CN111321394A - 一种气相沉积制备纳米片状磷化钴的方法 - Google Patents

一种气相沉积制备纳米片状磷化钴的方法 Download PDF

Info

Publication number
CN111321394A
CN111321394A CN202010130123.2A CN202010130123A CN111321394A CN 111321394 A CN111321394 A CN 111321394A CN 202010130123 A CN202010130123 A CN 202010130123A CN 111321394 A CN111321394 A CN 111321394A
Authority
CN
China
Prior art keywords
cobalt
precursor
vapor deposition
solvent
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010130123.2A
Other languages
English (en)
Inventor
陈道理
杨绪勇
委福祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuyi Xinyuan Optical Science Technology Co ltd
Original Assignee
Xuyi Xinyuan Optical Science Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuyi Xinyuan Optical Science Technology Co ltd filed Critical Xuyi Xinyuan Optical Science Technology Co ltd
Priority to CN202010130123.2A priority Critical patent/CN111321394A/zh
Publication of CN111321394A publication Critical patent/CN111321394A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明提供一种气相沉积制备纳米片状磷化钴的方法,包括以下步骤:步骤(1).将钴源与2‑甲基咪唑按照摩尔比1:8称量,将钴源与溶剂按1摩尔钴对应20毫升溶剂进行配比形成溶液A;将称量好的2‑甲基咪唑溶于同样体积的溶剂中形成溶液B;将B倒入A中,在室温下静置12‑24h;步骤(2).离心清洗后,真空干燥不少于12h,即获得前驱体;步骤(3).将上述前驱体同磷源按照摩尔比1:5称量,一起置于通保护气的管式炉中;步骤(4).使管式炉在气氛保护条件下按照升温曲线进行升温过程,再在300℃~500℃下反应2~5h,冷却至室温即得纳米片状磷化钴。本发明其结构稳定,排列有序,有利于后续合成加工;原料为钴的硝酸盐、氯化盐、或乙酸盐,原料价格低廉。

Description

一种气相沉积制备纳米片状磷化钴的方法
技术领域
本发明涉及纳米片状磷化钴制备技术领域,具体为一种气相沉积制备纳米片状磷化钴的方法。
背景技术
磷化钴具有良好的金属性质和良好的导电性,在许多领域得到了广泛的研究,如作为电催化剂用于水的裂解,作为负极材料用于锂离子电池,作为催化剂用于加氢脱硫反应等。目前国内所合成的磷化钴其形貌大多是纳米球、纳米线及纳米球等。如中国专利CN201910027895.0公开了一种氮掺杂的磷化钴/纳米碳复合材料及其制备方法和应用,其特点是将磷源、钴源、合成凝胶的单体在聚合助剂下聚合,得到双网络水凝胶;双网络水凝胶经冷冻干燥处理,得到干凝胶;干凝胶在保护性气氛、750-1000℃下煅烧;将煅烧产物与纳米碳材料复合得到磷化钴/纳米碳复合材料。中国专利201811655267.9公开了一种磷化钴纳米线电解水产氢催化剂及其制备方法,其特点是在反应釜中加入硫酸钴尿素、水以及乙二醇中充分溶解;将反应釜加热至130-170℃,进行水热反应,得到磷化钴前驱体;待反应釜自然冷却至常温后,加入氨水和乙二醇、三氧化钼;将反应釜加热至110-135℃,直至得到固态磷化钴;将得到的固态磷化钴置于500-600℃的环境内煅烧2-3小时,得到成品。上诉专利均存在反应温度过高,且在电化学应用中,产物磷化钴的形貌不利于电解质进入电极材料内部,离子扩散距离过长等缺点,不利于在实际应用中达到节约产能,增加产率的目的。
发明内容
本发明所解决的技术问题在于提供一种气相沉积制备纳米片状磷化钴的方法,以解决上述背景技术中提出的问题。
本发明所解决的技术问题采用以下技术方案来实现:一种气相沉积制备纳米片状磷化钴的方法,包括以下步骤:
步骤(1).将钴源与2-甲基咪唑按照摩尔比1:8称量,将钴源与溶剂按1摩尔钴对应20毫升溶剂进行配比形成溶液A;
将称量好的2-甲基咪唑溶于同样体积的溶剂中形成溶液B;
将B倒入A中,搅拌后形成均一溶液,在室温下静置12-24h;
步骤(2).离心清洗后,真空干燥不少于12h,即获得前驱体;通过液相沉积在室温下静置制备出了片状前驱体纳米阵列,其结构稳定,排列有序,有利于后续合成加工;
步骤(3).将上述前驱体同磷源按照摩尔比1:5称量一起置于通保护气的管式炉中,磷源置于管式炉上游,前驱体置于下游;
步骤(4).设置升温曲线,使管式炉在气氛保护条件下按照升温曲线进行升温过程,再在300℃~500℃下反应2~5h,蒸发的磷元素在前驱体表面发生气相沉积反应,片状前驱体转化为片状的磷化钴,冷却至室温即得纳米片状磷化钴。
进一步地,所述步骤(1)中钴源为钴的硝酸盐、氯化盐、乙酸盐中至少一种。
进一步地,所述步骤(1)中溶剂为去离子水,甲醇中至少一种。
进一步地,所述步骤(3)中磷源为磷单质。
进一步地,所述步骤(4)中保护气体为氩气,氮气中至少一种。
进一步地,所述步骤(4)中升温速度为(3-6)℃/分钟。
与现有技术相比,本发明的有益效果是:
1、本发明通过液相沉积在室温下静置制备出了片状前驱体纳米阵列,其结构稳定,排列有序,有利于后续合成加工;原料为钴的硝酸盐、氯化盐、或乙酸盐,原料价格低廉。
2、本发明制备出的纳米片状磷化钴形貌结构稳定,有序排列的纳米阵列使得电解液容易进入电极内部,片状结构大大缩短了离子扩散长度,有利于增强法拉第氧化还原反应。
3、本发明的制备方法,工序段,易于操作,反应温度相对较低,适合工业化生产以及新能源储能如超级电容器、燃料电池等领域的应用。
附图说明
图1为本发明的纳米片状磷化钴的扫描电镜图。
具体实施方式
实施例1
一种气相沉积制备纳米片状磷化钴的方法,包括以下步骤:
步骤(1).将钴源与2-甲基咪唑按照摩尔比1:8称量,将钴源与溶剂按1摩尔钴对应20毫升溶剂进行配比形成溶液A;
将称量好的2-甲基咪唑溶于同样体积的溶剂中形成溶液B;
将B倒入A中,搅拌后形成均一溶液,在室温下静置12-24h;钴源为钴的氯化盐;溶剂为去离子水。
步骤(2).离心清洗后,真空干燥不少于12h,即获得前驱体;通过液相沉积在室温下静置制备出了片状前驱体纳米阵列,其结构稳定,排列有序,有利于后续合成加工。
步骤(3).将上述前驱体同磷源按照摩尔比1:5称量一起置于通保护气的管式炉中,磷源置于管式炉上游,前驱体置于下游;磷源为磷单质。
步骤(4).设置升温曲线,使管式炉在气氛保护条件下按照升温曲线进行升温过程,再在400℃下反应4h,蒸发的磷元素在前驱体表面发生气相沉积反应,片状前驱体转化为片状的磷化钴,冷却至室温即得纳米片状磷化钴;保护气体为氮气;升温速度为3℃/分钟。
实施例2
一种气相沉积制备纳米片状磷化钴的方法,包括以下步骤:
步骤(1).将钴源与2-甲基咪唑按照摩尔比1:8称量,将钴源与溶剂按1摩尔钴对应20毫升溶剂进行配比形成溶液A;
将称量好的2-甲基咪唑溶于同样体积的溶剂中形成溶液B;
将B倒入A中,搅拌后形成均一溶液,在室温下静置12-24h;钴源为钴的乙酸盐;溶剂为甲醇。
步骤(2).离心清洗后,真空干燥不少于12h,即获得前驱体;通过液相沉积在室温下静置制备出了片状前驱体纳米阵列,其结构稳定,排列有序,有利于后续合成加工。
步骤(3).将上述前驱体同磷源按照摩尔比1:5称量一起置于通保护气的管式炉中,磷源置于管式炉上游,前驱体置于下游;磷源为磷单质。
步骤(4).设置升温曲线,使管式炉在气氛保护条件下按照升温曲线进行升温过程,再在300℃下反应2h,蒸发的磷元素在前驱体表面发生气相沉积反应,片状前驱体转化为片状的磷化钴,冷却至室温即得纳米片状磷化钴;保护气体为氮气;升温速度为5℃/分钟。
实施例3
一种气相沉积制备纳米片状磷化钴的方法,包括以下步骤:
步骤(1).将钴源与2-甲基咪唑按照摩尔比1:8称量,将钴源与溶剂按1摩尔钴对应20毫升溶剂进行配比形成溶液A;
将称量好的2-甲基咪唑溶于同样体积的溶剂中形成溶液B;
将B倒入A中,搅拌后形成均一溶液,在室温下静置12-24h;钴源为钴的硝酸盐;溶剂为去离子水。
步骤(2).离心清洗后,真空干燥不少于12h,即获得前驱体;通过液相沉积在室温下静置制备出了片状前驱体纳米阵列,其结构稳定,排列有序,有利于后续合成加工。
步骤(3).将上述前驱体同磷源按照摩尔比1:5称量一起置于通保护气的管式炉中,磷源置于管式炉上游,前驱体置于下游;磷源为磷单质。
步骤(4).设置升温曲线,使管式炉在气氛保护条件下按照升温曲线进行升温过程,再在500℃下反应5h,蒸发的磷元素在前驱体表面发生气相沉积反应,片状前驱体转化为片状的磷化钴,冷却至室温即得纳米片状磷化钴;保护气体为氩气,升温速度为6℃/分钟。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明的要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种气相沉积制备纳米片状磷化钴的方法,其特征在于:包括以下步骤:
步骤(1).将钴源与2-甲基咪唑按照摩尔比1:8称量,将钴源与溶剂按1摩尔钴对应20毫升溶剂进行配比形成溶液A;
将称量好的2-甲基咪唑溶于同样体积的溶剂中形成溶液B;
将B倒入A中,搅拌后形成均一溶液,在室温下静置12-24h;
步骤(2).离心清洗后,真空干燥不少于12h,即获得前驱体;通过液相沉积在室温下静置制备出了片状前驱体纳米阵列,其结构稳定,排列有序,有利于后续合成加工;
步骤(3).将上述前驱体同磷源按照摩尔比1:5称量一起置于通保护气的管式炉中,磷源置于管式炉上游,前驱体置于下游;
步骤(4).设置升温曲线,使管式炉在气氛保护条件下按照升温曲线进行升温过程,再在300℃~500℃下反应2~5h,蒸发的磷元素在前驱体表面发生气相沉积反应,片状前驱体转化为片状的磷化钴,冷却至室温即得纳米片状磷化钴。
2.根据权利要求1所述的一种气相沉积制备纳米片状磷化钴的方法,其特征在于:所述步骤(1)中钴源为钴的硝酸盐、氯化盐、乙酸盐中至少一种。
3.根据权利要求1所述的一种气相沉积制备纳米片状磷化钴的方法,其特征在于:所述步骤(1)中溶剂为去离子水,甲醇中至少一种。
4.根据权利要求1所述的一种气相沉积制备纳米片状磷化钴的方法,其特征在于:所述步骤(3)中磷源为磷单质。
5.根据权利要求1所述的一种气相沉积制备纳米片状磷化钴的方法,其特征在于:所述步骤(4)中保护气体为氩气,氮气中至少一种。
6.根据权利要求1所述的一种气相沉积制备纳米片状磷化钴的方法,其特征在于:所述步骤(4)中升温速度为(3-6)℃/分钟。
CN202010130123.2A 2020-02-28 2020-02-28 一种气相沉积制备纳米片状磷化钴的方法 Pending CN111321394A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010130123.2A CN111321394A (zh) 2020-02-28 2020-02-28 一种气相沉积制备纳米片状磷化钴的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010130123.2A CN111321394A (zh) 2020-02-28 2020-02-28 一种气相沉积制备纳米片状磷化钴的方法

