CN111326349A - 一种pim-1负载聚吡咯复合材料及制备方法和其应用 - Google Patents

一种pim-1负载聚吡咯复合材料及制备方法和其应用 Download PDF

Info

Publication number
CN111326349A
CN111326349A CN202010140189.XA CN202010140189A CN111326349A CN 111326349 A CN111326349 A CN 111326349A CN 202010140189 A CN202010140189 A CN 202010140189A CN 111326349 A CN111326349 A CN 111326349A
Authority
CN
China
Prior art keywords
pim
composite material
polypyrrole composite
heating
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010140189.XA
Other languages
English (en)
Inventor
黄爱生
岳文哲
刘传耀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202010140189.XA priority Critical patent/CN111326349A/zh
Publication of CN111326349A publication Critical patent/CN111326349A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种PIM‑1负载聚吡咯复合材料及制备方法和其应用,其制备包括:a)在惰性氮气的气氛下,加热混合搅拌四氟对苯二甲腈、5,5',6,6'‑四羟基‑3,3,3',3'‑四甲基‑1,1'‑螺双茚满、DMF和碳酸钾溶液,冷却后加水,用氯仿、1,4二氧六环、四氢呋喃、丙酮洗涤,再于110℃下干燥24h,得到PIM‑1;b)将所得亮黄色粉末以5℃/min的升温速率升温至600℃氮气氛围煅烧3 h,制得多孔碳材料;c)将多孔碳材料制备成电极片,置于吡咯溶于的稀硫酸水溶液中,加载0.2~0.8 V电压,电沉积5~10 min,制得PIM‑1负载聚吡咯复合材料。将该材料应用在超级电容器,表现出高达4579F/g的比电容,以及良好的倍率特性,是非常有潜力的超级电容器材料。

Description

一种PIM-1负载聚吡咯复合材料及制备方法和其应用
技术领域
本发明涉及多孔复合碳材料的合成,特别是聚吡咯与本征微孔聚合物复合材料的制备,具体地说是一种电化学沉积聚吡咯复合本征微孔聚合物材料及制备方法和其应用。
背景技术
随着社会经济的快速发展,煤、石油、天然气等不可再生能源的储量不断减少,带来了能源紧缺、温室效应和生态破坏等问题,也使得人类的生存环境遭到破坏。化石燃料在使用时会产生一些有毒气体(如SO2)和温室气体CO2,这会使环境遭到破坏,造成全球变暖,威胁全球生态平衡。因此,太阳能、风能、氢能等新能源的研发需求日益迫切,开发低成本、清洁、可再生的替代能源已成为缓解世界能源压力的一种重要途径。可再生的清洁能源一般是分散且波动的,实际应用时较为不便。为了保证这些可再生能源能够有效地进入人们的日常生活,需要将其先存储起来再加以利用。因此,大规模发展绿色环保、性能良好、成本低的能源储存设备,是社会发展进步的迫切需求。
储能设备在现代社会中具有十分重要的地位,日益普及的便携电子设备和电动汽车等对储能设备的性能提出了较高要求。超级电容器由于其功率密度高、循环寿命长、安全环保等优点近年来受到广泛关注。而电极材料是影响超级电容器综合性能的重要因素,根据储能机理的不同,超级电容器可以分为双电层电容器和赝电容器。双电层电容器使用的电极材料多为多孔碳材料(如活性炭石墨烯等);赝电容器也称为法拉第准电容器,其电极材料主要为金属氧化物和导电高分子,这些材料的有效复合可能会优化材料的电化学性能。
近年来,一种新型的高自由体积聚合物被开发出来,称为“本征微孔聚合物”(PIMs)。PIMs具有稠环结构,梯形结构被扭曲部位打断。这些结构特征防止聚合物在固态下有效地填充空间,其高自由体积和微孔性(有效孔径<2nm)。PIM原型膜被称为PIM-1,具有高渗透性和良好的选择性。
聚吡咯(PPy)作为具有赝电容性能的电极材料,由于其高导电性,低成本和较好的氧化还原可逆性而受到广泛关注。但聚吡咯在长时间的电化学使用过程中,其体积会发生较大的膨胀与收缩,导致结构的破坏与坍塌,降低其电化学稳定性,阻碍了聚吡咯在超级电容器中的应用。为了弥补上述缺陷,迫切需要研发改性的复合材料以提高聚吡咯基超级电容器的性能。
发明内容
本发明的目的在于针对现有技术存在的不足,提供一种PIM-1负载聚吡咯复合材料及制备方法和其应用,将碳化PIM-1为材料制备电极片,通过电化学方法沉积PPy得到PIM-1负载聚吡咯复合材料即PPy@PIM-1@Ni foam,表现出优异的电化学性能和循环稳定性,且涉及的制备方法简单、易控,适合推广应用。
为实现上述目的,本发明采用的技术方案为:
一种PIM-1负载聚吡咯复合材料的制备方法,该方法包括以下具体步骤:
步骤1:在惰性氮气的气氛下,将四氟对苯二甲腈、5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满加入到DMF中,再加入碳酸钾;60℃加热搅拌反应12小时,制得多孔高分子材料PIM-1;其中,物质的量之比为四氟对苯二甲腈∶5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满∶DMF∶碳酸钾=1∶1∶2500∶75;
步骤2:将PIM-1置于加盖的瓷舟中,在氮气氛围下以5℃/min的升温速度在管式炉中升温至600℃,保持4h,自然冷却后所得的黑色粉末为多孔碳材料;
步骤3:将步骤2得到的多孔碳材料、炔黑和聚偏氟乙烯PVDF以质量比为8∶1∶1一起放入研钵中,向研钵中滴加分析纯N-甲基吡咯烷酮NMP,研磨变成浆状物,将浆状物滴涂在经处理的泡沫镍2/3的面积内,在60℃下放置12小时烘干,最后在压片机上加压至10MPa,得到PIM-1泡沫镍电极片;
步骤4:将步骤3制备的电极片,置于由吡咯、硫酸与去离子水组成的混合溶液中,加载0.2~0.8V电压,电沉积5~10min,制得所述的PIM-1负载聚吡咯复合材料,记作PPy@PIM-1@Ni foam;其中,物质的量之比为多孔碳材料∶吡咯∶硫酸∶去离子水=1∶100∶200∶1000。
所述泡沫镍的处理:将泡沫镍剪裁成矩形,在浓度为6M的HCL中超声浸泡20min,然后分别用去离子水和乙醇超声清洗20min,在60℃的烘箱里烘干24h。
一种上述方法制得的PIM-1负载聚吡咯复合材料。
一种所述PIM-1负载聚吡咯复合材料作为超级电容器电极材料的应用。
所述PIM-1负载聚吡咯复合材料具有4579F/g的比电容,具有比容量高、循环性能好、结构稳定等特点,是一种优良的储能材料。
本发明的有益效果:
本发明制备的复合材料,利用电化学沉积的方法将PIM-1与PPy进行了有效的复合。
本发明所制得的复合材料,作为超级电容器电极材料的应用,结合了双电层超级电容器和赝电容超级电容器两者的优势,又可有效提升PIM-1的电化学导电性;此外本发明所得复合材料适用于超级电容器等领域。
附图说明
图1为本发明实施例1制得复合材料的SEM照片图;
图2为本发明实施例1制得的复合材料的循环伏安曲线图;
图3为本发明实施例1制得的复合材料不同电流密度下的恒电流充放电时间-电压曲线图;
图4为本发明实施例1制得的复合材料充放电前后的EIS谱图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
实施例1
(1)在惰性氮气的气氛下,将6.02g四氟对苯二甲腈和10.25g 5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满加入到200ml分析纯DMF中,待完全溶解再加入10.25g碳酸钾。将上述溶液在60℃加热搅拌反应12小时,反应结束后,冷却至室温,分别用超纯水、氯仿、1,4二氧六环、四氢呋喃、丙酮洗涤,再于110℃下干燥24h,得到PIM-1;
(2)将0.5g PIM-1置于加盖的瓷舟中,在氮气氛围下以5℃/min的升温速度在管式炉中升温至600℃,保持4h,自然冷却后所得的黑色粉末即为多孔碳材料;
(3)泡沫镍的预处理:将泡沫镍剪裁成的矩形,首先在6M HCL中超声浸泡20min,然后分别用去离子水和乙醇超声清洗20min,在60℃的烘箱里烘干24h;将PIM-1的粉末、乙炔黑和聚偏氟乙烯PVDF以质量比为8∶1∶1一起放入研钵中,向研钵中滴加分析纯N-甲基吡咯烷酮NMP,研磨变成浆状物,将浆状物滴涂在经处理的泡沫镍2/3的面积内,在60℃下放置12小时烘干,最后在压片机上加压至10MPa,得到所述PIM-1泡沫镍电极片;
(4)将得到的碳化PIM-1泡沫镍电极片置于溶解了0.134g吡咯的20mL的0.1mol/L稀硫酸水溶液中,加载0.2~0.8V电压,电沉积5~10min,得到PIM-1负载聚吡咯复合材料,记作PPy@PIM-1@Ni foam。SEM照片如图1所示,从图中可以看出所得复合材料具有蓬松的结构孔,通过直流电场作用下均匀分布在多孔碳材料中。
性能检测
将实施例1制备的复合材料,测得的比电容值如表1所示。
表1
电流密度(A/g) 1 2 5 10
电极电容(F/g) 4579 1632 816 329
图2为实施例1制备的复合材料的循环伏安曲线图;由图可以看出不同扫速下测试曲线中均出现一对氧化还原峰,这表明该材料的储能机制为赝电容机理。
图3为实施例1制备的复合材料不同电流密度下的恒电流充放电时间-电压曲线图;可以观察到一对明显的平台,与充放电过程中循环伏安曲线图的氧化还原过程相对应,电极的比容量可以通过恒流充放电曲线进行计算得出如表1所示。
图4为实施例1制备的复合材料充放电前后的交流阻抗谱图;恒流充放电前后内阻变化较小,表明其理想的电容性能。
通过以上数据及附图看出,本发明复合材料的制备方法,使材料拥有较高的比电容,使其用作超级电容器电极材料有着广泛的应用前景。
虽然上述实施例对于有关参数的选择未涉及所公开的全部范围,但在另外的实施例中,本发明能在所公开的有关参数的全部范围内实现。另外,本发明也并不限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所作出的变化、增减或替换,也应属于本发明的保护范围。

Claims (5)

1.一种PIM-1负载聚吡咯复合材料的制备方法,其特征在于,该方法包括以下具体步骤:
步骤1:在惰性氮气的气氛下,将四氟对苯二甲腈、5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满加入到DMF中,再加入碳酸钾;60℃加热搅拌反应12小时,制得多孔高分子材料PIM-1;其中,物质的量之比为四氟对苯二甲腈∶5,5',6,6'-四羟基-3,3,3',3'-四甲基-1,1'-螺双茚满∶DMF∶碳酸钾=1∶1∶2500∶75;
步骤2:将PIM-1置于加盖的瓷舟中,在氮气氛围下以5 ℃/min的升温速度在管式炉中升温至600℃,保持4 h,自然冷却后所得的黑色粉末为多孔碳材料;
步骤3:将步骤2得到的多孔碳材料、炔黑和聚偏氟乙烯PVDF以质量比为 8∶1∶1一起放入研钵中,向研钵中滴加分析纯N-甲基吡咯烷酮NMP,研磨变成浆状物,将浆状物滴涂在经处理的泡沫镍2/3的面积内,在60℃下放置12小时烘干,最后在压片机上加压至10 MPa,得到PIM-1泡沫镍电极片;
步骤4:将步骤3制备的电极片,置于由吡咯、硫酸与去离子水组成的混合溶液中,加载0.2~0.8 V电压,电沉积5~10 min,制得所述的PIM-1负载聚吡咯复合材料,记作PPy@PIM-1@Ni foam;其中,物质的量之比为多孔碳材料∶吡咯∶硫酸∶去离子水= 1∶100∶200∶1000。
2.根据权利要求1所述的制备方法,其特征在于,所述泡沫镍的处理:将泡沫镍剪裁成矩形,在浓度为6 M的 HCL中超声浸泡20min,然后分别用去离子水和乙醇超声清洗20 min,在60 ℃的烘箱里烘干24h。
3.一种权利要求1所述方法制得的PIM-1负载聚吡咯复合材料。
4.一种权利要求3所述PIM-1负载聚吡咯复合材料作为超级电容器电极材料的应用。
5.根据权利要求4所述的应用,其特征在于,所述PIM-1负载聚吡咯复合材料具有4579F/g的比电容。
CN202010140189.XA 2020-03-03 2020-03-03 一种pim-1负载聚吡咯复合材料及制备方法和其应用 Pending CN111326349A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010140189.XA CN111326349A (zh) 2020-03-03 2020-03-03 一种pim-1负载聚吡咯复合材料及制备方法和其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010140189.XA CN111326349A (zh) 2020-03-03 2020-03-03 一种pim-1负载聚吡咯复合材料及制备方法和其应用

Publications (1)

Publication Number Publication Date
CN111326349A true CN111326349A (zh) 2020-06-23

Family

ID=71165468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010140189.XA Pending CN111326349A (zh) 2020-03-03 2020-03-03 一种pim-1负载聚吡咯复合材料及制备方法和其应用

Country Status (1)

Country Link
CN (1) CN111326349A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676065A (zh) * 2019-09-19 2020-01-10 华东师范大学 一种金属交联多孔碳材料及制备方法和其应用
CN113912887A (zh) * 2020-07-10 2022-01-11 南京理工大学 一种ptfe亲水性多孔离子选择膜复合材料的制备方法
CN115228311A (zh) * 2022-07-08 2022-10-25 大连理工大学 一种基于偕胺肟基团改性UiO-66材料的PIM-1混合基质膜的制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488400A (zh) * 2009-02-17 2009-07-22 武汉工程大学 超级电容器用导电高分子修饰活性碳电极材料的制备方法
CN101819883A (zh) * 2009-03-14 2010-09-01 兰州理工大学 用于超级电容器电极的介孔碳复合材料的制备方法
CN102580567A (zh) * 2011-12-31 2012-07-18 大连理工大学 一种具有介微梯度孔道结构的复合炭膜及其制备方法
CN103553018A (zh) * 2013-08-16 2014-02-05 同济大学 一种规则微孔碳的制备方法
CN103922317A (zh) * 2014-05-07 2014-07-16 南京工业大学 一种氮掺杂多孔碳材料、制备方法及其应用
CN105448533A (zh) * 2014-12-19 2016-03-30 中国科学院福建物质结构研究所 一种复合电极及其制备方法以及在超级电容器中的应用
CN105448534A (zh) * 2014-12-19 2016-03-30 中国科学院福建物质结构研究所 一种复合电极及其制备方法和在超级电容器中的应用
EP3104369A1 (en) * 2015-06-09 2016-12-14 Korea Institute of Science and Technology Composite electric wire structure and method for manufacturing the same
CN109585888A (zh) * 2018-11-07 2019-04-05 大连理工大学 一种共混型阴离子交换膜及其制备方法
CN109573977A (zh) * 2019-01-07 2019-04-05 中南大学 一种基于有机多孔聚合物的多孔碳材料制备方法与应用
US20190109310A1 (en) * 2017-05-01 2019-04-11 Dioxide Materials, Inc. Battery Separator Membrane And Battery Employing Same
WO2019089687A1 (en) * 2017-10-31 2019-05-09 Georgia Tech Research Corporation Hybrid membranes and methods of making and use thereof
CN110676065A (zh) * 2019-09-19 2020-01-10 华东师范大学 一种金属交联多孔碳材料及制备方法和其应用

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101488400A (zh) * 2009-02-17 2009-07-22 武汉工程大学 超级电容器用导电高分子修饰活性碳电极材料的制备方法
CN101819883A (zh) * 2009-03-14 2010-09-01 兰州理工大学 用于超级电容器电极的介孔碳复合材料的制备方法
CN102580567A (zh) * 2011-12-31 2012-07-18 大连理工大学 一种具有介微梯度孔道结构的复合炭膜及其制备方法
CN103553018A (zh) * 2013-08-16 2014-02-05 同济大学 一种规则微孔碳的制备方法
CN103922317A (zh) * 2014-05-07 2014-07-16 南京工业大学 一种氮掺杂多孔碳材料、制备方法及其应用
CN105448534A (zh) * 2014-12-19 2016-03-30 中国科学院福建物质结构研究所 一种复合电极及其制备方法和在超级电容器中的应用
CN105448533A (zh) * 2014-12-19 2016-03-30 中国科学院福建物质结构研究所 一种复合电极及其制备方法以及在超级电容器中的应用
EP3104369A1 (en) * 2015-06-09 2016-12-14 Korea Institute of Science and Technology Composite electric wire structure and method for manufacturing the same
US20190109310A1 (en) * 2017-05-01 2019-04-11 Dioxide Materials, Inc. Battery Separator Membrane And Battery Employing Same
WO2019089687A1 (en) * 2017-10-31 2019-05-09 Georgia Tech Research Corporation Hybrid membranes and methods of making and use thereof
CN109585888A (zh) * 2018-11-07 2019-04-05 大连理工大学 一种共混型阴离子交换膜及其制备方法
CN109573977A (zh) * 2019-01-07 2019-04-05 中南大学 一种基于有机多孔聚合物的多孔碳材料制备方法与应用
CN110676065A (zh) * 2019-09-19 2020-01-10 华东师范大学 一种金属交联多孔碳材料及制备方法和其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JELIZA S. BONSO等: "High surface area carbon nanofibers derived from electrospun PIM-1 for energy storage applications", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
JUN WOO JEON等: "Intrinsically microporous polymer-based hierarchical nanostructuring of electrodes via nonsolvent-induced phase separation for high-performance supercapacitors", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
朱道本 王佛松: "《有机固体》", 31 December 1999, 上海科学技术出版社 *
杨梦: "基于磷酸铁锂/多孔炭体系的锂离子电容器电极材料的性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110676065A (zh) * 2019-09-19 2020-01-10 华东师范大学 一种金属交联多孔碳材料及制备方法和其应用
CN110676065B (zh) * 2019-09-19 2021-05-07 华东师范大学 一种金属交联多孔碳材料及制备方法和其应用
CN113912887A (zh) * 2020-07-10 2022-01-11 南京理工大学 一种ptfe亲水性多孔离子选择膜复合材料的制备方法
CN113912887B (zh) * 2020-07-10 2024-03-15 南京理工大学 一种ptfe亲水性多孔离子选择膜复合材料的制备方法
CN115228311A (zh) * 2022-07-08 2022-10-25 大连理工大学 一种基于偕胺肟基团改性UiO-66材料的PIM-1混合基质膜的制备方法
CN115228311B (zh) * 2022-07-08 2024-02-02 大连理工大学 一种基于偕胺肟基团改性UiO-66材料的PIM-1混合基质膜的制备方法

Similar Documents

Publication Publication Date Title
CN109637831B (zh) 一种超级电容器用氮磷共掺杂多孔碳片的制备方法
CN108922790B (zh) 一种复合材料的制备方法和应用
CN111453726A (zh) 一种氮掺杂多孔炭材料及其制备方法与应用
CN111326349A (zh) 一种pim-1负载聚吡咯复合材料及制备方法和其应用
CN113178338B (zh) 一种咔唑基多孔碳/聚苯胺复合电极材料及其制备方法
Gong et al. Facile synthesis of Ni 0.85 Se on Ni foam for high-performance asymmetric capacitors
CN105152170A (zh) 一种蝉蜕基用于电化学电容器的多孔碳材料的制备方法
CN112259379B (zh) 基于ZIF-67衍生的Co2P@Ni2P/CC蜂窝状纳米片复合材料及其应用
CN110676065B (zh) 一种金属交联多孔碳材料及制备方法和其应用
CN110379646B (zh) 一种基于二硒化钼/木炭的非对称超级电容器的制备方法
AU2020101283A4 (en) Method for Manufacturing Straw-Based Activated Carbon Electrode Material for Super Capacitor with Energy Storage Efficiency Enhanced Through Acid Mine Drainage
CN110634685A (zh) 一种ppy@ZIF-67复合材料及制备方法和其应用
CN112357900A (zh) 一种高密度氮氧氯共掺杂碳颗粒材料、以及制备方法与应用
CN111524719A (zh) 一种ED-Mn@ZIF-67复合材料及制备方法和其应用
CN111146014A (zh) 一种Cu@Cu-CAT@PANI复合电极材料及制备方法和其应用
CN111085691B (zh) 一种含Co@C结构的介孔活性炭材料及其制备方法与应用
CN113496823B (zh) 对称杂化超级电容器及其应用
CN103839691A (zh) 氮掺杂石墨烯复合材料、其制备方法、电极片以及超级电容器
CN114843118B (zh) 具有多级孔电极复合材料go-c@m(oh)2及制备方法和应用
CN105347341A (zh) 一种用于超级电容器的高比表面积活性炭及制备方法
CN107954422A (zh) 一种高比表面积的介孔生物质碳片材料的制备及应用
CN108630443A (zh) 一种石墨化多孔碳材料的制备方法及其在超级电容器中的应用
CN115708180A (zh) 氮、硫掺杂纳米碳材料及其制备方法、电容器电极材料、电容器电极及其制备方法和电容器
Zhang et al. Hard Carbon Derived from Straw as Anode materials for sodium-ion batteries
CN114477131B (zh) 一种氮氧硫氯多重杂原子掺杂多孔碳材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200623

RJ01 Rejection of invention patent application after publication