CN111200125A - 一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法 - Google Patents

一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法 Download PDF

Info

Publication number
CN111200125A
CN111200125A CN202010026406.2A CN202010026406A CN111200125A CN 111200125 A CN111200125 A CN 111200125A CN 202010026406 A CN202010026406 A CN 202010026406A CN 111200125 A CN111200125 A CN 111200125A
Authority
CN
China
Prior art keywords
mixture
ceo
mixing
composite material
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010026406.2A
Other languages
English (en)
Inventor
刘守法
周亚男
乔勋
赵金国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xijing University
Original Assignee
Xijing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xijing University filed Critical Xijing University
Priority to CN202010026406.2A priority Critical patent/CN111200125A/zh
Publication of CN111200125A publication Critical patent/CN111200125A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,先将CeCl2·6H2O溶于蒸馏水中,得到混合物A;然后将油酸和叔丁胺混合于甲苯中,得到混合物B;再将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在150~170℃下加热,采用离心方式收集沉淀物,并利用乙醇清洗多次后低温烘干,得到CeO2框架材料;然后将硫磺和CeO2框架材料混合,研磨制备成混合物C;最后将混合物C转入高压釜中,在150~160℃下加热,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料;本发明制备的CeO2/S复合材料做为锂硫电池硫载体材料,具有较高的导电性能、倍率性能及比容量。

Description

一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法
技术领域
本发明涉及锂硫电池技术领域,具体涉及一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法。
背景技术
锂硫(Li-S)电池是满足能源消费迫切需求的最有前景的储能装置之一,锂硫电池的比容量和能量密度分别为1675mAh/g和2600Wh/Kg,这比传统的锂离子电池高很多;同时,硫对环境无污染,价格低廉。但也存在一些缺点,阻碍了其在市场上的实际推广应用,主要问题是循环稳定性差,比容量低,这是由多硫化物的溶解和单质硫的电子导电性差引起的。
正极材料的设计在提高锂硫电池的循环稳定性和比容量方面起着关键作用,开发性能优良正极材料成为锂硫电池研究人员的热门课题。在过去的几十年中,科研人员研究了多种材料作为锂硫电池正极的载体材料,如碳材料、聚合物和金属氧化物等。最初,人们制备了各种各样的碳材料,包括石墨烯、碳纳米纤维和碳纳米管,以提高比容量。之后,有报道称聚合物可以提高性能,如聚吡咯和聚噻吩等。聚合物中的共轭电子能有效地改变整个阴极材料的导电性。近年来,稀有金属氧化物载体材料的应用成为锂硫电池的一个新的研究方向,但国内外相关研究较少。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供了一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,制备的CeO2/S复合材料做为锂硫电池硫载体材料,具有较高的导电性能、倍率性能及比容量。
一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,包括以下步骤:
(1)将2.6~4.6gCeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将1.0~2.0mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在150~170℃下加热22~26小时,采用离心方式收集沉淀物,并利用乙醇清洗3-4次后低温40~60℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比(2~4):1的比例混合,研磨30~40min,制备成混合物C;
(5)将混合物C转入高压釜中,在150~160℃下加热15~17h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
本发明的有益效果为:
本发明采用了金属氧化物CeO2框架材料作为硫的载体材料与硫结合,用作锂硫电池的正极材料;CeO2框架结构为多硫化物的储存提供了足够的空间,三维结构有利于电子的传输。
附图说明
图1为实施例1制备的CeO2/S复合材料的SEM图及元素分布图。
图2为实施例1制备的CeO2/S复合材料和CeO2、硫的XRD图谱。
图3为不同电流密度下实施例1制备的CeO2/S复合材料组装的2032钮扣半电池的恒流充放电曲线。
图4为实施例1和实施例4制备的CeO2/S复合材料电极的倍率性能。
图5为硫和实施例1制备的CeO2/S复合材料作为电极的电化学阻抗谱。
具体实施方式
下面结合实施例和附图对本发明作详细描述。
实施例1,一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,包括以下步骤:
(1)先将2.6gCeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将1.0mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在160℃下加热24小时,采用离心方式收集沉淀物,并利用乙醇清洗3次后40℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比3:1的比例混合,研磨30min,以确保均匀分布,制备成混合物C;
(5)将混合物C转入高压釜中,在155℃下加热16h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
实施例2,一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,包括以下步骤:
(1)先将2.6gCeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将1.0mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在160℃下加热24小时,采用离心方式收集沉淀物,并利用乙醇清洗4次后60℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比4:1的比例混合,研磨30min,以确保均匀分布,制备成混合物C;
(5)将混合物C转入高压釜中,在155℃下加热16h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
实施例3,一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,包括以下步骤:
(1)先将4.6gCeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将1.5mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在155℃下加热22小时,采用离心方式收集沉淀物,并利用乙醇清洗4次后50℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比2:1的比例混合,研磨40min,以确保均匀分布,制备成混合物C;
(5)将混合物C转入高压釜中,在150℃下加热15h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
实施例4,一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,包括以下步骤:
(1)先将3gCeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将2.0mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在150℃下加热26小时,采用离心方式收集沉淀物,并利用乙醇清洗3次后50℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比4:1的比例混合,研磨30min,以确保均匀分布,制备成混合物C;
(5)将混合物C转入高压釜中,在160℃下加热17h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
如图1所示,实施例1制备的CeO2/S复合材料表现为空间网格状,未见明显的硫颗粒聚集现象,表明硫均匀分布在CeO2框架材料内,从元素分布图可以看出Ce和S元素分布较均匀。
如图2所示,纯CeO2在25°、28°、32°、49°和58°处显示典型衍射峰,这归因于CeO2材料的晶面的多样性;纯硫呈现典型的硫的衍射峰;实施例1制备的CeO2/S复合材料兼有CeO2和硫的衍射峰,但CeO2/S复合材料的峰值强度弱于纯硫。
电化学性能测试:将实施例1中制备的CeO2/S复合材料组装到2032钮扣半电池中,测试了CeO2/S复合材料的电化学性能。首先,将实施例1制备的CeO2/S复合材料、炭黑和PVDF混合,质量比为90:5:5,以NMP为溶剂制备电极浆料,然后将电极浆料均匀地涂在铝箔表面,在60℃下干燥16小时,最后将铝箔冲裁为直径15mm的圆盘;负极为锂金属箔;电解液为1mol/L的LITFSI,其中DOL:DME=1:1;用电池测试仪(LANDCT2001A)在1.5~3.0v范围内获得恒流放电和恒流充电曲线,在电化学站(CHI660E)上进行电化学阻抗谱分析。
如图3所示,结果表明,CeO2/S复合材料做为正极,在0.05C、0.1C、0.2C和0.5C电流密度下的初始比容量分别为1508mAh/g、1416mAh/g、1356mAh/g和1225mAh/g,;即使在1C的电流密度下,容量仍能达到986mAh/g,CeO2/S复合材料用作正极材料电化学性能比较优异。
如图4所示,图4显示了实施例1和实施例4制备的CeO2/S复合材料电极的倍率性能,实施例1对应的复合材料电极在0.1C-10C范围内具有较高的倍率性能。
如图5所示,图5显示了纯硫和实施例1制备的CeO2/S复合材料电极的电化学阻抗谱,可见,实施例1制备的CeO2/S复合材料作为电极的容抗弧半径小,比硫电极具有更小的极化电阻,说明实施例1制备的CeO2/S复合材料作为电极的导电性能优于硫。

