CN111261492A - 一种纳米薄膜材料 - Google Patents

一种纳米薄膜材料 Download PDF

Info

Publication number
CN111261492A
CN111261492A CN201811450387.5A CN201811450387A CN111261492A CN 111261492 A CN111261492 A CN 111261492A CN 201811450387 A CN201811450387 A CN 201811450387A CN 111261492 A CN111261492 A CN 111261492A
Authority
CN
China
Prior art keywords
nise
film
nano
nano film
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811450387.5A
Other languages
English (en)
Inventor
陈莉芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuyao Jingpeng Photovoltaic Power Generation Co Ltd
Original Assignee
Yuyao Jingpeng Photovoltaic Power Generation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuyao Jingpeng Photovoltaic Power Generation Co Ltd filed Critical Yuyao Jingpeng Photovoltaic Power Generation Co Ltd
Priority to CN201811450387.5A priority Critical patent/CN111261492A/zh
Publication of CN111261492A publication Critical patent/CN111261492A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种纳米薄膜材料,其包括NiSe纳米薄膜的制备、NiSe纳米薄膜的转移、NiSe纳米薄膜光探测器的构筑等步骤。本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少;基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级;本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。

Description

一种纳米薄膜材料
技术领域
本发明属于半导体薄膜材料领域,涉及一种通过固相反应法制备纳米薄膜材料。
背景技术
由于具有独特的结构和性能,石墨烯和其他二维材料包括六方相氮化硼和过渡金属硫化物等,引起了广泛的关注。尤其通过化学气相沉积等方法可以在特定基底上制备出高质量、大面积的二维薄膜,这显著加快了二维材料的应用发展。受层状结构二维材料的启发,可以预见非层状结构材料的纳米薄膜与传统平面工艺相兼容,相比于他维度,更有利于其应用。而且,与纳米晶构成的薄膜相比,所制备出的具有大尺寸晶粒的非层状结构纳米薄膜拥有更优越的性能,这是因为晶界会引起电子的散射。层状结构材料在层内有较强的横向化学键,而在层之间有较弱的范德华力,这在形核和生长过程中,使得原子更容易生长成二维薄膜。而非层状结构的材料是在三个方向上都具有很强的原子键,从而使其缺乏内在各向异性生长驱动力,造成非层状结构纳米薄膜的生长很难实现。非层状结构材料的二维超薄纳米片和非层状结构纳米薄膜已经分别通过湿化学模板法和剥离的方法制备出来,但是尺寸分别仅限制在几百纳米和几微米之内。大面积非层状结构材料的纳米薄膜可以通过分子束外延法在单晶基底外延生长得到,但是成本较高。
发明内容
本发明的目的在于提供一种纳米薄膜材料。本发明提供的这种纳米薄膜的生长方法工艺简单,成本低廉,具有较强的实用价值,而且可以被用来制备与传统平面工艺兼容的其他非层状结构材料纳米薄膜。
为实现上述目的,本发明采用如下的技术方案:
一种纳米薄膜材料,包括以下步骤:
(1)NiSe纳米薄膜的制备:选择厚度为50μm、纯度为99.99%的Ni箔在通有10sccmH2和20sccmAr的低压气氛中,450-550℃退火25-35min,去除Ni箔表面的氧化物;退火完之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在1×10-4-3×10-4Pa;随后将ZnSe/Ni箔在1.5×10-4-2.5×10-4Pa的真空度下650-750℃退火25-35min,得到NiSe纳米膜;
(2)NiSe纳米薄膜的转移:在50μm厚的Ni箔表面得到的NiSe纳米薄膜上旋涂浓度为80-120mg/ml PMMA,旋涂条件为:先在400-600r/min的转速下匀胶甩胶5-7s,然后在1500-2500r/min的转速下匀胶30-50s;旋涂完之后放置于加热台上70-90℃烘烤4-6min;然后将PMMA/NiSe/Ni箔放入2.0mol/LFeCl3的溶液中刻蚀Ni箔;在Ni箔刻蚀完之后,将PMMA/NiSe膜放置于去离子水中清洗其表面残留的FeCl3刻蚀液;接着,将SiO2/Si基底捞起PMMA支撑的NiSe纳米薄膜;待完全风干后,将PMMA/NiSe/SiO2/Si放置于通有10sccmH2和20sccmAr的低压气氛中,350-450℃退火1-3h除去PMMA,即得到了转移至SiO2/Si基底上的NiSe纳米薄膜;
(3)NiSe纳米薄膜光探测器的构筑:在NiSe纳米薄膜转移至SiO2/Si基底上后,利用光刻的方法构造出长度为5μm,宽度为10μm的沟道;通过高真空热蒸发***沉积10/35nmCr/Au来制作电极。
本发明的有益效果:
(1)本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少。
(2)基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级。
(3)本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅仅局限于实施例。
一种纳米薄膜材料,包括以下步骤:
(1)NiSe纳米薄膜的制备:选择厚度为50μm、纯度为99.99%的Ni箔在通有10sccmH2和20sccm Ar的低压气氛中,500℃退火30min,去除Ni箔表面的氧化物;退火完之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在2×10-4Pa;随后将ZnSe/Ni箔在2×10-4Pa的真空度下700℃退火30min,得到NiSe纳米膜;
(2)NiSe纳米薄膜的转移:在50μm厚的Ni箔表面得到的NiSe纳米薄膜上旋涂浓度为100mg/ml PMMA,旋涂条件为:先在500r/min的转速下匀胶甩胶6s,然后在2000r/min的转速下匀胶40s;旋涂完之后放置于加热台上80℃烘烤5min;然后将PMMA/NiSe/Ni箔放入2.0mol/L FeCl3的溶液中刻蚀Ni箔;在Ni箔刻蚀完之后,将PMMA/NiSe膜放置于去离子水中清洗其表面残留的FeCl3刻蚀液;接着,将SiO2/Si基底捞起PMMA支撑的NiSe纳米薄膜;待完全风干后,将PMMA/NiSe/SiO2/Si放置于通有10sccm H2和20sccm Ar的低压气氛中,400℃退火2h除去PMMA,即得到了转移至SiO2/Si基底上的NiSe纳米薄膜;
(3)NiSe纳米薄膜光探测器的构筑:在NiSe纳米薄膜转移至SiO2/Si基底上后,利用光刻的方法构造出长度为5μm,宽度为10μm的沟道;通过高真空热蒸发***沉积10/35nmCr/Au来制作电极。
气相法已经广泛应用于晶体生长中,通过气相法实现晶体的生长需要一定过饱和度。在经历一个气固转变过程之后,原子或者分子开始形核和生长。在这个非平衡动态过程中,在对应于薄膜生长的过饱和度下,气体源的供应速率远远大于晶体生长的速率,因此由动态过程决定的产物形貌一般呈现出孤立岛状结构而不是连续的纳米薄膜,这是由非层状结构产生的三维生长行为所导致的。基于对单晶非层状结构纳米薄膜的分子束外延生长的考虑,对气体源供应与晶体生长二者之间的相对速率的控制是非层状结构纳米薄膜生长的一个关键要素。以Ni箔上的NiSe为例,我们通过固相反应法的引入发明了一种界面限域外延生长非层状结构纳米薄膜的方法。在特定的温度下,通过Zn原子和Ni原子的相互扩散形成NiSe之后,NiSe在ZnSe-Ni界面处成核。在这个没有气固转变的热力学平衡过程中,NiSe生长速率被认为由扩散和反应速率所决定。这使得在弛豫时间内,NiSe与Ni基底形成共格界面((102)NiSe/(111)Ni和(110)NiSe/(200)Ni),即实现了NiSe在Ni箔表面的外延生长,从而产生较低能量的NiSe-Ni界面。与此同时,Zn原子和Ni原子沿ZnSe-NiSe界面扩散,NiSe反应物随后在NiSe-Ni台阶或者在NiSe成核点的上表面外延生长。从而,NiSe晶粒通过ZnSe源的消耗以及NiSe-ZnSe界面在横向和纵向向前推进的方式进一步长大。当位于NiSe成核点上方的ZnSe薄膜先于横向的ZnSe薄膜消耗完之后,NiSe晶粒的生长只能通过NiSe-ZnSe界面的横向推进得到延续,并最终通过晶粒的相互拼接形成连续的NiSe纳米薄膜。
本发明通过固相反应法生长得到的非层状结构的NiSe纳米薄膜质量好,晶粒尺寸大,晶界数量少;基于本发明高质量的NiSe纳米薄膜制备的光电探测器,获得的光电流比NiSe纳米晶薄膜提高了4个数量级;本发明制备工艺简单,成本低廉,具有较好的实用价值,而且这种方法可以被用来制备其他与传统平面工艺兼容的非层状结构材料纳米薄膜。
最后应说明的是:以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案,因此,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但是,本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围中。

Claims (1)

1.一种纳米薄膜材料,其特征在于,包括以下步骤:(1)NiSe纳米薄膜的制备:选择厚度为50μm、纯度为99.99%的Ni箔在通有10sccmH2和20sccmAr的低压气氛中,450-550℃退火25-35min,去除Ni箔表面的氧化物;退火完之后,利用电子束蒸发的方法在Ni箔表面沉积ZnSe薄膜,在整个沉积过程中,真空度保持在1×10-4-3×10-4Pa;随后将ZnSe/Ni箔在1.5×10-4-2.5×10-4Pa的真空度下650-750℃退火25-35min,得到NiSe纳米膜;(2)NiSe纳米薄膜的转移:在50μm厚的Ni箔表面得到的NiSe纳米薄膜上旋涂浓度为80-120mg/mlPMMA。
CN201811450387.5A 2018-11-30 2018-11-30 一种纳米薄膜材料 Pending CN111261492A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811450387.5A CN111261492A (zh) 2018-11-30 2018-11-30 一种纳米薄膜材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811450387.5A CN111261492A (zh) 2018-11-30 2018-11-30 一种纳米薄膜材料

Publications (1)

Publication Number Publication Date
CN111261492A true CN111261492A (zh) 2020-06-09

Family

ID=70950106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811450387.5A Pending CN111261492A (zh) 2018-11-30 2018-11-30 一种纳米薄膜材料

Country Status (1)

Country Link
CN (1) CN111261492A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111863378A (zh) * 2020-07-28 2020-10-30 安徽智磁新材料科技有限公司 一种具有高温磁稳定性的软磁颗粒膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111863378A (zh) * 2020-07-28 2020-10-30 安徽智磁新材料科技有限公司 一种具有高温磁稳定性的软磁颗粒膜及其制备方法
CN111863378B (zh) * 2020-07-28 2021-09-24 安徽智磁新材料科技有限公司 一种具有高温磁稳定性的软磁颗粒膜及其制备方法

Similar Documents

Publication Publication Date Title
CN102102220B (zh) 金刚石(111)面上的石墨烯制备方法
CN105420815B (zh) 一种可控制备正交相硫化亚锡二维单晶纳米片的方法
US20140116329A1 (en) Methods of growing heteroepitaxial single crystal or large grained semiconductor films and devices thereon
CN114197051B (zh) 一种自支撑二维硒氧化物纳米片阵列及其制备方法
CN106145103B (zh) 一种基于石墨烯的二维层状异质结的制备方法
TWI466823B (zh) 雪花型石墨烯及其製備方法
CN109652858B (zh) 一种利用层间耦合与台阶耦合的协同效应制备单晶六方氮化硼的方法
CN109811307B (zh) 一种二维材料纳米带或微米带的制备方法
CN104649259A (zh) 一种大单晶石墨烯及其制备方法
Zhao et al. Nucleation and growth of ZnO nanorods on the ZnO-coated seed surface by solution chemical method
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN100545314C (zh) 用于制备高质量氧化锌薄膜的蓝宝石衬底原位处理方法
CN102330055B (zh) 一种用于电极材料的氮化钛外延薄膜的制备方法
CN108950683B (zh) 一种高迁移率氮掺杂大单晶石墨烯薄膜及其制备方法
Ma et al. Progress of graphene growth on copper by chemical vapor deposition: Growth behavior and controlled synthesis
Aberle et al. Formation of large-grained uniform poly-Si films on glass at low temperature
CN111261492A (zh) 一种纳米薄膜材料
CN108341402B (zh) 一种碲化钽二维材料的合成及其应用
WO2013038623A1 (ja) グラフェンの製造方法ならびにグラフェン
Li et al. Epitaxial growth of horizontally aligned single-crystal arrays of perovskite
CN112593205B (zh) 氨水辅助制备大面积单层二硫化钼的方法
CN104593772A (zh) 一种在大晶格失配基底上异质外延生长锑化物半导体的方法
CN106129171B (zh) 一种大面积非层状结构NiSe纳米薄膜的制备方法
Nakata et al. Effects of Al grain size on metal-induced layer exchange growth of amorphous Ge thin film on glass substrate
US10403783B2 (en) Nanostructured substrates for improved lift-off of III-V thin films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200609

WD01 Invention patent application deemed withdrawn after publication