CN111170345A - 一种纳米α相氧化铝材料的制备方法 - Google Patents

一种纳米α相氧化铝材料的制备方法 Download PDF

Info

Publication number
CN111170345A
CN111170345A CN202010042490.7A CN202010042490A CN111170345A CN 111170345 A CN111170345 A CN 111170345A CN 202010042490 A CN202010042490 A CN 202010042490A CN 111170345 A CN111170345 A CN 111170345A
Authority
CN
China
Prior art keywords
phase alumina
alumina
nano
phase
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010042490.7A
Other languages
English (en)
Inventor
孙韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuhai Qinsheng New Material Co ltd
Original Assignee
Zhuhai Qinsheng New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuhai Qinsheng New Material Co ltd filed Critical Zhuhai Qinsheng New Material Co ltd
Priority to CN202010042490.7A priority Critical patent/CN111170345A/zh
Publication of CN111170345A publication Critical patent/CN111170345A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/023Grinding, deagglomeration or disintegration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种纳米α相氧化铝材料的制备方法,其包括以下步骤:S1:称取氧化铝原料,并进行砂磨操作,得到纳米氧化铝;S2:在焙烧炉中快速升温至1200℃,保持5~15min,然后快速降温,得到含有α相氧化铝微晶的氧化铝粉体;S3:重新升温至850~950℃,在该温度范围保持恒温2~6h,然后降温,得到转化率大于90%的α相氧化铝;S4:将α相氧化铝分散在载体液中,得到α相氧化铝悬浮液,通过高速碰撞设备在高速碰撞条件下进行破碎,反复循环多次,批量制备得到超高纯纳米α相氧化铝。本发明的纳米α相氧化铝材料的制备方法,不引入其他任何工艺杂质,其制备过程绿色环保,尤其适用于纳米α相氧化铝的批量生产与制备。

Description

一种纳米α相氧化铝材料的制备方法
技术领域
本发明涉及纳米材料制备的技术领域,尤其涉及一种超高纯纳米α相氧化铝材料的制备方法。
背景技术
α相氧化铝(俗称刚玉)是所有氧化铝中最稳定的物相,它的稳定性和它的晶体结构有着密切的关系;其比表面低,具有耐高温的惰性,晶相稳定、硬度高、尺寸稳定性好,可广泛应用于各种塑料、橡胶、陶瓷、耐火材料等产品的补强增韧,特别是提高陶瓷的致密性、光洁度、冷热疲劳性、断裂韧性、抗蠕变性能和高分子材料产品的耐磨性能尤为显著。由于α相氧化铝也是性能优异的远红外发射材料,作为远红外发射和保温材料被应用于化纤产品和高压钠灯中。此外,α相氧化铝电阻率高,具有良好的绝缘性能,可应用于YGA激光晶的主要配件和集成电路基板中。
现有纳米α相氧化铝材料的制备方法,一般采用Al(OH)3干凝胶在煅烧过程中实现晶型转化得到,该方法制备过程对设备腐蚀性强,晶型转化效率低,无法批量制备得到纳米α相氧化铝材料。如何降低生产成本、减少生产过程中对环境的污染,实现超高纯纳米α相氧化铝粉体的绿色制备是纳米粉体能否进一步得到广泛应用的关键。
发明内容
鉴于以上现有技术的不足之处,本发明提供了一种纳米α相氧化铝材料的制备方法,该制备方法不引入任何工艺杂质,制备过程绿色环保,尤其适用于超高纯纳米α相氧化铝的批量生产与制备。
为达到以上目的,本发明采用的技术方案为:
一种纳米α相氧化铝材料的制备方法,所述制备方法包括以下步骤:
S1:称取氧化铝原料,并进行砂磨操作,得到纳米氧化铝;
S2:将步骤S1得到的纳米氧化铝,在焙烧炉中快速升温至1200℃,保持5~15min,然后快速降温,得到含有α相氧化铝微晶的氧化铝粉体;
S3:将步骤S2得到的含有α相氧化铝微晶的氧化铝粉体,重新升温至850~950℃,在该温度范围保持恒温2~6h,然后降温,得到转化率大于90%的α相氧化铝;
S4:将步骤S3得到的α相氧化铝分散在载体液中,得到α相氧化铝悬浮液,通过高速碰撞设备在高速碰撞条件下进行破碎,反复循环多次,批量制备得到超高纯纳米α相氧化铝。
所述氧化铝原料为γ相氧化铝或θ相氧化铝。
在所述步骤S2中,快速升温的速率设定为10~15℃/min,快速降温的速率设定为10~15℃/min。
在所述步骤S2中,所述氧化铝粉体中α相氧化铝微晶含量为0.1~0.5wt%。
在所述步骤S3中,升温的速率设定为5~12℃/min,降温的速率设定为15~20℃/min。
在所述步骤S4中,所述载体液为水、乙醇、乙二醇中的至少一种。
更有选的,所述载体液为水、乙醇、乙二醇中的至少一种与杯芳烃混合得到的混合溶液,两者质量比为6~18:1。所述杯芳烃下沿修饰有羟基,上沿修饰有C6-C10的长链烷烃基团。
所述杯芳烃具有与离子和中性分子形成主客体包结物的特性,修饰后的基团水容性强,有利于提高悬浮液中固体颗粒的均匀分散,并且由于具有良好的热稳定性及化学稳定性,在高压作用下易于与制备得到的纳米颗粒分离,从而进一步提高纳米材料的纯度。
所述纳米α相氧化铝的粒径为20~50nm。
所述高速碰撞设备包含:
第一储液罐,用以储存配制完成的悬浮液;
加压泵,所述加压泵进口连接至第一储液罐,用以将悬浮液加压至高压状态,并分流至第一高压液罐和第二高压液罐,所述第一高压液罐和第二高压液罐分别与第一喷嘴和第二喷嘴的进口端相连;
反应釜,用以将悬浮液在反应釜内进行高速碰撞,所述第一喷嘴和第二喷嘴延伸至所述反应釜内腔的上部并相对设置;
第二储液罐,连接至反应釜内腔的下部,用以储存碰撞完成后制备得到的纳米材料。
所述第一高压液罐和第二高压液罐内液体腔的压力要求大于100Mpa。
所述第一喷嘴和第二喷嘴内的流体喷速为20~40m/s。
本发明的有益效果:
本发明纳米α相氧化铝材料的制备方法,不引入任何工艺杂质,制备过程绿色环保,尤其适用于纳米α相氧化铝的批量生产与制备,所制备得到的纳米材料纯度达到99.99%以上。
附图说明
图1为本发明实施例中高速碰撞设备的的示意图;
其中,第一储液罐1,加压泵2,第一高压液罐3,第二高压液罐4,反应釜5,第二储液罐6,第一喷嘴31,第二喷嘴41。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。
实施例1
本实施例的纳米α相氧化铝材料的制备方法,其包括以下步骤:
S1:称取氧化铝原料,并进行砂磨操作,得到纳米氧化铝;
S2:将步骤S1得到的纳米氧化铝,在焙烧炉中快速升温至1200℃,保持10min,然后快速降温,得到含有α相氧化铝微晶的氧化铝粉体;
S3:将步骤S2得到的含有α相氧化铝微晶的氧化铝粉体,重新升温至900℃,在该温度范围保持恒温4h,然后降温,得到转化率大于90%的α相氧化铝;
S4:将步骤S3得到的α相氧化铝分散在载体液中,得到α相氧化铝悬浮液,通过高速碰撞设备在高速碰撞条件下进行破碎,反复循环多次,批量制备得到超高纯纳米α相氧化铝。
所述氧化铝原料为γ相氧化铝。
在所述步骤S2中,快速升温的速率设定为12℃/min,快速降温的速率设定为12℃/min。
在所述步骤S2中,所述氧化铝粉体中α相氧化铝微晶含量为0.3wt%。
在所述步骤S3中,升温的速率设定为8℃/min,降温的速率设定为18℃/min。
在所述步骤S4中,所述载体液为水。
所述纳米α相氧化铝的粒径为40nm。
如图1所示,所述高速碰撞设备包含:
第一储液罐1,用以储存配制完成的悬浮液;
加压泵2,所述加压泵2进口连接至第一储液罐1,用以将悬浮液加压至高压状态,并分流至第一高压液罐3和第二高压液罐4,所述第一高压液罐3和第二高压液罐4分别与第一喷嘴31和第二喷嘴41的进口端相连;
反应釜5,用以将悬浮液在反应釜5内进行高速碰撞,所述第一喷嘴31和第二喷嘴41延伸至所述反应釜5内腔的上部并相对设置;
第二储液罐6,连接至反应釜5内腔的下部,用以储存碰撞完成后制备得到的纳米材料。
所述第一高压液罐3和第二高压液罐4内液体腔的压力为110Mpa。
所述第一喷嘴31和第二喷嘴41内的流体喷速为30m/s。
所制备得到的纳米材料纯度达到99.990%。
实施例2
本实施例的纳米α相氧化铝材料的制备方法,其包括以下步骤:
S1:称取氧化铝原料,并进行砂磨操作,得到纳米氧化铝;
S2:将步骤S1得到的纳米氧化铝,在焙烧炉中快速升温至1200℃,保持5min,然后快速降温,得到含有α相氧化铝微晶的氧化铝粉体;
S3:将步骤S2得到的含有α相氧化铝微晶的氧化铝粉体,重新升温至850℃,在该温度范围保持恒温6h,然后降温,得到转化率大于90%的α相氧化铝;
S4:将步骤S3得到的α相氧化铝分散在载体液中,得到α相氧化铝悬浮液,通过高速碰撞设备在高速碰撞条件下进行破碎,反复循环多次,批量制备得到超高纯纳米α相氧化铝。
所述氧化铝原料为θ相氧化铝。
在所述步骤S2中,快速升温的速率设定为10℃/min,快速降温的速率设定为15℃/min。
在所述步骤S2中,所述氧化铝粉体中α相氧化铝微晶含量为0.1wt%。
在所述步骤S3中,升温的速率设定为5℃/min,降温的速率设定为15℃/min。
在所述步骤S4中,所述载体液为乙醇。
所述纳米α相氧化铝的粒径为20nm。
如图1所示,所述高速碰撞设备包含:
第一储液罐1,用以储存配制完成的悬浮液;
加压泵2,所述加压泵2进口连接至第一储液罐1,用以将悬浮液加压至高压状态,并分流至第一高压液罐3和第二高压液罐4,所述第一高压液罐3和第二高压液罐4分别与第一喷嘴31和第二喷嘴41的进口端相连;
反应釜5,用以将悬浮液在反应釜5内进行高速碰撞,所述第一喷嘴31和第二喷嘴41延伸至所述反应釜5内腔的上部并相对设置;
第二储液罐6,连接至反应釜5内腔的下部,用以储存碰撞完成后制备得到的纳米材料。
所述第一高压液罐3和第二高压液罐4内液体腔的压力为100Mpa。
所述第一喷嘴31和第二喷嘴41内的流体喷速为20m/s。
所制备得到的纳米材料纯度达到99.988%。
实施例3
本实施例的纳米α相氧化铝材料的制备方法,其包括以下步骤:
S1:称取氧化铝原料,并进行砂磨操作,得到纳米氧化铝;
S2:将步骤S1得到的纳米氧化铝,在焙烧炉中快速升温至1200℃,保持15min,然后快速降温,得到含有α相氧化铝微晶的氧化铝粉体;
S3:将步骤S2得到的含有α相氧化铝微晶的氧化铝粉体,重新升温至950℃,在该温度范围保持恒温6h,然后降温,得到转化率大于90%的α相氧化铝;
S4:将步骤S3得到的α相氧化铝分散在载体液中,得到α相氧化铝悬浮液,通过高速碰撞设备在高速碰撞条件下进行破碎,反复循环多次,批量制备得到超高纯纳米α相氧化铝。
所述氧化铝原料为γ相氧化铝。
在所述步骤S2中,快速升温的速率设定为15℃/min,快速降温的速率设定为15℃/min。
在所述步骤S2中,所述氧化铝粉体中α相氧化铝微晶含量为0.5wt%。
在所述步骤S3中,升温的速率设定为12℃/min,降温的速率设定为20℃/min。
在所述步骤S4中,所述载体液为乙二醇。
所述纳米α相氧化铝的粒径为50nm。
如图1所示,所述高速碰撞设备包含:
第一储液罐1,用以储存配制完成的悬浮液;
加压泵2,所述加压泵2进口连接至第一储液罐1,用以将悬浮液加压至高压状态,并分流至第一高压液罐3和第二高压液罐4,所述第一高压液罐3和第二高压液罐4分别与第一喷嘴31和第二喷嘴41的进口端相连;
反应釜5,用以将悬浮液在反应釜5内进行高速碰撞,所述第一喷嘴31和第二喷嘴41延伸至所述反应釜5内腔的上部并相对设置;
第二储液罐6,连接至反应釜5内腔的下部,用以储存碰撞完成后制备得到的纳米材料。
所述第一高压液罐3和第二高压液罐4内液体腔的压力为120Mpa。
所述第一喷嘴31和第二喷嘴41内的流体喷速为40m/s。
所制备得到的纳米材料纯度达到99.991%。
实施例4
本实施例的纳米α相氧化铝材料的制备方法,其包括以下步骤:
S1:称取氧化铝原料,并进行砂磨操作,得到纳米氧化铝;
S2:将步骤S1得到的纳米氧化铝,在焙烧炉中快速升温至1200℃,保持5min,然后快速降温,得到含有α相氧化铝微晶的氧化铝粉体;
S3:将步骤S2得到的含有α相氧化铝微晶的氧化铝粉体,重新升温至850℃,在该温度范围保持恒温2h,然后降温,得到转化率大于90%的α相氧化铝;
S4:将步骤S3得到的α相氧化铝分散在载体液中,得到α相氧化铝悬浮液,通过高速碰撞设备在高速碰撞条件下进行破碎,反复循环多次,批量制备得到超高纯纳米α相氧化铝。
所述氧化铝原料为γ相氧化铝。
在所述步骤S2中,快速升温的速率设定为15℃/min,快速降温的速率设定为15℃/min。
在所述步骤S2中,所述氧化铝粉体中α相氧化铝微晶含量为0.1wt%。
在所述步骤S3中,升温的速率设定为7℃/min,降温的速率设定为20℃/min。
在所述步骤S4中,所述载体液为乙醇与杯芳烃混合得到的混合溶液,两者质量比为8:1。
所述纳米α相氧化铝的粒径为40nm。
如图1所示,所述高速碰撞设备包含:
第一储液罐1,用以储存配制完成的悬浮液;
加压泵2,所述加压泵2进口连接至第一储液罐1,用以将悬浮液加压至高压状态,并分流至第一高压液罐3和第二高压液罐4,所述第一高压液罐3和第二高压液罐4分别与第一喷嘴31和第二喷嘴41的进口端相连;
反应釜5,用以将悬浮液在反应釜5内进行高速碰撞,所述第一喷嘴31和第二喷嘴41延伸至所述反应釜5内腔的上部并相对设置;
第二储液罐6,连接至反应釜5内腔的下部,用以储存碰撞完成后制备得到的纳米材料。
所述第一高压液罐3和第二高压液罐内4液体腔的压力为110Mpa。
所述第一喷嘴31和第二喷嘴41内的流体喷速为30m/s。
所制备得到的纳米材料纯度达到99.998%。
实施例5
本实施例的纳米α相氧化铝材料的制备方法,其包括以下步骤:
S1:称取氧化铝原料,并进行砂磨操作,得到纳米氧化铝;
S2:将步骤S1得到的纳米氧化铝,在焙烧炉中快速升温至1200℃,保持15min,然后快速降温,得到含有α相氧化铝微晶的氧化铝粉体;
S3:将步骤S2得到的含有α相氧化铝微晶的氧化铝粉体,重新升温至950℃,在该温度范围保持恒温6h,然后降温,得到转化率大于90%的α相氧化铝;
S4:将步骤S3得到的α相氧化铝分散在载体液中,得到α相氧化铝悬浮液,通过高速碰撞设备在高速碰撞条件下进行破碎,反复循环多次,批量制备得到超高纯纳米α相氧化铝。
所述氧化铝原料为θ相氧化铝。
在所述步骤S2中,快速升温的速率设定为10℃/min,快速降温的速率设定为15℃/min。
在所述步骤S2中,所述氧化铝粉体中α相氧化铝微晶含量为0.2wt%。
在所述步骤S3中,升温的速率设定为10℃/min,降温的速率设定为16℃/min。
在所述步骤S4中,所述载体液为水与杯芳烃混合得到的混合溶液,两者质量比为15:1。
所述纳米α相氧化铝的粒径为20nm。
如图1所示,所述高速碰撞设备包含:
第一储液罐1,用以储存配制完成的悬浮液;
加压泵2,所述加压泵2进口连接至第一储液罐1,用以将悬浮液加压至高压状态,并分流至第一高压液罐3和第二高压液罐4,所述第一高压液罐3和第二高压液罐4分别与第一喷嘴31和第二喷嘴41的进口端相连;
反应釜5,用以将悬浮液在反应釜5内进行高速碰撞,所述第一喷嘴31和第二喷嘴41延伸至所述反应釜5内腔的上部并相对设置;
第二储液罐6,连接至反应釜5内腔的下部,用以储存碰撞完成后制备得到的纳米材料。
所述第一高压液罐3和第二高压液罐4内液体腔的压力为100Mpa。
所述第一喷嘴31和第二喷嘴41内的流体喷速为20m/s。
所制备得到的纳米材料纯度达到99.999%。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。

Claims (10)

1.一种纳米α相氧化铝材料的制备方法,其特征在于,所述制备方法包括以下步骤:
S1:称取氧化铝原料,并进行砂磨操作,得到纳米氧化铝;
S2:将步骤S1得到的纳米氧化铝,在焙烧炉中快速升温至1200℃,保持5~15min,然后快速降温,得到含有α相氧化铝微晶的氧化铝粉体;
S3:将步骤S2得到的含有α相氧化铝微晶的氧化铝粉体,重新升温至850~950℃,在该温度范围保持恒温2~6h,然后降温,得到转化率大于90%的α相氧化铝;
S4:将步骤S3得到的α相氧化铝分散在载体液中,得到α相氧化铝悬浮液,通过高速碰撞设备在高速碰撞条件下进行破碎,反复循环多次,批量制备得到超高纯纳米α相氧化铝。
2.如权利要求1所述的纳米α相氧化铝材料的制备方法,其特征在于,所述氧化铝原料为γ相氧化铝或θ相氧化铝。
3.如权利要求1所述的纳米α相氧化铝材料的制备方法,其特征在于,在所述步骤S2中,快速升温的速率设定为10~15℃/min,快速降温的速率设定为10~15℃/min。
4.如权利要求1所述的纳米α相氧化铝材料的制备方法,其特征在于,在所述步骤S2中,所述氧化铝粉体中α相氧化铝微晶含量为0.1~0.5wt%。
5.如权利要求1所述的纳米α相氧化铝材料的制备方法,其特征在于,在所述步骤S3中,升温的速率设定为5~12℃/min,降温的速率设定为15~20℃/min。
6.如权利要求1所述的纳米α相氧化铝材料的制备方法,其特征在于,在所述步骤S4中,所述载体液为水、乙醇、乙二醇中的至少一种。
7.如权利要求1所述的纳米α相氧化铝材料的制备方法,其特征在于,所述纳米α相氧化铝的粒径为20~50nm。
8.如权利要求1所述的纳米α相氧化铝材料的制备方法,其特征在于,所述高速碰撞设备包含:
第一储液罐,用以储存配制完成的悬浮液;
加压泵,所述加压泵进口连接至第一储液罐,用以将悬浮液加压至高压状态,并分流至第一高压液罐和第二高压液罐,所述第一高压液罐和第二高压液罐分别与第一喷嘴和第二喷嘴的进口端相连;
反应釜,用以将悬浮液在反应釜内进行高速碰撞,所述第一喷嘴和第二喷嘴延伸至所述反应釜内腔的上部并相对设置;
第二储液罐,连接至反应釜内腔的下部,用以储存碰撞完成后制备得到的纳米材料。
9.如权利要求8所述的纳米α相氧化铝材料的制备方法,其特征在于,所述第一高压液罐和第二高压液罐内液体腔的压力要求大于100Mpa。
10.如权利要求8所述的纳米α相氧化铝材料的制备方法,其特征在于,所述第一喷嘴和第二喷嘴内的流体喷速为20~40m/s。
CN202010042490.7A 2020-01-15 2020-01-15 一种纳米α相氧化铝材料的制备方法 Pending CN111170345A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010042490.7A CN111170345A (zh) 2020-01-15 2020-01-15 一种纳米α相氧化铝材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010042490.7A CN111170345A (zh) 2020-01-15 2020-01-15 一种纳米α相氧化铝材料的制备方法

Publications (1)

Publication Number Publication Date
CN111170345A true CN111170345A (zh) 2020-05-19

Family

ID=70625059

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010042490.7A Pending CN111170345A (zh) 2020-01-15 2020-01-15 一种纳米α相氧化铝材料的制备方法

Country Status (1)

Country Link
CN (1) CN111170345A (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145028A (en) * 1981-03-02 1982-09-07 Mitsubishi Chem Ind Ltd Preparation of alpha-alumina having high specific surface area
TW411288B (en) * 1998-10-02 2000-11-11 Karasawa Fine Co Ltd Method to produce micro-particle dispersion
CN1621185A (zh) * 2004-12-10 2005-06-01 华东理工大学 超高压超临界流体微射流技术制备超细粉体的方法及装置
CN101200300A (zh) * 2007-12-17 2008-06-18 中国铝业股份有限公司 一种α-氧化铝粉体的制备方法
CN102659149A (zh) * 2012-02-28 2012-09-12 山东大学 单分散高纯α-Al2O3粉的制备方法
CN103043692A (zh) * 2012-12-27 2013-04-17 西安迈克森新材料有限公司 一种高纯氧化铝粉体材料的制备方法
CN103058240A (zh) * 2013-01-15 2013-04-24 雅安百图高新材料有限公司 球形α相氧化铝的制备方法
CN103816970A (zh) * 2014-01-27 2014-05-28 上海应用技术学院 液态纳米溶液的制备装置及制备方法
CN104085908A (zh) * 2014-07-16 2014-10-08 李春松 一种高纯度氧化铝的制备方法
CN105417562A (zh) * 2015-12-28 2016-03-23 深圳市星源材质科技股份有限公司 一种水热法合成α-氧化铝的制备方法
CN105540574A (zh) * 2016-01-28 2016-05-04 成都新柯力化工科技有限公司 一种利用对喷式气流粉碎机制备石墨烯微片的方法
CN110642281A (zh) * 2019-09-23 2020-01-03 中国铝业股份有限公司 一种α相超细低钠氧化铝粉体的制备方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145028A (en) * 1981-03-02 1982-09-07 Mitsubishi Chem Ind Ltd Preparation of alpha-alumina having high specific surface area
TW411288B (en) * 1998-10-02 2000-11-11 Karasawa Fine Co Ltd Method to produce micro-particle dispersion
CN1621185A (zh) * 2004-12-10 2005-06-01 华东理工大学 超高压超临界流体微射流技术制备超细粉体的方法及装置
CN101200300A (zh) * 2007-12-17 2008-06-18 中国铝业股份有限公司 一种α-氧化铝粉体的制备方法
CN102659149A (zh) * 2012-02-28 2012-09-12 山东大学 单分散高纯α-Al2O3粉的制备方法
CN103043692A (zh) * 2012-12-27 2013-04-17 西安迈克森新材料有限公司 一种高纯氧化铝粉体材料的制备方法
CN103058240A (zh) * 2013-01-15 2013-04-24 雅安百图高新材料有限公司 球形α相氧化铝的制备方法
CN103816970A (zh) * 2014-01-27 2014-05-28 上海应用技术学院 液态纳米溶液的制备装置及制备方法
CN104085908A (zh) * 2014-07-16 2014-10-08 李春松 一种高纯度氧化铝的制备方法
CN105417562A (zh) * 2015-12-28 2016-03-23 深圳市星源材质科技股份有限公司 一种水热法合成α-氧化铝的制备方法
CN105540574A (zh) * 2016-01-28 2016-05-04 成都新柯力化工科技有限公司 一种利用对喷式气流粉碎机制备石墨烯微片的方法
CN110642281A (zh) * 2019-09-23 2020-01-03 中国铝业股份有限公司 一种α相超细低钠氧化铝粉体的制备方法

Similar Documents

Publication Publication Date Title
CN113185302B (zh) 一种风力发电用大尺寸氮化硅陶瓷球及其制备方法和应用
CN106800420B (zh) 一种碳化硅晶须原位复合刚玉高温陶瓷材料及其制备方法
CN115710127B (zh) 石墨烯增韧碳化硅陶瓷材料的制备方法
CN111170345A (zh) 一种纳米α相氧化铝材料的制备方法
CN110015889A (zh) 一种zta陶瓷材料制备方法及其制备的材料
CN113430417A (zh) 一种添加稀土氧化物的高性能钛合金及其制备方法
CN107935556B (zh) 一种纳米陶瓷结合剂的制备方法
CN114477951B (zh) 一种高强度高白度陶瓷制品及其加工工艺
CN113735074B (zh) 一种可生物降解材料用无机成核剂的制备方法
CN115353382A (zh) 一种连铸用高强、增韧氧化锆定径水口及其制造方法
CN113264544B (zh) 一种降低氧化铝吸油值和粘度的方法
CN111841555B (zh) 甲醇直接裂解制co和h2的催化剂、制备方法及应用
CN114478070A (zh) 一种数码金属面岩板的制备方法
CN114380606A (zh) 一种机加工高强度耐火材料制备工艺
CN114574788A (zh) 一种高速钢及其制备方法和应用
CN110699617B (zh) 石墨烯和氧化铝晶须共增强铜基复合材料制备方法及其产品
CN113102752A (zh) 一种高性能粉末冶金钛金属及其制备方法
CN113087501A (zh) 一种高强度石英陶瓷辊及其制备工艺
CN113045295A (zh) 一种高强度陶瓷型材及其制备方法
CN110922176A (zh) 一种石英陶瓷坩锅材料的生产工艺
CN115159854B (zh) 一种基于低碳冷烧结工艺制备半透明SiO2玻璃陶瓷的方法
CN114054682B (zh) 一种用于航空发动机的陶瓷型芯的制备工艺
CN1166587C (zh) 一种氮化硅水基浓悬浮体的制备方法
CN114058894B (zh) 一种中熵合金自润滑复合材料及其制备方法
CN113604720B (zh) 一种大尺寸抗变形钼合金棒材及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200519

RJ01 Rejection of invention patent application after publication