Claims (5)

1.一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,其特征在于,包括以下步骤:
(1)将2.6~4.6g CeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将1.0~2.0mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在150~170℃下加热22~26小时,采用离心方式收集沉淀物,并利用乙醇清洗3~4次后低温40~60℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比(2~4):1的比例混合,研磨30~40min,制备成混合物C;
(5)将混合物C转入高压釜中,在150~160℃下加热15~17h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
2.根据权利要求1所述的一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,其特征在于,包括以下步骤:
(1)先将2.6g CeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将1.0mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在160℃下加热24小时,采用离心方式收集沉淀物,并利用乙醇清洗3次后40℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比3:1的比例混合,研磨30min,以确保均匀分布,制备成混合物C;
(5)将混合物C转入高压釜中,在155℃下加热16h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
3.根据权利要求1所述的一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,其特征在于,包括以下步骤:
(1)先将2.6g CeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将1.0mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在160℃下加热24小时,采用离心方式收集沉淀物,并利用乙醇清洗4次后60℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比4:1的比例混合,研磨30min,以确保均匀分布,制备成混合物C;
(5)将混合物C转入高压釜中,在155℃下加热16h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
4.根据权利要求1所述的一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,其特征在于,包括以下步骤:
(1)先将4.6g CeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将1.5mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在155℃下加热22小时,采用离心方式收集沉淀物,并利用乙醇清洗4次后50℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比2:1的比例混合,研磨40min,以确保均匀分布,制备成混合物C;
(5)将混合物C转入高压釜中,在150℃下加热15h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
5.根据权利要求1所述的一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法,其特征在于,包括以下步骤:
(1)先将3g CeCl2·6H2O溶于30mL蒸馏水中,得到混合物A;
(2)将2.0mL油酸和5mL叔丁胺混合于50ml甲苯中,得到混合物B;
(3)将混合物A和混合物B倒入内衬聚四氟乙烯的不锈钢高压釜中,在150℃下加热26小时,采用离心方式收集沉淀物,并利用乙醇清洗3次后50℃下烘干,得到CeO2框架材料;
(4)将硫磺和CeO2框架材料按质量比4:1的比例混合,研磨30min,以确保均匀分布,制备成混合物C;
(5)将混合物C转入高压釜中,在160℃下加热17h,冷却至室温后,再将产物研磨成粉末状,得到CeO2/S复合材料。
CN202010026406.2A 2020-01-10 2020-01-10 一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法 Pending CN111200125A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010026406.2A CN111200125A (zh) 2020-01-10 2020-01-10 一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010026406.2A CN111200125A (zh) 2020-01-10 2020-01-10 一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN111200125A true CN111200125A (zh) 2020-05-26

