理进行印刷。
印刷正银采取单面单面银浆进行搭配,本实验以搭配聚合浆料为例,具体的,臭氧单面聚合浆料WL698对氧化铝的蚀穿性能,搭配降低正面氧化铝厚度。
iii)、烧结使金属与硅形成良好的欧姆接触。
测试通过本发明工艺制作电池的电性能。
在电池性能的检测中,本实施例设计以下三组实验,对背膜三层和背膜五层结构在不同温度下进行参数测量。
实验一是背膜三层膜温度梯度实验,工艺温度分别为450度、470度和530度,其中530度为现有生产线温度,实验结果如表2所示。
实验二是背膜五层膜温度梯度实验,工艺温度分别是450度、470度和530度,其中530度是现有生产线温度,实验结果如表3所示。
实验三是背膜三层膜结构和背膜五层膜结构搭配低温工艺量实验,实验结果如表4所示。
表2、表3和表4中,Eta表示电池的转换效率,电池转换效率是衡量电池质量和技术水平的重要参数,它与电池的结构、结特性、材料性质、工作温度、放射性粒子辐射损伤和环境变化等有关。Uoc表示开路电压,开路电压是将太阳能电池置于100mW/cm2的光源照射下,在两端开路时,太阳能电池的输出电压值。Isc表示短路电流,电路电流是将太阳能电置于标准光源的照射下,在输出端短路时,流过太阳能电池两端的电流,Isc和Uoc表征电池的转化效率。FF表示填充因子,又称曲线因子,填充因子指太阳能电池最大功率与开路电压和短路电流乘积的比值,是评价太阳能电池输出特性好坏的一个重要参数,填充因子值越高,表明太阳能电池输出特性越趋近于矩形,电池的光转换效率越高。Rser为串联电阻,Rshunt为漏电并联电阻,Irevmax为暗电流。
表2
Figure BDA0002464463470000081
表3
Figure BDA0002464463470000082
表4
Figure BDA0002464463470000083
根据表2和表3的实验数据可得到,在470度工艺效率最高,主要表现在短路电流Isc提升。根据表4实验数据可知,背膜五层膜温度梯度实验工艺效率较产线工艺背膜三层膜电池转换效率偏高0.05%左右,开路电压Uoc、短路电池Isc和填充因子FF等参数均有优势。
电池的转换效率指的是太阳能电池将光能转换为电能的比例,根据相关文献记载,单晶电池的电池转换率从2013年的19%到2018年提升至接近20%,使用本发明制备方法在470℃温度制作的五层结构的背面氮化硅膜层电池,通过实验验证电池转换率提升0.05%左右,在转换率上有较大突破,增效显著。
本发明电池的制作顺序是:前道-背钝化-正膜-背膜-后道;将原有的镀膜工序背背正改为背正背的镀膜顺序,通过镀膜顺序的改变,延长背面氧化铝膜层的退火时间,提高背面氧化铝膜层负电荷密度,提升氧化铝场钝化效应,钝化生成的Al2O3含有高密度的固定负电荷,形成的电场可以降低表面复合。
本发明制备方法制作的单晶PERC电池,较背面PECVD单层膜单晶PERC电池,短路电流提高,开压提高,电池转换效率提高0.05%~0.07%,可见此单晶电池先正后背条件下,背膜使用五层膜搭配低温工艺,增效显著,效果更好。
以上示意性地对本发明创造及其实施方式进行了描述,该描述没有限制性,在不背离本发明的精神或者基本特征的情况下,能够以其他的具体形式实现本发明。附图中所示的也只是本发明创造的实施方式之一,实际的结构并不局限于此,权利要求中的任何附图标记不应限制所涉及的权利要求。所以,如果本领域的普通技术人员受其启示,在不脱离本创造宗旨的情况下,不经创造性的设计出与该技术方案相似的结构方式及实施例,均应属于本专利的保护范围。此外,“包括”一词不排除其他元件或步骤,在元件前的“一个”一词不排除包括“多个”该元件。产品权利要求中陈述的多个元件也可以由一个元件通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (12)

1.一种电池背面氮化硅膜层,其特征在于,包括五层结构,所述背面五层氮化硅膜层的厚度从里向外依次为α1、α2、α3、α4和α5,α1至α5的厚度为α5≥α3≥α1≥α4≥α2或α5≥α3≥α1≥α2≥α4;所述背面五层氮化硅膜层的折射率从里向外依次为β1、β2、β3、β4和β5,β1至β5的折射率为β1≥β3>β4>β2=β5。
2.根据权利要求1所述的一种电池背面氮化硅膜层,其特征在于,所述背面五层氮化硅膜层的厚度取值范围从里向外依次为25nm±5nm、10nm±5nm、30nm±5nm、20nm±5nm和45nm±5nm,所述背面五层氮化硅膜层的折射率取值范围从里向外依次为2.6±0.2、2.1±0.1、2.5±0.1、2.3±0.05和2.1±0.1。
3.根据权利要求2所述的一种电池背面氮化硅膜层,其特征在于,所述背面五层氮化硅膜层的厚度从里向外依次为25nm、10nm、30nm、20nm和45nm,所述背面五层氮化硅膜层的折射率从里向外依次为2.6、2.1、2.5、2.3和2.1。
4.一种PERC电池,其特征在于,包括如权利要求1-3任意一项所述的一种电池背面氮化硅膜层,还包括硅片和设置在硅片背面的背面氧化铝膜层,所述背面氧化铝膜层位于硅片和所述背面氮化硅膜层之间。
5.根据权利要求4所述的一种PERC电池,其特征在于,所述电池还包括设置在硅片正面的正面氮化硅膜层。
6.一种如权利要求4-5任意一项所述PERC电池的制备方法,其特征在于,包括以下步骤:
步骤Ⅰ:通过制绒、扩散、一次退火、刻蚀和二次退火操作,得到预处理硅片;
步骤Ⅱ:在所述预处理硅片的背面沉积背面氧化铝膜层;
步骤Ⅲ:在所述预处理硅片的正面沉积正面氮化硅膜层;
步骤Ⅳ:在所述背面氧化铝膜层上沉积背面氮化硅膜层;
步骤Ⅴ:采用激光对背面进行开槽,丝网印刷形成背电极、背电场、正电极;烧结,制备结束。
7.根据权利要求6所述的一种PERC电池的制备方法,其特征在于,步骤4中沉积背面氮化硅膜层时工艺温度为470℃±20℃。
8.根据权利要求7所述的一种PERC电池的制备方法,其特征在于,步骤4中背面氮化硅膜层使用等离子体增强型化学气相沉积。
9.根据权利要求8所述的一种PERC电池的制备方法,其特征在于,所述等离子体增强型化学气相沉积为管式等离子体增强型化学气相沉积。
10.根据权利要求6所述的一种PERC电池的制备方法,其特征在于,步骤2中正面氮化硅膜层使用等离子体增强型化学气相沉积。
11.根据权利要求6所述的一种PERC电池的制备方法,其特征在于,步骤3中背面氧化铝膜层使用原子层沉积的方式形成。
12.根据权利要求11所述的一种PERC电池的制备方法,其特征在于,步骤3中背面氮化硅膜层由NH3和SiH4等气氛提供原料,制作时通过调整NH3和SiH4流量配比控制五层膜各层的折射率。
CN202010329604.6A 2020-04-24 2020-04-24 一种电池背面氮化硅膜层、perc电池及制备方法 Pending CN111416002A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010329604.6A CN111416002A (zh) 2020-04-24 2020-04-24 一种电池背面氮化硅膜层、perc电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010329604.6A CN111416002A (zh) 2020-04-24 2020-04-24 一种电池背面氮化硅膜层、perc电池及制备方法

Publications (1)

Publication Number Publication Date
CN111416002A true CN111416002A (zh) 2020-07-14

Family

ID=71492199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010329604.6A Pending CN111416002A (zh) 2020-04-24 2020-04-24 一种电池背面氮化硅膜层、perc电池及制备方法

Country Status (1)

Country Link
CN (1) CN111416002A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497240A (zh) * 2022-03-30 2022-05-13 浙江晶科能源有限公司 一种太阳能电池及其制备方法和光伏组件
WO2022110613A1 (zh) * 2020-11-27 2022-06-02 浙江贝盛光伏股份有限公司 一种perc电池制备方法
CN114843369A (zh) * 2022-04-28 2022-08-02 晶科能源(海宁)有限公司 一种太阳能电池制备工艺的监控方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110613A1 (zh) * 2020-11-27 2022-06-02 浙江贝盛光伏股份有限公司 一种perc电池制备方法
CN114497240A (zh) * 2022-03-30 2022-05-13 浙江晶科能源有限公司 一种太阳能电池及其制备方法和光伏组件
CN114843369A (zh) * 2022-04-28 2022-08-02 晶科能源(海宁)有限公司 一种太阳能电池制备工艺的监控方法

Similar Documents

Publication Publication Date Title
CN109786476B (zh) 一种钝化接触结构及其在硅太阳电池中应用
WO2021004525A1 (zh) 一种异质结电池分层氢钝化方法、氢钝化装置、电池、电池组件及太阳能供电站
CN111416002A (zh) 一种电池背面氮化硅膜层、perc电池及制备方法
Rohatgi et al. Comprehensive study of rapid, low-cost silicon surface passivation technologies
CN109004038B (zh) 太阳能电池及其制备方法和光伏组件
CN108110066B (zh) 一种提升perc电池转换效率的正面膜层结构以及制备方法
CN215869407U (zh) 一种极性相同的钝化接触结构及电池、组件和***
Kessels et al. High-rate deposition of a-SiN x: H for photovoltaic applications by the expanding thermal plasma
CN103632935A (zh) N 型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
CN113621946A (zh) 一种叠层背膜及其制备方法
CN103632934A (zh) N型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
JPH11251612A (ja) 光起電力素子の製造方法
CN103632933A (zh) N型硅片的硼扩散方法、晶体硅太阳能电池及其制作方法
CN112510121A (zh) 一种perc电池碱抛前后保护工艺
CN113488555B (zh) 异质结电池及制备方法、太阳能电池组件
CN113451431A (zh) 一种异质结太阳能电池及其制备方法
CN115274869A (zh) 一种极性相同的钝化接触结构及电池、制备工艺、组件和***
CN117558831A (zh) 一种硅基异质结太阳能电池的透明导电钝化接触结构及其制备方法
CN112563370A (zh) 单晶perc晶硅电池背钝化制备工艺及perc太阳能电池
CN211507647U (zh) 一种电池背面氮化硅膜层和perc电池
EP4307394A1 (en) Perc battery back passivation structure, and perc battery and preparation method therefor
Xiao et al. SiOx/polysilicon selective emitter prepared by PECVD-deposited amorphous silicon plus one-step firing enabling excellent J0, met of< 235 fA/cm2 and ρc of< 2 mΩ· cm2
CN114038945A (zh) 一种单面ald方式制备新型perc电池的方法
US20140130860A1 (en) Method for forming alumina film and solar cell element
JP2004296615A (ja) 積層型光起電力素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination