CN111175400A - 基于低污染水体化学和生物分析的有机物富集浓缩方法 - Google Patents

基于低污染水体化学和生物分析的有机物富集浓缩方法 Download PDF

Info

Publication number
CN111175400A
CN111175400A CN202010030090.4A CN202010030090A CN111175400A CN 111175400 A CN111175400 A CN 111175400A CN 202010030090 A CN202010030090 A CN 202010030090A CN 111175400 A CN111175400 A CN 111175400A
Authority
CN
China
Prior art keywords
organic matters
organic
sewage
water sample
phase extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010030090.4A
Other languages
English (en)
Inventor
马晓妍
王永坤
唐磊
王晓昌
姚宇
贾燕茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202010030090.4A priority Critical patent/CN111175400A/zh
Publication of CN111175400A publication Critical patent/CN111175400A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4055Concentrating samples by solubility techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N1/4077Concentrating samples by other techniques involving separation of suspended solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N2030/062Preparation extracting sample from raw material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • G01N2030/146Preparation by elimination of some components using membranes

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明涉及基于低污染水体化学和生物分析的有机物富集浓缩方法,通过将污水水样酸化,以及向水样中添加有机溶剂甲醇,优化污水中有机物在后续固相萃取小柱中的保留条件;通过调整有机溶剂的种类及体积配比,优化固相萃取小柱对污水中有机物的吸附条件以及后续洗脱条件;通过调整有机物的溶剂,优化获取的浓缩有机物的溶解条件。本发明方法可获得高达85%以上的污水总有机物回收率,富集浓缩的有机物同时可以用于后续痕量有机物的定量分析以及生物效应的定性分析。本发明方法综合考虑了污水中小分子有机物及大分子有机物的回收,精确度高,回收率好,为污水中痕量有机物污染物和生物毒性效应的监测,提供了一种科学有效的水样预处理方法。

Description

基于低污染水体化学和生物分析的有机物富集浓缩方法
技术领域
本发明涉及环境水体的检测技术领域,特别涉及基于低污染水体化学和生物分析的有机物富集浓缩方法。
背景技术
污水厂二级出水中溶解性有机物占总有机物的90%以上,这类物质种类多,性质杂,即包含小分子的痕量有机物污染物,又包含大分子多糖、蛋白以及腐殖酸等物质。目前污水厂二级出水中检测到的痕量有机污染物包括内分泌干扰物(EDCs)、药物及个人护理品(PPCPs)、有机磷阻燃剂(OPFRs)以及农药杀虫剂等等,此类物质在污水受纳水体中一方面可能会产生生物积累效应,另一方面可能直接会对水生生物产生毒害;污水厂二级出水中检测到的不利生物效应包括非特异性发光细菌急性毒性、特异性内分泌干扰效应、活性基因毒性umuC遗传毒性以及植物光合抑制效应等。随着人们对水体生态安全的关注,以及检测技术的发展,痕量有机污染物的定量检测结合生物毒性效应检测手段已经成为未来污水监测领域的必然趋势。但是,有效精确的检测需要科学高效的水样前处理步骤。目前,水样的前处理往往仅考虑痕量有机污染物的回收,未考虑大分子有机物的回收;或者仅考虑大分子有机物的回收,而不能保证有效的回收率。因此,不利于后续的生物毒性检测及有机物理化指标的定性和定量分析。科学合理的水样前处理方法,一方面要保证污水中小分子痕量有机污染物的回收,同时也要保证污水中大分子有机物的回收,使污水中各组分的回收率最大化从而保证后续检测的准确性。
发明内容
为了解决以上技术问题,本发明的目的在于提供基于低污染水体化学和生物分析的有机物富集浓缩方法,综合考虑污水中痕量有机污染物和大分子多糖、蛋白以及腐殖质等的回收,提高目标有机物的回收率,从而保证后续生物毒性检测及理化指标分析的准确性。
为了实现上述目的,本发明采用的技术方案是:
基于低污染水体化学和生物分析的有机物富集浓缩方法,包括以下步骤:
步骤一,污水样品的预处理:
按照标准采样方法采集污水水样,并对水样进行如下处理:
(1)利用大体积过滤装置,将一定量污水水样通过玻璃纤维滤膜过滤;
(2)滤后水样存放于玻璃容器内,用H2SO4将水样pH酸化至2.5;
(3)向水样中加入一定量色谱级甲醇溶液,使其最终体积分数为5%;
步骤二,有机物的富集浓缩:
利用固相萃取装置,对水样中有机物进行富集浓缩:
(1)将C18固相萃取小柱和HLB固相萃取小柱串联使用;
(2)依次将10mL二氯甲烷和正己烷混合液(体积比为1:1)、10mL甲醇、10mL超纯水(pH=2.5)通过串联的固相萃取小柱进行活化清洗;
(3)将玻璃容器中步骤一得到的水样连续通过串联的固相萃取小柱,调节真空泵压力;
(4)污水水样上样完毕后,使用10mL超纯水(pH=2.5)对串联小柱进行清洗;
(5)利用固相萃取装置继续真空抽气,使串联小柱充分干燥,之后将小柱放入离心机中进一步脱水干燥;
步骤三,浓缩有机物溶液的制备:
(1)依次将10mL甲醇、10mL二氯甲烷和正己烷混合液(体积比为1:1)通过干燥后的固相萃取小柱,并收集洗脱液;
(2)将洗脱液在水浴条件下,利用高纯氮气吹至2mL左右,之后将所有洗脱液集中至一个玻璃试管中,利用高纯氮气轻吹至充分干燥状态;
(3)利用磷酸盐溶液将获取的固态有机物溶解,有机物的最终浓缩倍数根据生物毒性检测结果而定(以TOC计);
(4)利用有机溶剂将获取的固态有机物溶解,用于后续的液相色谱质谱联用仪或气相色谱质谱联用仪的上样检测。
所述的步骤一中,水样预处理具体为联合使用污水水样酸化(pH=2.5)和添加5%的甲醇有机溶剂(体积分数)。
所述的步骤一中玻璃纤维滤膜为0.7/0.45μm,H2SO4浓度为2M。
所述步骤二中,二氯甲烷和正己烷混合液(体积比为1:1)、甲醇的配比使用(两者体积比为1:1),活化溶剂极性覆盖范围为0.06(正己烷)→3.4(二氯甲烷)→6.6(甲醇)。
所述的步骤二中水样过流速度保持在5mL/min以下,利用固相萃取装置继续真空抽气20min。
所述步骤三中,二氯甲烷和正己烷混合液(体积比为1:1)、甲醇的配比使用(两者体积比为1:1)。
所述的步骤三中水浴条件为40℃,磷酸盐溶液为5mM(pH=8)。
本发明的有益效果:
①该发明中,有机物富集浓缩过程实现脱盐的同时,污水有机物的回收率可达85%以上,同时富集浓缩的有机物其光学性质和原水有机物光学性质基本一致;
②该发明中,获取的有机物浓缩液可直接用于液相色谱质谱联用仪和气相色谱质谱联用仪的痕量有机污染物检测,同时可用于生物毒性检测;
③该发明中,大幅减少了污水有机物定量检测和生物效应定性检测的水样体积,提高了分析检测的灵敏度。
附图说明
图1本发明设计方法流程示意图。
图2实施例中本发明方法和现有技术方法获取的有机物TOC和UV-vis指标分析。
图3实施例中本发明方法和现有技术方法获取的有机物三维荧光光谱指标的分析。
图4实施例中本发明方法和现有技术方法获取的有机物中痕量有机污染物的分析。
图5实施例中本发明方法和现有技术方法获取的有机物发光细菌急性毒性的分析。
具体实施方式
下面结合附图对本发明作进一步详细说明。
实施例1:
如图1所示:按照标准方法从某典型污水处理厂采集20L二沉池出水水样,其中10L水样按照上述发明方法仔细的进行样品处理;另外10L水样按照常用甲醇方法仔细的进行样品处理:将一定量污水水样通过0.7μm的玻璃纤维滤膜过滤;用20mL甲醇和10mL超纯水对HLB小柱进行活化清洗;将水样连续通过小柱,使水样过流速度保持在5mL/min以下,污水水样上样完毕后,使用10mL超纯水对小柱进行清洗;利用固相萃取装置继续真空抽气20min,使小柱充分干燥,之后将小柱放入离心机中进一步脱水干燥;使用20mL甲醇溶液对小柱进行洗脱,收集洗脱液,之后步骤同发明方法。
TOC值使用岛津TOC-VCPN仪器进行测量;扫描光谱使用岛津UV-1800测量;三维荧光采用日立F-7000仪器测量;痕量有机污染物采用UPLC-Xevo TQ MS仪器进行测量;发光细菌(Virbio fischeri)急性毒性试验参照修正的ISO11348方法,采用微板毒性法进行测定。
对本发明方法和常用甲醇方法获取的有机物进行对比分析,包括TOC、UV-vis、3DEEM、痕量有机物污染物和发光细菌急性毒性等五大类参数,如图2-5所示。发明方法总TOC的回收率为89%,相比甲醇方法TOC的回收率可提高50%;发明方法获取的有机物达到脱盐的效果同时,有机物紫外-可见光区光谱参数和原水有机物能够高度吻合;发明方法获取的有机物其三维荧光光谱参数可以看出,相比甲醇方法,获取的有机物荧光类物质回收率大幅提高;发明方法获取的有机物进行痕量有机污染物的定量检测表明,相比甲醇方法,单个物质的检测浓度显著提高,总的检测浓度提高86%;发明方法获取的有机物进行发光细菌急性毒性生物检测,与甲醇方法相比,当抑制率同为50%时,甲醇方法的浓缩倍数为55.5倍,而发明方法需要的浓缩倍数仅为15.5倍,大幅减少了生物毒性检测中污水水样的体积。

Claims (8)

1.基于低污染水体化学和生物分析的有机物富集浓缩方法,其特征在于,包括以下步骤:
步骤一,污水样品的预处理:
步骤二,有机物的富集浓缩:
利用固相萃取装置,对水样中有机物进行富集浓缩:
(1)将C18固相萃取小柱和HLB固相萃取小柱串联使用;
(2)依次将10mL体积比为1:1的二氯甲烷和正己烷混合液、10mL甲醇、10mL超纯水,所述的超纯水经酸化pH=2.5,先后通过C18和HLB固相萃取小柱进行活化清洗;
(3)将步骤一得到的污水样品先后通过C18和HLB串联的固相萃取小柱,调节真空泵压力;
(4)污水水样上样完毕后,使用10mL超纯水,所述的超纯水经酸化pH=2.5,对串联小柱进行清洗;
(5)利用固相萃取装置继续真空抽气,使串联小柱充分干燥,之后将小柱放入离心机中进一步脱水干燥;
步骤三,浓缩有机物溶液的制备:
(1)依次将10mL甲醇、10mL体积比为1:1的二氯甲烷和正己烷混合液分别通过干燥后的固相萃取小柱,并收集洗脱液;
(2)将洗脱液在水浴条件下,利用高纯氮气吹至2mL左右,之后将所有洗脱液集中至一个玻璃试管中,利用高纯氮气轻吹至充分干燥状态;
(3)利用磷酸盐溶液将获取的固态有机物溶解,有机物的最终浓缩倍数根据生物毒性检测结果而定;
(4)利用有机溶剂将获取的固态有机物溶解,用于后续的液相色谱质谱联用仪或气相色谱质谱联用仪的上样检测。
2.根据权利要求1所述的基于低污染水体化学和生物分析的有机物富集浓缩方法,其特征在于,所述的步骤一中;,水样预处理具体为联合使用污水水样酸化和添加5%的甲醇有机溶剂。
3.根据权利要求1所述的基于低污染水体化学和生物分析的有机物富集浓缩方法,其特征在于,所述的步骤一中玻璃纤维滤膜为0.7/0.45μm,H2SO4浓度为2M。
4.根据权利要求1所述的基于低污染水体化学和生物分析的有机物富集浓缩方法,其特征在于,所述步骤二中,二氯甲烷和正己烷混合液,体积比为1:1、甲醇的配比使用,两者体积比为1:1,活化溶剂极性覆盖范围为0.06的正己烷→3.4的二氯甲烷→6.6的甲醇。
5.根据权利要求1所述的基于低污染水体化学和生物分析的有机物富集浓缩方法,其特征在于,所述的步骤二中水样过流速度保持在5mL/min以下,利用固相萃取装置继续真空抽气20min。
6.根据权利要求1所述的基于低污染水体化学和生物分析的有机物富集浓缩方法,其特征在于,所述步骤三中,二氯甲烷和正己烷混合液,体积比为1:1、甲醇与混合液体积比为1:1。
7.根据权利要求1所述的基于低污染水体化学和生物分析的有机物富集浓缩方法,其特征在于,所述的步骤三中水浴条件为40℃,磷酸盐溶液为5mM,pH=8。
8.根据权利要求1所述的基于低污染水体化学和生物分析的有机物富集浓缩方法,其特征在于,步骤一按照标准采样方法采集污水水样,并对水样进行如下处理:
(1)利用大体积过滤装置,将一定量污水水样通过玻璃纤维滤膜过滤;
(2)滤后水样存放于玻璃容器内,用H2SO4将水样pH酸化至2.5;
(3)向水样中加入一定量色谱级甲醇溶液,使甲醇溶剂的体积分数为5%。
CN202010030090.4A 2020-01-13 2020-01-13 基于低污染水体化学和生物分析的有机物富集浓缩方法 Pending CN111175400A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010030090.4A CN111175400A (zh) 2020-01-13 2020-01-13 基于低污染水体化学和生物分析的有机物富集浓缩方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010030090.4A CN111175400A (zh) 2020-01-13 2020-01-13 基于低污染水体化学和生物分析的有机物富集浓缩方法

Publications (1)

Publication Number Publication Date
CN111175400A true CN111175400A (zh) 2020-05-19

Family

ID=70658039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010030090.4A Pending CN111175400A (zh) 2020-01-13 2020-01-13 基于低污染水体化学和生物分析的有机物富集浓缩方法

Country Status (1)

Country Link
CN (1) CN111175400A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730650A (zh) * 2020-12-15 2021-04-30 湖南微谱检测技术有限公司 大体积水质中超痕量有机物富集方法
CN113092705A (zh) * 2021-04-09 2021-07-09 西安建筑科技大学 一种低毒性样品生物毒性检测的快速简便预处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572239A (zh) * 2014-10-16 2016-05-11 无锡市寰创环境科技发展有限公司 一种同时快速测定水体中多种有机氯农药含量的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105572239A (zh) * 2014-10-16 2016-05-11 无锡市寰创环境科技发展有限公司 一种同时快速测定水体中多种有机氯农药含量的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
GABRIEL DASILVA 等: "Lipidomic analysis of polyunsaturated fatty acids and their oxygenated metabolites in plasma by solid-phase extraction followed by LC-MS", 《ANAL BIOANAL CHEM》 *
徐雄 等: "我国重点流域地表水中29种农药污染及其生态风险评价", 《生态毒理学报》 *
杜利敏 等: "大体积固相萃取-气相色谱-串联质谱法测定饮用水中21种半挥发性有机化合物", 《中国卫生检验杂志》 *
王丽 等: "气相色谱-质谱法测定饮用水源中的痕量酚类物质", 《理化检验(化学分册)》 *
钟文珏 等: "再生水中优先控制有毒污染物的筛查方法", 《中国环境科学》 *
陈贝 等: "地表水中SVOCs和氨基甲酸酯类农药同步萃取技术的探讨", 《环境监测管理与技术》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112730650A (zh) * 2020-12-15 2021-04-30 湖南微谱检测技术有限公司 大体积水质中超痕量有机物富集方法
CN113092705A (zh) * 2021-04-09 2021-07-09 西安建筑科技大学 一种低毒性样品生物毒性检测的快速简便预处理方法

Similar Documents

Publication Publication Date Title
Seredyńska-Sobecka et al. Biological activation of carbon filters
Lu et al. Molecularly imprinted polymers for dispersive solid‐phase extraction of phenolic compounds in aqueous samples coupled with capillary electrophoresis
Low et al. Quaternized wood as sorbent for reactive dyes
CN111175400A (zh) 基于低污染水体化学和生物分析的有机物富集浓缩方法
Hu et al. Effects of fresh and degraded dissolved organic matter derived from maize straw on copper sorption onto farmland loess
CN111044643A (zh) 一种有机磷酸酯的检测方法
Park Spectroscopic characterization of dissolved organic matter and its interactions with metals in surface waters using size exclusion chromatography
Tokman et al. Determination of bismuth and cadmium after solid-phase extraction with chromosorb-107 in a syringe
Wang et al. Determination of total selenium and dissolved selenium species in natural waters by fluorometry
Guo et al. Characterization of the dissolved organic matter in sewage effluent of sequence batch reactor: the impact of carbon source
CN104807688B (zh) 一种萃取富集大体积环境水样中微量多环芳烃的方法
Wang et al. Ionic liquid-based hollow fiber-supported liquid-phase microextraction enhanced electrically for the determination of neutral red
Sivakumar et al. Effect of aeration on colour removal from textile industry wastewater
Schröder Mass spectrometric monitoring of the degradation and elimination efficiency for hardly eliminable and hardly biodegradable polar compounds by membrane bioreactors
CN106066272A (zh) 一种以esi‑ft‑icr‑ms分析天然可溶性有机质样品的前处理方法
Song et al. Lead complexation of soluble and bound extracellular polymeric substances from activated sludge: characterized with fluorescence spectroscopy and FTIR spectroscopy
CN113252815B (zh) 一种污泥堆肥中三氯生和三氯卡班的检测方法
Morales-Toledo et al. Optimization and development of SPE and MAE combined with UHPLCFD for the determination of acetylsalicylic acid, naproxen, ibuprofen and gemfibrozil in sewage and sludge samples
Manjun Determination of photochemically-generated reactive oxygen species in natural water
Shi et al. Mechanism on impact of internal-electrolysis pretreatment on biodegradability of yeast wastewater
CN110161169B (zh) 一种水环境中多种药物活性物质的快速检测方法
Guimaraes et al. Removal efficiency of dissolved organic matter from secondary effluent by coagulation-flocculation processes
CN111218271A (zh) 一种基于聚集诱导发光性质的汞离子检测材料的制备和使用方法
Philibert et al. Comparison of two polarity measurements of hydrophobic organic matter for the evaluation of water treatment processes: XAD resin and PRAM
CN115304227B (zh) 一种污泥中溶解性有机物分子组成的解析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200519