Family

ID=70747362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010026406.2A Pending CN111200125A (zh) 2020-01-10 2020-01-10 一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111200125A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293715A (zh) * 2017-06-20 2017-10-24 中国科学院山西煤炭化学研究所 一种锂硫电池正极用S/CNT‑CeO2复合材料的制备方法
CN110581265A (zh) * 2019-09-06 2019-12-17 天津大学 用于锂硫电池正极的中空球状CeO2-x@C复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107293715A (zh) * 2017-06-20 2017-10-24 中国科学院山西煤炭化学研究所 一种锂硫电池正极用S/CNT‑CeO2复合材料的制备方法
CN110581265A (zh) * 2019-09-06 2019-12-17 天津大学 用于锂硫电池正极的中空球状CeO2-x@C复合材料的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MINGKAI YUE 等: "Synthesis of CeO2@S Composite as Cathode Material for in Lithium-Sulfur Batteries", 《INT. J. ELECTROCHEM. SCI.》 *
YUE HOU 等: "Interfacial Super-Assembled Porous CeO2/C Frameworks Featuring Efficient and Sensitive Decomposing Li2O2 for Smart Li–O2 Batteries", 《ADV. ENERGY MATER.》 *

Similar Documents

Publication Publication Date Title
CN114050246A (zh) 微米级多孔硫酸亚铁钠/碳复合正极材料及其制备的钠离子电池或钠电池
CN107482182B (zh) 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法
CN104091934A (zh) 一种多元复合负极材料、其制备方法及包含其的锂离子电池
CN103219493B (zh) 一种硫导电氧化物复合材料及其作为锂硫电池正极材料的应用
CN104617283B (zh) 一种锂硫电池碳纤维增强三维石墨烯-硫正极材料的制备方法和正极的制备方法
CN105118972A (zh) 金属氢氧化物包覆碳硫的锂硫电池正极材料及其制备方法和应用
CN113471415A (zh) 一种复合包覆的锂离子电池正极材料及其制备方法
CN107902633B (zh) 一种硒化黄铁矿材料及其制备的电池
CN111916640A (zh) 一种锂硫电池WS2/CNTs改性隔膜及其制备方法
WO2012163186A1 (zh) 锂磷二次电池
CN111017958A (zh) 一种纳米球状普鲁士蓝化合物的制备方法
CN115072703B (zh) 一种复合负极材料及其制备方法、应用
CN102110813A (zh) 锂离子电池负极石墨材料及其制备方法
CN115020678A (zh) 正极活性材料、电化学装置和电子设备
CN114242975B (zh) 一种三元复合材料及其制备方法和应用
CN113066988B (zh) 一种负极极片及其制备方法和用途
EP3843180A1 (en) Core-shell composite negative electrode material, preparation method therefor and use thereof
CN110556537B (zh) 一种改善阴离子嵌入型电极材料电化学性能的方法
CN114938686B (zh) 一种钴酸锂层状正极材料及其制备方法和应用
CN115275168A (zh) 一种高倍率的锂离子电池负极材料及其制备方法
CN108448056A (zh) 一种高能量密度正极极片及其锂离子电池的制备方法
CN111200125A (zh) 一种以CeO2框架材料为载体的CeO2/S复合材料的制备方法
CN113257583B (zh) Li3V2O5-碳纳米管复合材料及其制备方法和在锂离子混合电容器中的应用
CN113036114B (zh) 一种纳米片花状氟氧磷酸钒钠电极材料及其制备方法和应用
CN114975994B (zh) 一种低温可快充锂离子电池负极材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200526