Publications (1)

Publication Number Publication Date
CN111321394A true CN111321394A (zh) 2020-06-23

Family

ID=71165346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010130123.2A Pending CN111321394A (zh) 2020-02-28 2020-02-28 一种气相沉积制备纳米片状磷化钴的方法

Country Status (1)

Country Link
CN (1) CN111321394A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112108164A (zh) * 2020-07-27 2020-12-22 浙江工业大学 碳包覆二维过渡金属磷化物及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151336A (zh) * 2014-08-08 2014-11-19 复旦大学 一种多级孔结构的金属有机框架化合物的制备方法
CN106000351A (zh) * 2016-05-25 2016-10-12 北京林业大学 基于ZIF(Co2+)型金属有机骨架材料的新型微孔球的制备及其吸附应用
CN107394089A (zh) * 2017-07-31 2017-11-24 北京理工大学 一种锂硫电池用zif颗粒和碳纳米管共修饰的隔膜材料
CN107486165A (zh) * 2017-08-30 2017-12-19 河南师范大学 一种zif‑67@fp复合吸附材料的制备方法及其在分离富集含镉高盐废水中的应用
CN107824188A (zh) * 2017-10-27 2018-03-23 广西师范大学 镍钴层状双金属氢氧化物/石墨烯电催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104151336A (zh) * 2014-08-08 2014-11-19 复旦大学 一种多级孔结构的金属有机框架化合物的制备方法
CN106000351A (zh) * 2016-05-25 2016-10-12 北京林业大学 基于ZIF(Co2+)型金属有机骨架材料的新型微孔球的制备及其吸附应用
CN107394089A (zh) * 2017-07-31 2017-11-24 北京理工大学 一种锂硫电池用zif颗粒和碳纳米管共修饰的隔膜材料
CN107486165A (zh) * 2017-08-30 2017-12-19 河南师范大学 一种zif‑67@fp复合吸附材料的制备方法及其在分离富集含镉高盐废水中的应用
CN107824188A (zh) * 2017-10-27 2018-03-23 广西师范大学 镍钴层状双金属氢氧化物/石墨烯电催化剂的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112108164A (zh) * 2020-07-27 2020-12-22 浙江工业大学 碳包覆二维过渡金属磷化物及其制备方法与应用
CN112108164B (zh) * 2020-07-27 2023-07-14 浙江工业大学 碳包覆二维过渡金属磷化物及其制备方法与应用

Similar Documents

Publication Publication Date Title
Wang et al. Electrocatalytic nitrogen reduction to ammonia by Fe2O3 nanorod array on carbon cloth
Ge et al. Metal–organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery
Xia et al. Solution synthesis of metal oxides for electrochemical energy storage applications
Zhao et al. Facile synthesis of nanoporous γ-MnO2 structures and their application in rechargeable Li-ion batteries
CN109546107B (zh) 一种石墨烯/二维Co-Zn双核金属框架结构复合材料的制备方法
CN106315695A (zh) 一种杨梅状钴酸镍纳米材料及其制备方法
Huang et al. Yolk@ shell or concave cubic NiO–Co3O4@ C nanocomposites derived from metal–organic frameworks for advanced lithium-ion battery anodes
CN102560415A (zh) 三维石墨烯/金属线或金属丝复合结构及其制备方法
CN108380227B (zh) 一种析氢电催化材料及其制备方法
CN106732613A (zh) 一种新型纳米碳材料的制备方法及其电催化制氢应用
CN102586869A (zh) 三维石墨烯管及其制备方法
CN104986742A (zh) 一种类珠链状石墨化氮化碳纳米材料及其制备方法
CN103840176B (zh) 一种表面负载Au纳米颗粒的三维石墨烯基复合电极及其制备方法和应用
CN110538663A (zh) 一种多孔NiS2纳米片的制备方法及NiS2材料
Zhou et al. Polymerization inspired synthesis of MnO@ carbon nanowires with long cycling stability for lithium ion battery anodes: growth mechanism and electrochemical performance
CN112158827B (zh) 一种形貌可控的碳纳米管的制备方法
CN111483999A (zh) 一种氮掺杂碳纳米管的制备方法、氮掺杂碳纳米管及其应用
CN110624540A (zh) 新型钌基自支撑电催化材料及其制备方法和在电催化氮气还原产氨中的应用
Qu et al. Nitrogen-doped TiO2 nanotube anode enabling improvement of electronic conductivity for fast and long-term sodium storage
Deng et al. Research advance of NiCoP-based materials for high-performance supercapacitors
CN111321394A (zh) 一种气相沉积制备纳米片状磷化钴的方法
CN111530483A (zh) 一种自支撑Ni掺杂WP2纳米片阵列电催化剂及其制备方法
Zhang et al. Synthesizing Cu-doped CoSe2 nanoframe cubics for Na-ion batteries electrodes
CN106953079A (zh) 一种多级结构碳纳米管/二氧化锡复合材料及其制备方法
CN111204741B (zh) 一种三维石墨烯/碳纳米管交联复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200623

RJ01 Rejection of invention patent application after publication