CN112593205B - 氨水辅助制备大面积单层二硫化钼的方法 - Google Patents

氨水辅助制备大面积单层二硫化钼的方法 Download PDF

Info

Publication number
CN112593205B
CN112593205B CN202011321984.5A CN202011321984A CN112593205B CN 112593205 B CN112593205 B CN 112593205B CN 202011321984 A CN202011321984 A CN 202011321984A CN 112593205 B CN112593205 B CN 112593205B
Authority
CN
China
Prior art keywords
substrate
moo
growth
spin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011321984.5A
Other languages
English (en)
Other versions
CN112593205A (zh
Inventor
刘明岩
万逸
阚二军
赵益彬
姚佳敏
杨昀纬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202011321984.5A priority Critical patent/CN112593205B/zh
Publication of CN112593205A publication Critical patent/CN112593205A/zh
Application granted granted Critical
Publication of CN112593205B publication Critical patent/CN112593205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种氨水辅助制备大面积单层二硫化钼的方法。所述方法先对生长基底进行氧等离子体轰击,活化基底表面,并旋涂PTAS有机染料以辅助成核,得到旋涂PTAS的生长基底,同时将MoO3/NH4OH溶液旋涂在基底上,并高温退火得到已退火的MoO3源基片,最后使用双温区管式炉,将硫粉置于气流上游,将已退火的MoO3源基片、旋涂PTAS的生长基底交替放置在气流下游,生长得到大面积单层二硫化钼。本发明方法固态生长源的用量少,重复性好,稳定性高,制得的二硫化钼纯度高且晶畴尺寸明显增加,利于后续的材料表征、转移及器件构筑。

Description

氨水辅助制备大面积单层二硫化钼的方法
技术领域
本发明属于单层过渡金属硫族化合物材料的制备领域,涉及一种氨水辅助制备大面积单层二硫化钼的方法。
背景技术
二维过渡金属硫族化合物,具有特殊的能带结构,在电子学、光电子学和谷电子学等诸多领域具有应用前景,引发了基础研究与工业应用领域的广泛关注。随着纳米科技的兴起与发展,化学气相沉积技术作为一种材料科学的合成方法,被广泛应用于制备低维纳米材料。
化学气相沉积技术主要利用含有薄膜元素的气相化合物或单质,在基底表面发生化学反应生成薄膜,是目前获取大面积单层过渡金属硫族化合物MX2(MX2:M=Mo、W;X=S、Se、Te等)材料最有效的方法之一,合成得到的样品具有厚度均匀、连续性好、晶体质量佳等优点。以最早被制备出来的二硫化钼(MoS2)为例,化学气相沉积方法制备单层MoS2的技术路线可分为两条:一为“两步法”,首先将钼单质或其氧化物沉积到基底上,然后通过硫化作用,将其转化为MoS2;二为“一步法”,气态钼源与硫源直接通过化学反应,在基底上生成MoS2。2014年,Xi Ling等***分析了以F16CuPc、PTAS、PTCDA、CuPc为代表的前驱体在MoS2化学气相沉积过程中辅助成核的作用,但由于前驱体旋涂不均匀,合成样品横向尺寸最大值约为50μm,并且存在样品厚度不均匀、样品表面不够洁净等问题(Nano Lett.,2014,14:464-472)。目前,利用化学气相沉积法合成MoS2的技术已相对成熟,但仍存在成核密度过高、样品尺寸较小(单层MoS2样品尺寸停留在几至几十微米的量级)的问题。如何获得较大尺寸的单层样品仍然是化学气相沉积法制备MoS2的研究热点与技术难点。
发明内容
针对上述问题,本发明提供一种氨水辅助制备大面积单层二硫化钼的方法。
传统的化学气相沉积方法制备MoS2,使用MoO3粉末和S粉作为固态生长源,其反应机理是将反应物置于高温环境下,形成蒸气前驱体,利用硫蒸气较强的还原性使其与MoO3蒸气反应,生成MoS2并沉积到基底上。薄膜晶体以核为中心向外生长,逐渐生成大面积的二维薄膜。但是,由于成核密度较大,化学气相沉积方法制备出的单层MoS2样品晶畴尺寸一般仅在几至几十的微米量级。提升二维薄膜样品质量的关键在于提高样品的单晶率,这就需要进一步降低化学气相沉积生长样品过程中的成核密度、提升晶畴尺寸。然而,想要通过控制前驱体蒸气浓度以实现降低成核密度的目的是非常困难的,即使改变反应物MoO3粉末的用量也很难精确调控蒸气浓度和成核密度。
为了解决上述问题,本发明采取以下技术方案:
氨水辅助制备大面积单层二硫化钼的方法,包括以下步骤:
步骤1,生长基底清洗:将生长基底依次放入丙酮、无水乙醇、水中超声清洗,得到洁净的生长基底;
步骤2,生长基底预处理:氧等离子体轰击洁净的生长基底,活化基底表面,旋涂PTAS有机染料以辅助成核,自然晾干,得到旋涂PTAS的生长基底;
步骤3,薄膜前驱体制备:将MoO3粉末溶解在氨水中,制得10~50mg·mL-1的MoO3的NH4OH溶液,旋涂在基底上;
步骤4,薄膜前驱体退火:将旋涂完MoO3/NH4OH的基底,在200~350℃高温下进行退火,去除NH4OH,得到已退火的MoO3源基片;
步骤5,材料生长:以惰性气体Ar为载气,使用双温区管式炉,将硫粉置于气流上游(温区I),将已退火的MoO3源基片、旋涂PTAS的生长基底交替放置在气流下游(温区II),在40~60min内,将温区I与温区II由室温分别升至160℃和650~800℃,保持该温度环境5~10min,随后自然冷却至室温,整个生长过程在常压下进行,得到大面积单层二硫化钼。
步骤1中,所述基底为本领域常规使用的生长基底,例如SiO2/Si基片、钛酸锶(SrTiO3)基片、石英片、氟晶云母、蓝宝石(Al2O3)基片、宽禁带半导体氮化镓(GaN)基片、砷化镓(GaAs)基片等。
步骤1中,超声波功率为28W,清洗时间为5~10min。
步骤2中,所述的氧等离子体处理功率为716V/10mA/7.16W,处理时间为20s。
步骤2中,所述的旋涂速率为1500rpm(转每分),旋涂时间为30s。
步骤2中,所述的PTAS为芳香族化合物二萘嵌苯-3,4,9,10-四羧酸四钾盐,购自美国2D Semiconductors公司。配制水溶液浓度为20~50μM。
步骤3中,所述的旋涂速率为3000rpm,旋涂时间为1min。
优选地,步骤3中,所述的MoO3/NH4OH溶液中,MoO3的浓度为15~25mg·mL-1,更优选为20mg·mL-1
步骤4中,退火时间为2~3h。
优选地,步骤5中,所述的温区II生长温度为700~800℃,更优选为750℃。
与现有技术相比,本发明具有以下优点:
1、估算每平方厘米基底上的三氧化钼净含量约为1~10微克,仅为传统化学气相沉积法生长单层二硫化钼所需三氧化钼固态源质量的10-2~10-3,使得生长过程中前驱体蒸气浓度明显降低,也大幅度节省了固态生长源的用量。
2、利用三氧化钼不溶于水、易溶于氨水和强碱这一性质,改用溶液辅助薄膜前驱体替代原本的固体粉末前驱体,可以降低蒸气反应物的过饱和状态,从而降低成核密度,这对于生长大尺寸单晶样品至关重要。此外,氨水受热分解,具有极强的挥发性,易于去除,不会给后续的晶体合成引入缺陷或杂质,影响晶体质量。
3、化学气相沉积法采用开放性***,存在重复性、稳定性不高的问题。本发明通过调控溶液浓度即可精确控制反应物浓度,提高反应精确度,实验重复度提升。基于这种改进的合成工艺,二硫化钼的晶畴尺寸明显增加,为后续的材料表征、转移及器件构筑提供了便利。
附图说明
图1为薄膜前驱体预处理过程示意图,将MoO3源基片,置于单温区管式炉中高温退火以挥发NH4OH溶剂。
图2为正式生长过程示意图,使用双温区管式炉,将硫粉置于气流上游(温区I),将已退火的MoO3源基片、旋涂PTAS的生长基底交替放置在气流下游(温区II),进行样品生长。
图3为氨水辅助化学气相沉积生长单层MoS2的光学图像,MoO3/NH4OH溶液的浓度为20mg·mL-1,温区II生长温度为750℃,比例尺:100μm。
图4为氨水辅助化学气相沉积生长单层MoS2的光学图像,MoO3/NH4OH溶液的浓度为10mg·mL-1,温区II生长温度为750℃。
图5为氨水辅助化学气相沉积生长单层MoS2的光学图像,MoO3/NH4OH溶液的浓度为50mg·mL-1,温区II生长温度为750℃。
图6为氨水辅助化学气相沉积生长单层MoS2的光学图像,MoO3/NH4OH溶液的浓度为20mg·mL-1,温区II生长温度为650℃。
图7为氨水辅助化学气相沉积生长单层MoS2的光学图像,MoO3/NH4OH溶液的浓度为20mg·mL-1,温区II生长温度为700℃。
图8为氨水辅助化学气相沉积生长单层MoS2的光学图像,MoO3/NH4OH溶液的浓度为20mg·mL-1,温区II生长温度为800℃。
图9为生长过程中没有引入PTAS,直接使用MoO3粉末源,没有使用氨水的条件下制得的MoS2的光学图像。
图10为生长过程中引入PTAS,直接使用MoO3粉末源,没有使用氨水的条件下制得的MoS2的光学图像。
图11为氨水辅助化学气相沉积生长单层MoS2的光学图像,MoO3/NH4OH溶液的浓度为5mg·mL-1,温区II生长温度为750℃。
图12为氨水辅助化学气相沉积生长单层MoS2的光学图像,MoO3/NH4OH溶液的浓度为80mg·mL-1,温区II生长温度为750℃。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
实施例1
①生长基底清洗:将生长基底(SiO2/Si基片)依次放入丙酮、无水乙醇、去离子水中,各自超声清洗5min。
②生长基底预处理:氧等离子体轰击清洗后的生长基底,活化SiO2表面。配制浓度为50μM的PTAS水溶液。在其中一部分基底上旋涂PTAS的有机染料,自然晾干,作为生长基底。
③MoO3薄膜前驱体制备:将200mg的MoO3粉末溶解在10mL的氨水(26%,通广)中,制得20mg·mL-1的MoO3/NH4OH溶液,旋涂在另外一部分已经过清洗、活化等处理的SiO2/Si基片上,转速3000rpm,时长1min,作为薄膜前驱体。
④MoO3薄膜前驱体退火:如图1所示,正式生长前,需将薄膜前驱体在300℃高温下退火2h,载气为惰性气体Ar,气体流量为50sccm(标准毫升每分钟),以确保NH4OH溶剂挥发。退火后的MoO3薄膜表面均匀,25×25μm2区域内粗糙度约为0.144nm,仅在边缘处有少量堆积。
⑤MoS2样品生长:使用双温区管式炉,如图2所示,将硫粉置于气流上游(温区I),将退火后的MoO3源基片、旋涂PTAS的生长基底交替放置在气流下游(温区II)。在40min内,将温区I与温区II升至160℃和750℃,保持该温度环境5min,随后自然冷却至室温。整个生长过程在常压下进行,使用的Ar气体流量为15sccm。
对比可知:传统的化学气相沉积方法合成出的单层MoS2三角边长约为10~30μm(如图9、图10所示),氨水辅助化学气相沉积生长可以将单层MoS2三角形边长沿伸至百微米量级(如图3所示),晶畴尺寸明显增加。
实施例2
本实施例与实施例1基本相同,唯一不同是MoO3/NH4OH溶液浓度为10mg·mL-1。如图4所示,样品横向尺寸约为40μm。
实施例3
本实施例与实施例1基本相同,唯一不同是MoO3/NH4OH溶液浓度为50mg·mL-1。如图5所示,样品横向尺寸约为40μm,单层样品边缘处偶有少层生成。
实施例4
本实施例与实施例1基本相同,唯一不同是温区II生长温度设定为650℃和700℃。如图6、图7所示,当温区II生长温度低于最优选温度(750℃),样品倾向于成膜,温度较低(650℃,图6)时,样品表面容易有杂物沉积;温度较高(700℃,图7)时,样品形成均匀、洁净的薄膜。
实施例5
本实施例与实施例1基本相同,唯一不同是温区II生长温度设定为800℃。如图8所示,当温区II生长温度高于最优选温度(750℃),样品倾向于形成分立的三角形MoS2单晶,横向尺寸约为40μm。
对比例1
本对比例中,没有引入PTAS前驱体溶液,以固态粉末源MoO3代替MoO3源基片。如图9所示,无PTAS、氨水辅助生长情况下,样品产率低、形状不规则、且样品表面有异物、颗粒沉积。
对比例2
本对比例中,引入PTAS前驱体溶液,以MoO3粉末作为钼源。如图10所示,无氨水辅助生长情况下,样品横向尺寸仅为10~30μm。
对比例3
本对比例与实施例1基本相同,唯一不同是使用5mg·mL-1的MoO3/NH4OH溶液。如图11所示,当MoO3/NH4OH溶液浓度过低时,样品产率显著降低。
对比例4
本对比例与实施例1基本相同,唯一不同是使用80mg·mL-1的MoO3/NH4OH溶液。如图12所示,当MoO3/NH4OH溶液浓度过高时,单层样品边缘、交界处,有大量少层、多层样品生成。

Claims (12)

1.氨水辅助制备大面积单层二硫化钼的方法,其特征在于,包括以下步骤:
步骤1,生长基底清洗:将生长基底依次放入丙酮、无水乙醇、水中超声清洗,得到洁净的生长基底;
步骤2,生长基底预处理:氧等离子体轰击洁净的生长基底,活化基底表面,旋涂PTAS有机染料以辅助成核,自然晾干,得到旋涂PTAS的生长基底;
步骤3,薄膜前驱体制备:将MoO3粉末溶解在氨水中,制得10~50 mgmL-1的MoO3的NH4OH溶液,旋涂在基底上;
步骤4,薄膜前驱体退火:将旋涂完MoO3/NH4OH的基底,在200~350℃高温下进行退火,去除NH4OH,得到已退火的MoO3源基片;
步骤5,材料生长:以惰性气体Ar为载气,使用双温区管式炉,将硫粉置于气流上游,将已退火的MoO3源基片、旋涂PTAS的生长基底交替放置在气流下游,在40~60min内,将气流上游与气流下游由室温分别升至160℃和650~800℃,保持气流上游和气流下游的温度环境5~10 min,随后自然冷却至室温,整个生长过程在常压下进行,得到大面积单层二硫化钼。
2.根据权利要求1所述的方法,其特征在于,步骤1中,所述基底为SiO2/Si基片、钛酸锶基片、石英片、氟晶云母、蓝宝石基片、宽禁带半导体氮化镓基片或砷化镓基片。
3.根据权利要求1所述的方法,其特征在于,步骤1中,超声波功率为28 W,清洗时间为5~10min。
4.根据权利要求1所述的方法,其特征在于,步骤2中,所述的氧等离子体处理功率为716 V/10 mA/7.16 W,处理时间为20 s。
5. 根据权利要求1所述的方法,其特征在于,步骤2中,所述的旋涂速率为1500rpm,旋涂时间为30 s。
6.根据权利要求1所述的方法,其特征在于,步骤2中,PTAS配制成水溶液,浓度为20~50μM。
7.根据权利要求1所述的方法,其特征在于,步骤3中,所述的旋涂速率为3000rpm,旋涂时间为1min。
8.根据权利要求1所述的方法,其特征在于,步骤3中,所述的MoO3/NH4OH溶液中,MoO3的浓度为15~25mgmL-1
9.根据权利要求1所述的方法,其特征在于,步骤3中,所述的MoO3/NH4OH溶液中,MoO3的浓度为20mgmL-1
10.根据权利要求1所述的方法,其特征在于,步骤4中,退火时间为2~3 h。
11.根据权利要求1所述的方法,其特征在于,步骤5中,所述的气流下游的生长温度为700~800℃。
12.根据权利要求1所述的方法,其特征在于,步骤5中,所述的气流下游的生长温度为750℃。
CN202011321984.5A 2020-11-23 2020-11-23 氨水辅助制备大面积单层二硫化钼的方法 Active CN112593205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011321984.5A CN112593205B (zh) 2020-11-23 2020-11-23 氨水辅助制备大面积单层二硫化钼的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011321984.5A CN112593205B (zh) 2020-11-23 2020-11-23 氨水辅助制备大面积单层二硫化钼的方法

