CN111398634A - 一种悬浮/导向传感器加速度信号的校准方法及装置 - Google Patents

一种悬浮/导向传感器加速度信号的校准方法及装置 Download PDF

Info

Publication number
CN111398634A
CN111398634A CN202010263029.4A CN202010263029A CN111398634A CN 111398634 A CN111398634 A CN 111398634A CN 202010263029 A CN202010263029 A CN 202010263029A CN 111398634 A CN111398634 A CN 111398634A
Authority
CN
China
Prior art keywords
axis
angle
accelerometer
triaxial
gyroscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010263029.4A
Other languages
English (en)
Inventor
丁婵
佟来生
罗华军
张文跃
朱跃欧
陈启发
汤彪
朱琳
张文会
王明华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Zhuzhou Locomotive Co Ltd
Original Assignee
CRRC Zhuzhou Locomotive Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Zhuzhou Locomotive Co Ltd filed Critical CRRC Zhuzhou Locomotive Co Ltd
Priority to CN202010263029.4A priority Critical patent/CN111398634A/zh
Publication of CN111398634A publication Critical patent/CN111398634A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

本发明公开了一种悬浮/导向传感器加速度信号的校准方法及装置,所述方法及装置通过三轴陀螺仪采集的角度值来实时校准三轴加速度计的角度,实现对三轴加速度计所采集的加速度信号的校准,能够大大地减小加速度信号中的原有噪声,提高了加速度信号的输出精度,降低了悬浮控制器后续的信号处理难度,有利于保障磁浮列车的稳定运行;该方法中,三轴加速度计和三轴陀螺仪的数据采集同步,再在数据处理模块中进行处理而得到校准后的加速度信号,无需实时跟随,且校准处理过程相对简单,计算量小,计算速度快。

Description

一种悬浮/导向传感器加速度信号的校准方法及装置
技术领域
本发明属于磁浮列车悬浮控制领域,尤其涉及一种通过三轴陀螺仪与FPGA滤波校准悬浮/导向传感器输出加速度信号的方法及装置。
背景技术
近年来磁浮技术在国内得到了迅速地发展,同时商业运营线也在逐渐地增多。其中,悬浮/导向传感器作为其重要零部件,对悬浮控制程序的可靠运行,起到了尤为关键的作用。低速磁浮领域,以长沙磁浮为例,主要采用悬浮传感器,而导向为被动型导向,并不需要导向传感器。而中高速磁浮领域,以上海高速磁浮为例,悬浮、导向都需对应的悬浮、导向传感器来传输相应的信号。悬浮/导向传感器一般包括三轴加速度计和间隙传感器,三轴加速度计作为悬浮/导向传感器的主要组成部分之一,对磁浮列车的稳定运行影响巨大。目前磁浮列车的悬浮/导向传感器主要是三轴加速度计采集加速度信号,再将加速度信号直接输入悬浮控制器中进行处理。以悬浮传感器为例,由于悬浮传感器初始安装的误差以及磁浮列车运行过程中由于轨缝、机械构件的安装误差等,电磁铁会发生姿态角度的变化,这就导致三轴加速度计会受到除垂直方向(Z轴)外的另外两轴(X、Y轴)的影响,使三轴加速度计单轴的输出信号并非单一某轴上的加速度信号,而是受到了其他两轴的信号干扰,导致最终输出的信号噪声很大,提高了悬浮控制器后续信号处理的难度,不利于控制程序的稳定运行。
目前主要是通过悬浮控制器的后期处理来解决三轴加速度计输出的加速度信号噪声大的问题。如果对悬浮/导向传感器的信号做前期处理,可以得到更为准确的各个方向或轴上的加速度信号,增强对外界的抗干扰能力,减弱传感器信号的噪声,提高悬浮控制程序的稳定性。对于单独的三轴加速度计干扰信号的处理一般采用卡尔曼滤波,但卡尔曼滤波需要实时跟随,导致所需要的数据量大,同时实时计算的速度慢。而悬浮/导向传感器目前采用的硬件电路需要同时对几路三轴加速度计和几路间隙信号进行处理,考虑到成本、处理时间等问题,一般的卡尔曼滤波不适用于悬浮/导向传感器的前期滤波处理,不利于工程化的实现。
发明内容
针对现有技术的不足,本发明提供一种悬浮/导向传感器加速度信号的校准方法及装置,以解决悬浮控制器因信号噪声大导致处理困难的问题,以及卡尔曼滤波进行信号前期处理时数据量大,处理速度慢的问题。
本发明是通过如下的技术方案来解决上述技术问题的:一种悬浮/导向传感器加速度信号的校准方法,包括以下步骤:
步骤1:将三轴陀螺仪与悬浮/导向传感器中的三轴加速度计安装在同一水平面上,获取三轴加速度计和三轴陀螺仪的采集数据;
步骤2:分别对所述步骤1中三轴加速度计和三轴陀螺仪的采集数据进行处理得到处理后的加速度值和角度变化率;
步骤3:根据所述步骤2中处理后的加速度值得到三轴加速度计在上一时刻和当前时刻的角度,根据上一时刻和当前时刻的角度得到一时间段内的角度差;所述时间段为当前时刻与上一时刻的差;
步骤4:根据所述步骤2中处理后的角度变化率、所述步骤3中的上一时刻和当前时刻得到三轴陀螺仪在所述时间段内的角度变化值;
步骤5:根据所述时间段内的角度差和角度变化值得到角度补偿值;
步骤6:将所述步骤5中的角度补偿值与所述步骤3中三轴加速度计在上一时刻的角度叠加得到三轴加速度计在当前时刻校准后的角度,根据校准后的角度得到三轴加速度计在当前时刻校准后的加速度信号。
本发明所述方法,在悬浮/导向传感器中的三轴加速度计所采集的加速度信号发送给悬浮控制器之前,通过三轴陀螺仪和数据处理模块对三轴加速度计的角度进行校准,从而实现对三轴加速度计所采集的加速度信号的校准;悬浮/导向传感器中的三轴加速度计在磁浮列车上应用时,由于三轴加速度计的灵敏度过高,导致动态倾角的检测不准确,单轴输出信号易受到其他轴的影响,从而导致三轴加速度计输出的加速度信号噪声大,而三轴陀螺仪的固有属性决定了三轴陀螺仪采集的角度信息基本不受其他轴影响,因此,将三轴陀螺仪与三轴加速度计设在同一水平面上,采用三轴陀螺仪的角度值来校准三轴加速度计的角度,从而校准三轴加速度计的加速度信号,能够大大地减小加速度信号中的原有噪声,提高了加速度信号的输出精度,降低了悬浮控制器后续的信号处理难度,有利于保障磁浮列车的稳定运行;该方法中,三轴加速度计和三轴陀螺仪的数据采集同步,再在数据处理模块中进行处理而得到校准后的加速度信号,无需实时跟随,且校准处理过程相对简单,计算量小,计算速度快。
进一步地,所述步骤2中,采用ADC模块分别对三轴加速度计和三轴陀螺仪的采集数据进行数字化处理,处理后的加速度值和角度变化率为:
Figure BDA0002440127080000021
其中,R为X、Y或Z轴,
Figure BDA0002440127080000022
为三轴加速度计某个轴在时刻t的加速度值或三轴陀螺仪某个轴在时刻t的角度变化率,
Figure BDA0002440127080000023
为ADC模块在时刻t输出的数值,Vref为ADC模块的参考电压,n为ADC模块的位数,VGzero为零加速度电压值,S为三轴加速度计或三轴陀螺仪的灵敏度。
进一步地,所述步骤3中,三轴加速度计在某个时刻的角度为:
Figure BDA0002440127080000031
其中,
Figure BDA0002440127080000032
Figure BDA0002440127080000033
分别为三轴加速度计的X、Y、Z轴在时刻t的加速度,
Figure BDA0002440127080000034
为三轴加速度计某个轴在时刻t的加速度值,R为X、Y或Z轴,
Figure BDA0002440127080000035
为三轴加速度计某个轴在时刻t的角度;
三轴加速度计在一时间段内的角度差为:
Figure BDA0002440127080000036
其中,
Figure BDA0002440127080000037
为三轴加速度计的某个轴在时间段T内的角度差,T(k)为当前时刻,T(k-1) 为上一时刻,
Figure BDA0002440127080000038
分别为三轴加速度计的某个轴在当前时刻、上一时刻的角度。
进一步地,所述步骤4中,三轴陀螺仪在所述时间段内的角度变化值为:
Figure BDA0002440127080000039
其中,
Figure BDA00024401270800000310
为三轴陀螺仪的某个轴在时间段T内的角度变化值,
Figure BDA00024401270800000311
为三轴陀螺仪某个轴在时刻t的角度变化率,T(k)为当前时刻,T(k-1)为上一时刻。
进一步地,所述步骤5中,将时间段T内的角度差和角度变化值进行互补滤波,得到角度补偿值,所述角度补偿值为:
Figure 100002_1
其中,△θ为角度补偿值,
Figure BDA00024401270800000313
为三轴加速度计的某个轴在时间段T内的角度差,ρ为噪声系数,
Figure BDA00024401270800000314
为三轴陀螺仪的某个轴在时间段T内的角度变化值。
进一步地,噪声系数ρ的取值为5~20。
本发明还提供一种悬浮/导向传感器加速度信号的校准装置,包括:三轴陀螺仪、ADC 模块以及数据处理模块;所述三轴陀螺仪与悬浮/导向传感器中的三轴加速度计安装在同一水平面上;
所述三轴陀螺仪,用于将三轴加速度计的实时物理姿态通过角度传输给ADC模块;
所述ADC模块,用于将三轴加速度计和三轴陀螺仪采集的信号数字化处理后再传输给数据处理模块;
所述数据处理模块,用于对数字化处理后的三轴加速度计的信号进行处理得到三轴加速度计在不同时刻的角度和某时间段内的角度差,对数字化处理后的三轴陀螺仪的信号进行处理得到三轴陀螺仪在某时间段内的角度变化值;还用于将所述角度差和角度变化值进行互补滤波得到角度补偿值,且将角度补偿值与三轴加速度计的角度叠加、转换得到校准后的加速度信号。
有益效果
与现有技术相比,本发明提供的一种悬浮/导向传感器加速度信号的校准方法及装置,通过三轴陀螺仪采集的角度值来实时校准三轴加速度计的角度,实现对三轴加速度计所采集的加速度信号的校准,能够大大地减小加速度信号中的原有噪声,提高了加速度信号的输出精度,降低了悬浮控制器后续的信号处理难度,有利于保障磁浮列车的稳定运行;该方法中,三轴加速度计和三轴陀螺仪的数据采集同步,再在数据处理模块中进行处理而得到校准后的加速度信号,无需实时跟随,且校准处理过程相对简单,计算量小,计算速度快;该装置采用ADC模块和数据处理模块来完成校准处理,校准处理过程可以通过计算机程序来完成,编程简单,处理速度快,便于工程化的实现。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一个实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例中一种悬浮/导向传感器加速度信号的校准方法的流程图;
图2是本发明实施例中三轴加速度计的角度计算示意图;
图3是本发明实施例中三轴陀螺仪的角度计算示意图;
图4是本发明实施例中一种悬浮/导向传感器加速度信号的校准装置的结构框图。
具体实施方式
下面结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的校准方法是针对三轴加速度计其他轴信号干扰导致加速度输出信号噪声大的问题,如图1所示,本发明所提供的一种悬浮/导向传感器加速度信号的校准方法,包括以下步骤:
1、将三轴陀螺仪与悬浮/导向传感器中的三轴加速度计安装在同一水平面上,获取三轴加速度计和三轴陀螺仪的采集数据。
三轴加速度计主要有电压型输出和电荷型输出两种,电荷型输出无法响应0~0.5Hz频率,因此,本实施例中,三轴加速度计选取电压型输出三轴加速度计,电压型输出三轴加速度计主要是通过F=m*a来计算加速度的值。
悬浮/导向传感器中的三轴加速度计在磁浮列车上应用,由于三轴加速度计的灵敏度过高,导致动态倾角的检测不准确(姿态角度变化大),单轴(例如Z轴)输出加速度信号易受到其他轴(X/Y轴)的影响,导致三轴加速度计输出的加速度信号噪声大;而三轴陀螺仪本身是用于角度检测,基于三轴陀螺仪的固有特性,其采集的角度信息基本不会受到其他轴的影响,因此,将三轴陀螺仪与三轴加速度计安装在同一水平面上,通过三轴陀螺仪采集的角度值来实时校准三轴加速度计的角度,从而达到校准三轴加速度计加速度的目的。
2、分别对三轴加速度计和三轴陀螺仪的采集数据进行处理得到处理后的加速度和角度变化率。
采用ADC模块对三轴加速度计和三轴陀螺仪的采集数据进行数字化处理,三轴加速度计和三轴陀螺仪采集的数据同时输入至ADC模块内,数字化处理后的加速度和角度变化率为:
Figure BDA0002440127080000051
其中,R为X、Y或Z轴,
Figure BDA0002440127080000052
为三轴加速度计某个轴在时刻t的加速度或三轴陀螺仪某个轴在时刻t的角度变化率,
Figure BDA0002440127080000053
为ADC模块在时刻t输出的数值,Vref为ADC模块的参考电压,n为ADC模块的位数,VGzero为零加速度电压值(三轴加速度计或三轴陀螺仪的数据手册可查询),S为三轴加速度计或三轴陀螺仪的灵敏度。
以三轴加速度计的Z轴为例,则数字化处理后三轴加速度计Z轴输出加速度为:
GZ=(VGZ×Vref/(2n-1)-VGzero)/S (2)
3、根据步骤2中处理后的加速度得到三轴加速度计在上一时刻和当前时刻的角度,根据上一时刻和当前时刻的角度得到一时间段内的角度差;时间段为当前时刻与上一时刻的差。
三轴加速度计在某个时刻的角度为:
Figure BDA0002440127080000054
其中,
Figure BDA0002440127080000055
Gx、Gy、Gz分别为三轴加速度计的X、Y、Z轴在时刻t的加速度,
Figure BDA0002440127080000056
为三轴加速度计某个轴在时刻t的角度。本实施例中,三轴加速度计Z 轴在时刻t的角度是指三轴加速度计Z轴在时刻t偏离原始坐标系的角度,原始坐标系为三维直角坐标系。
如图2所示,三轴加速度计在一时间段内的角度差为:
Figure BDA0002440127080000061
其中,
Figure BDA0002440127080000062
为三轴加速度计的某个轴在时间段T内的角度差(表示三轴加速度计某个轴经过时间段T后的角度变化),T(k)为当前时刻,T(k-1)为上一时刻,
Figure BDA0002440127080000063
分别为三轴加速度计的某个轴在当前时刻、上一时刻的角度,时间段T=T(k)-T(k-1)。
4、根据步骤2中处理后的角度变化率、步骤3中的上一时刻和当前时刻得到三轴陀螺仪在时间段内的角度变化值。
如图3所示,三轴陀螺仪在时间段T内的角度变化值为:
Figure BDA0002440127080000064
其中,
Figure BDA0002440127080000065
为三轴陀螺仪的某个轴在时间段T内的角度变化值,
Figure BDA0002440127080000066
为三轴陀螺仪某个轴在时刻t的角度变化率。如图3所示,以三轴陀螺仪的Z轴为例,
Figure BDA0002440127080000067
为三轴陀螺仪Z轴在T(k-1)时刻的角度,θT(k)为三轴陀螺仪Z轴在T(k)时刻的角度。
5、根据时间段内的角度差和角度变化值得到角度补偿值。
将时间段T内的角度差
Figure BDA0002440127080000068
和角度变化值
Figure BDA0002440127080000069
进行互补滤波,得到角度补偿值,角度补偿值为:
Figure 2
其中,△θ为角度补偿值,ρ为噪声系数,ρ根据检测到的三轴加速度计的信号噪声来确定,一般取值为5~20,具体确定方法为:通过示波器观察校准后的加速度信号波形,当信号噪声下降至能接受的范围或符合需求(一般信噪比为50%或更低),表明该噪声系数符合要求,否则更换噪声系数后重新观察,直到达到需求为止。
6、将步骤5中的角度补偿值与步骤3中三轴加速度计在上一时刻的角度叠加得到三轴加速度计在当前时刻校准后的角度,根据校准后的角度得到三轴加速度计在当前时刻校准后的加速度信号,再将校准后的加速度信号发送给悬浮控制器进行处理,加快了悬浮控制器的处理速度,提高了悬浮控制的稳定性。
三轴加速度计某个轴在当前时刻校准后的的角度
Figure BDA0002440127080000071
再根据公式(3)反推出三轴加速度计校准后的加速度信号,校准后的加速度的计算公式为
Figure BDA0002440127080000072
本发明的校准方法,通过三轴陀螺仪采集的角度值来实时校准三轴加速度计的角度,实现对三轴加速度计所采集的加速度信号的校准,能够大大地减小加速度信号中的原有噪声,提高了加速度信号的输出精度,降低了悬浮控制器后续的信号处理难度,有利于保障磁浮列车的稳定运行;该方法中,三轴加速度计和三轴陀螺仪的数据采集同步,再在数据处理模块中进行处理而得到校准后的加速度信号,无需实时跟随,且校准处理过程相对简单,计算量小,计算速度快。
如图4所示,本发明还提供一种悬浮/导向传感器加速度信号的校准装置,包括:三轴陀螺仪、ADC模块以及数据处理模块;所述三轴陀螺仪与悬浮/导向传感器中的三轴加速度计安装在同一水平面上;
所述三轴陀螺仪,用于将三轴加速度计的实时物理姿态通过角度传输给ADC模块;
所述ADC模块,用于将三轴加速度计和三轴陀螺仪采集的信号数字化处理后再传输给数据处理模块;
所述数据处理模块,用于对数字化处理后的三轴加速度计的信号进行处理得到三轴加速度计在不同时刻的角度和某时间段内的角度差,对数字化处理后的三轴陀螺仪的信号进行处理得到三轴陀螺仪在某时间段内的角度变化值;还用于将所述角度差和角度变化值进行互补滤波得到角度补偿值,且将角度补偿值与三轴加速度计的角度叠加、转换得到校准后的加速度信号。
本实施例中,数据处理模块选用FPGA模块。该装置采用ADC模块和数据处理模块来完成校准处理,校准处理过程可以通过计算机程序来完成,编程简单,处理速度快,便于工程化的实现。
以上所揭露的仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或变型,都应涵盖在本发明的保护范围之内。

Claims (7)

1.一种悬浮/导向传感器加速度信号的校准方法,其特征在于,包括以下步骤:
步骤1:将三轴陀螺仪与悬浮/导向传感器中的三轴加速度计安装在同一水平面上,获取三轴加速度计和三轴陀螺仪的采集数据;
步骤2:分别对所述步骤1中三轴加速度计和三轴陀螺仪的采集数据进行处理得到处理后的加速度值和角度变化率;
步骤3:根据所述步骤2中处理后的加速度值得到三轴加速度计在上一时刻和当前时刻的角度,根据上一时刻和当前时刻的角度得到一时间段内的角度差;所述时间段为当前时刻与上一时刻的差;
步骤4:根据所述步骤2中处理后的角度变化率、所述步骤3中的上一时刻和当前时刻得到三轴陀螺仪在所述时间段内的角度变化值;
步骤5:根据所述时间段内的角度差和角度变化值得到角度补偿值;
步骤6:将所述步骤5中的角度补偿值与所述步骤3中三轴加速度计在上一时刻的角度叠加得到三轴加速度计在当前时刻校准后的角度,根据校准后的角度得到三轴加速度计在当前时刻校准后的加速度信号。
2.如权利要求1所述的校准方法,其特征在于:所述步骤2中,采用ADC模块分别对三轴加速度计和三轴陀螺仪的采集数据进行数字化处理,处理后的加速度值和角度变化率为:
Figure FDA0002440127070000011
其中,R为X、Y或Z轴,
Figure FDA0002440127070000012
为三轴加速度计某个轴在时刻t的加速度值或三轴陀螺仪某个轴在时刻t的角度变化率,
Figure FDA0002440127070000013
为ADC模块在时刻t输出的数值,Vref为ADC模块的参考电压,n为ADC模块的位数,VGzero为零加速度电压值,S为三轴加速度计或三轴陀螺仪的灵敏度。
3.如权利要求1或2所述的校准方法,其特征在于:所述步骤3中,三轴加速度计在某个时刻的角度为:
Figure FDA0002440127070000014
其中,
Figure FDA0002440127070000015
Figure FDA0002440127070000016
分别为三轴加速度计的X、Y、Z轴在时刻t的加速度,
Figure FDA0002440127070000017
为三轴加速度计某个轴在时刻t的加速度值,R为X、Y或Z轴,
Figure FDA0002440127070000018
为三轴加速度计某个轴在时刻t的角度;
三轴加速度计在一时间段内的角度差为:
Figure FDA0002440127070000021
其中,
Figure FDA0002440127070000022
为三轴加速度计的某个轴在时间段T内的角度差,T(k)为当前时刻,T(k-1)为上一时刻,
Figure FDA0002440127070000023
分别为三轴加速度计的某个轴在当前时刻、上一时刻的角度。
4.如权利要求1或2所述的校准方法,其特征在于:所述步骤4中,三轴陀螺仪在所述时间段内的角度变化值为:
Figure FDA0002440127070000024
其中,
Figure FDA0002440127070000025
为三轴陀螺仪的某个轴在时间段T内的角度变化值,
Figure FDA0002440127070000026
为三轴陀螺仪某个轴在时刻t的角度变化率,T(k)为当前时刻,T(k-1)为上一时刻。
5.如权利要求1所述的校准方法,其特征在于:所述步骤5中,将时间段T内的角度差和角度变化值进行互补滤波,得到角度补偿值,所述角度补偿值为:
Figure 1
其中,△θ为角度补偿值,
Figure FDA0002440127070000028
为三轴加速度计的某个轴在时间段T内的角度差,ρ为噪声系数,
Figure FDA0002440127070000029
为三轴陀螺仪的某个轴在时间段T内的角度变化值。
6.如权利要求5所述的校准方法,其特征在于:所述噪声系数ρ的取值为5~20。
7.一种悬浮/导向传感器加速度信号的校准装置,其特征在于,包括:三轴陀螺仪、ADC模块以及数据处理模块;所述三轴陀螺仪与悬浮/导向传感器中的三轴加速度计安装在同一水平面上;
所述三轴陀螺仪,用于将三轴加速度计的实时物理姿态通过角度传输给ADC模块;
所述ADC模块,用于将三轴加速度计和三轴陀螺仪采集的信号数字化处理后再传输给数据处理模块;
所述数据处理模块,用于对数字化处理后的三轴加速度计的信号进行处理得到三轴加速度计在不同时刻的角度和某时间段内的角度差,对数字化处理后的三轴陀螺仪的信号进行处理得到三轴陀螺仪在某时间段内的角度变化值;还用于将所述角度差和角度变化值进行互补滤波得到角度补偿值,且将角度补偿值与三轴加速度计的角度叠加、转换得到校准后的加速度信号。
CN202010263029.4A 2020-04-07 2020-04-07 一种悬浮/导向传感器加速度信号的校准方法及装置 Pending CN111398634A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010263029.4A CN111398634A (zh) 2020-04-07 2020-04-07 一种悬浮/导向传感器加速度信号的校准方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010263029.4A CN111398634A (zh) 2020-04-07 2020-04-07 一种悬浮/导向传感器加速度信号的校准方法及装置

Publications (1)

Publication Number Publication Date
CN111398634A true CN111398634A (zh) 2020-07-10

Family

ID=71434932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010263029.4A Pending CN111398634A (zh) 2020-04-07 2020-04-07 一种悬浮/导向传感器加速度信号的校准方法及装置

Country Status (1)

Country Link
CN (1) CN111398634A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233413A (zh) * 2005-08-01 2008-07-30 丰田自动车株式会社 加速度传感器校正设备及加速度传感器的输出值校正方法
US20130081259A1 (en) * 2011-10-04 2013-04-04 Webtech Wireless Inc. Method and System for Performing Calibration of an Accelerometer of a Telematics Device during Installation in a Vehicle
CN103399175A (zh) * 2013-07-11 2013-11-20 广东欧珀移动通信有限公司 一种校准加速度传感器的方法及移动终端
CN104246433A (zh) * 2012-01-26 2014-12-24 因文森斯公司 用于移动装置中的传感器的使用中自动校准方法
CN106873612A (zh) * 2017-02-24 2017-06-20 宁波工程学院 电动平衡车姿态快速检测方法
CN206714756U (zh) * 2016-11-30 2017-12-08 苏州国科康成医疗科技有限公司 具有姿态跟踪功能的脑信号采集设备
CN108061855A (zh) * 2017-11-30 2018-05-22 天津大学 一种基于mems传感器的球形电机转子位置检测方法
CN109506674A (zh) * 2017-09-15 2019-03-22 高德信息技术有限公司 一种加速度的校正方法及装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233413A (zh) * 2005-08-01 2008-07-30 丰田自动车株式会社 加速度传感器校正设备及加速度传感器的输出值校正方法
JP2009503530A (ja) * 2005-08-01 2009-01-29 トヨタ自動車株式会社 加速度センサの補正装置および加速度センサの出力値補正方法
US20130081259A1 (en) * 2011-10-04 2013-04-04 Webtech Wireless Inc. Method and System for Performing Calibration of an Accelerometer of a Telematics Device during Installation in a Vehicle
CN104246433A (zh) * 2012-01-26 2014-12-24 因文森斯公司 用于移动装置中的传感器的使用中自动校准方法
CN103399175A (zh) * 2013-07-11 2013-11-20 广东欧珀移动通信有限公司 一种校准加速度传感器的方法及移动终端
CN206714756U (zh) * 2016-11-30 2017-12-08 苏州国科康成医疗科技有限公司 具有姿态跟踪功能的脑信号采集设备
CN106873612A (zh) * 2017-02-24 2017-06-20 宁波工程学院 电动平衡车姿态快速检测方法
CN109506674A (zh) * 2017-09-15 2019-03-22 高德信息技术有限公司 一种加速度的校正方法及装置
CN108061855A (zh) * 2017-11-30 2018-05-22 天津大学 一种基于mems传感器的球形电机转子位置检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
STANCIN S, ET AL: "Time- and Computation-Efficient Calibration of MEMS 3D Accelerometers and Gyroscopes", 《SENSORS》 *
蒋毅 等: "扩展卡尔曼滤波在磁浮列车悬浮控制中的应用研究", 《自动化应用》 *

Similar Documents

Publication Publication Date Title
CN107560613B (zh) 基于九轴惯性传感器的机器人室内轨迹跟踪***及方法
CN110540118B (zh) 一种用于检测轿厢运动状态的智能检测装置
CN105300381B (zh) 一种基于改进互补滤波的自平衡移动机器人姿态快速收敛方法
CN104596514B (zh) 加速度计和陀螺仪的实时降噪***和方法
CN111238535B (zh) 一种基于因子图的imu误差在线标定方法
CN105680736B (zh) 一种基于偏航角的双电机速度同步及平衡控制方法
CN110567492A (zh) 低成本mems惯性传感器***级标定方法
CN105737793B (zh) 滚转角测量单元及测量方法
CN112286217A (zh) 基于径向基神经网络的自动驾驶仪及其解耦控制方法
CN108663067A (zh) 一种运动传感器的自适应校准方法和***
CN106873612A (zh) 电动平衡车姿态快速检测方法
CN113063416B (zh) 一种基于自适应参数互补滤波的机器人姿态融合方法
CN116499696B (zh) 一种提高风洞模型试验模型姿态角动态精度的方法
CN112345199B (zh) 一种暂冲式高速风洞迎角传感器振动影响修正方法
CN111398634A (zh) 一种悬浮/导向传感器加速度信号的校准方法及装置
CN117589163A (zh) 多传感器组合导航方法及装置
CN117538952A (zh) 旋转加速度计式重力梯度仪垂向运动误差实时补偿方法
CN112923966A (zh) 一种基于卡尔曼滤波的双读数头光电编码器角度估计方法
US20230194565A1 (en) Method of compensating for sensor tolerances
CN110954137A (zh) 一种惯导加速度计装配误差标量修正的方法
CN112344907B (zh) 铁路轨道水平测量方法、***、可读存储介质及电子设备
CN110243462B (zh) 运输测振仪振动检测方法
CN110030992B (zh) 一种基于磁强计的空中飞行物高速旋转角运动测量方法
CN113267183A (zh) 一种多加速度计惯导***的组合导航方法
CN111076718B (zh) 一种地铁列车的自主导航定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200710

RJ01 Rejection of invention patent application after publication