Publications (2)

Publication Number Publication Date
CN112593205A CN112593205A (zh) 2021-04-02
CN112593205B true CN112593205B (zh) 2023-01-13

Family

ID=75184569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011321984.5A Active CN112593205B (zh) 2020-11-23 2020-11-23 氨水辅助制备大面积单层二硫化钼的方法

Country Status (1)

Country Link
CN (1) CN112593205B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115241307B (zh) * 2022-07-26 2024-05-14 哈尔滨工业大学(深圳) 一种二维硫化钼-硫化铌范德华异质结光突触器件及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002476B (zh) * 2015-07-07 2017-07-18 南京大学 一种衬底修饰的化学气相沉积生长大尺寸单层二硫化钼薄膜的方法
KR102019563B1 (ko) * 2016-11-24 2019-09-06 숭실대학교산학협력단 전구체 기화 농도 조절을 통한 대면적 단분자층 전이금속 디칼코제나이드 이종접합 구조체 제조방법

Also Published As

Publication number Publication date
CN112593205A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
CN109371381B (zh) 一种低温一步法制备单层硫化钼/硫化钨面内异质结的方法
CN106145103B (zh) 一种基于石墨烯的二维层状异质结的制备方法
CN109811307B (zh) 一种二维材料纳米带或微米带的制备方法
CN112695381A (zh) 一种快速生长超薄大尺寸单晶过渡金属硫/硒化物的方法
CN110607561A (zh) 一种单层过渡金属硫化物的制备方法
CN112593205B (zh) 氨水辅助制备大面积单层二硫化钼的方法
CN109678138B (zh) 一种单手性单壁碳纳米管的制备方法
CN109850873B (zh) 一种单壁碳纳米管分子内结的制备方法
CN110767811A (zh) 一种甲胺铅碘钙钛矿单晶纳米线的光电探测器及制备方法
CN108910868B (zh) 一种在绝缘衬底上制备石墨烯枝晶的方法
CN110656375A (zh) 一种碘化铅单晶纳米线及制备方法
CN108059189B (zh) 一种二硫化钼纳米管的制备方法
CN114959635A (zh) 一种硫化锡/二硫化钼混合维度范德华异质结的制备方法
Kim et al. Growth and formation mechanism of sea urchin-like ZnO nanostructures on Si
Qin et al. Fabrication and photoluminescence of GaN nanorods by ammoniating Ga2O3 films deposited on Co-coated Si (1 1 1) substrates
Jeon et al. Synthesis of gallium-catalyzed silicon nanowires by hydrogen radical-assisted deposition method
CN110504159B (zh) 硅衬底上立式GaSb纳米线及其制备方法
CN107500276B (zh) 一种利用醋酸铜制备超洁净石墨烯的方法
CN107934927B (zh) 一种二碲化钼纳米管的制备方法
WO2013038622A1 (ja) グラフェンの製造方法およびグラフェン
CN113582232B (zh) 一种高定向过渡金属硫属化合物纳米带生长的方法
CN116463627B (zh) 一种磷化铟纳米线及其制备方法
CN113278949B (zh) 一种单层硫硒化钼合金组份可调的制备方法
CN115626639B (zh) 一种大面积氮化硼/石墨烯垂直异质结薄膜及其制备方法
CN115369379B (zh) GaN纳米线的制备方法和GaN纳米线

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant