CN111158356A - 自动割草机及其控制方法 - Google Patents

自动割草机及其控制方法 Download PDF

Info

Publication number
CN111158356A
CN111158356A CN201811324045.9A CN201811324045A CN111158356A CN 111158356 A CN111158356 A CN 111158356A CN 201811324045 A CN201811324045 A CN 201811324045A CN 111158356 A CN111158356 A CN 111158356A
Authority
CN
China
Prior art keywords
automatic mower
charging station
navigation device
information
inertial navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811324045.9A
Other languages
English (en)
Other versions
CN111158356B (zh
Inventor
盛晓初
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Positec Power Tools Suzhou Co Ltd
Original Assignee
Positec Power Tools Suzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Positec Power Tools Suzhou Co Ltd filed Critical Positec Power Tools Suzhou Co Ltd
Priority to CN201811324045.9A priority Critical patent/CN111158356B/zh
Priority to PCT/CN2019/115345 priority patent/WO2020093970A1/zh
Publication of CN111158356A publication Critical patent/CN111158356A/zh
Application granted granted Critical
Publication of CN111158356B publication Critical patent/CN111158356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Harvester Elements (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本申请涉及一种自动割草机及其控制方法,其中,自动割草机上设置有惯性导航器件与控制模块,惯性导航器件用于检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;控制模块用于根据上述信息计算自动割草机与充电站之间的相对位置信息和相对角度信息,并规划自动割草机的行走路径。上述自动割草机及其控制方法在离开充电站后能够准确得知自身的相对位置和相对角度,特别是在需要回归充电站时,不需要依赖工作边界的通电导线来进行行走路径的规划,在节约资源的同时使得自动割草机的应用越来越广泛。

Description

自动割草机及其控制方法
技术领域
本发明涉及电器技术领域,特别是涉及一种自动割草机及其控制方法。
背景技术
随着小型智能化电器技术的发展,出现了自动割草机,自动割草机能够代替人工完成对草坪的修整工作,将用户从草坪维护的繁重工作中解放出来,从而受到越来越多用户的青睐。
自动割草机通常消耗电能作为动力,基于此,出现了与自动割草机所配套的充电站,充电站能够为自动割草机提供电能作为自动割草机的能源补充。现有技术中,一般通过布置通电导线,以确定自动割草机的工作边界,而充电站通常设置在工作边界的通电导线上。自动割草机返回充电站时只能先行走到工作边界的通电导线上,再沿通电导线返回充电站。
由于目前自动割草机需要依赖于工作边界的通电导线来规划行走路径,从而制约了自动割草机智能化的进一步发展。
发明内容
基于此,有必要针对目前自动割草机无法准确得知自身的相对位置和角度,特别回归充电时,需要依赖于工作边界的通电导线来规划行走路径的问题,提供一种自动割草机及其控制方法。
一种自动割草机,该自动割草机上设置有惯性导航器件与控制模块,其中控制模块与惯性导航器件连接;
惯性导航器件用于检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;
控制模块用于根据惯性导航器件检测的自动割草机每一时刻的角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息;并根据相对位置信息规划自动割草机的行走路径。
在其中一个实施例中,惯性导航器件包括陀螺仪与加速度计,其中,陀螺仪用于获得自动割草机每一时刻的角速度空间矢量信息,加速度计用于获得自动割草机每一时刻的加速度空间矢量信息。
在其中一个实施例中,自动割草机包括多个驱动轮,其中,惯性导航器件在水平面上的垂直投影位于多个驱动轮在水平面上的垂直投影的几何中心点。
在其中一个实施例中,惯性导航器件具有互相垂直的三根敏感轴,三根敏感轴中的一根敏感轴与自动割草机的中轴线平行,另一根敏感轴与多个驱动轮确定的虚拟地平面平行,且与自动割草机直线行走时前进的方向平行。
在其中一个实施例中,惯性导航器件为光纤类型惯性导航器件或MEMS类型惯性导航器件。
一种自动割草机的控制方法,其中,自动割草机上设置有惯性导航器件,该方法包括:
接收惯性导航器件检测的自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;
根据惯性导航器件检测的自动割草机每一时刻的角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息;并根据相对位置信息和相对角度信息规划自动割草机的行走路径。
在其中一个实施例中,根据相对位置信息和相对角度信息规划自动割草机的行走路径,包括:
根据预设工作区域信息以及自动割草机与充电站之间的相对位置信息和相对角度信息,确定自动割草机与工作区域之间的位置关系;
根据相对位置信息、相对角度信息与位置关系,生成自动割草机的行走路径;
控制自动割草机按照行走路径行走。
在其中一个实施例中,自动割草机的行走路径包括:自动割草机的割草工作路径和自动割草机返回充电站的行走路径中的任一种;
则控制自动割草机按照行走路径行走,包括:
控制自动割草机按照割草工作路径行走并割草;或者
控制自动割草机按照返回充电站的行走路径行走以返回充电站。
在其中一个实施例中,控制自动割草机按照返回充电站的行走路径行走以返回充电站之后,还包括:
根据相对位置信息和相对角度信息控制自动割草机与充电站对接。
在其中一个实施例中,根据相对位置信息和相对角度信息控制自动割草机与充电站的对接,包括:
获取惯性导航器件位于自动割草机上的位置信息;
根据惯性导航器件位于自动割草机上的位置信息以及自动割草机与充电站之间的相对位置信息和相对角度信息确定自动割草机与充电站对接的预设位置的偏差;
根据偏差调整自动割草机上的驱动轮移动和转动,以使自动割草机到达与充电站对接的预设位置。
上述自动割草机及其控制方法,通过在自动割草机上设置惯性导航器件与控制模块,从而可以检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息,并根据角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息,进而根据相对位置信息和相对角度信息规划自动割草机的行走路径。因此,自动割草机在离开充电站后能够准确得到自身与充电站的相对位置和相对角度,以进行割草路径规划,特别在需要回归充电站时,不需要依赖工作边界的通电导线来进行行走路径的规划,使得自动割草机的应用越来越广泛。
附图说明
图1为一个实施例中自动割草机的应用示意图;
图2为一个实施例中自动割草机的内部结构示意图;
图3(a)为一个实施例中惯性导航器件与驱动轮的相对位置的示意图;
图3(b)为另一个实施例中惯性导航器件与驱动轮的相对位置的示意图;
图3(c)为又一个实施例中惯性导航器件与驱动轮的相对位置的示意图;
图4为一个实施例中惯性导航器件的敏感轴位置示意图;
图5为一个实施例中惯性导航器件的内部结构示意图;
图6为一个实施例中自动割草机的控制方法的流程示意图;
图7为另一个实施例中自动割草机的控制方法的流程示意图;
图8为一个实施例中自动割草机与充电站对接的方法流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供了一种自动割草机,可以应用于如图1所示的应用环境中。具体的,如图1所示,自动割草机100的电能一般主要来源于充电站200,充电站200通常设置在自动割草机100工作区域的附近。当充电站200安装完毕后,其位置通常是固定的,并且,充电站200设置有固定的用于自动割草机100停泊的停泊空间210,自动割草机100可以在该停泊空间210内进行充电。自动割草机100充电完成后,需要工作时,从充电站200的停泊空间210出发,去往工作区域进行割草工作,在工作完毕或需要充电时再返回充电站200,具体而言,是返回充电站200中为自动割草机100设置的停泊空间210内进行充电。
在本实施例中,如图2所示,该自动割草机除了包括必要的机器主体、驱动、割草部件(图中未示出)之外,该自动割草机100还包括惯性导航器件110、控制模块120,其中,控制模块120与惯性导航器件110相连接,以能够通信。具体的,惯性导航器件110可以安装在自动割草机的主板上,也可以独立安装在自动割草机上,在确保与控制模块120连接即可。自动割草机100从充电站200的停泊空间210出发时,设置在自动割草机100上的惯性导航器件110即开始工作,并将自动割草机100离开充电站200时的瞬间记录为初始时刻,并检测自动割草机100离开充电站200后每一时刻的角速度空间矢量信息与加速度空间矢量信息,将检测到的角速度空间矢量信息与加速度空间矢量信息发送给控制模块120。
控制模块120则接收惯性导航器件110检测的自动割草机100每一时刻的角速度空间矢量信息与加速度空间矢量信息。控制模块120对角速度空间矢量信息按时间积分,获得自动割草机的转角信息;对加速度空间矢量信息按时间积分,获得自动割草机的速度信息。再对转角信息按时间积分,获得相对角度信息;对速度信息按时间积分,获得相对位置信息。
控制模块120按照以上步骤,对自动割草机100离开充电站200后每一时刻的角速度空间矢量信息与加速度空间矢量信息进行计算,可以得到自动割草机100离开充电站200后每一时刻的相对角度信息与相对位置信息。通过对自动割草机100行走时每一时刻的相对角度信息与相对位置信息的分析处理,可以得到自动割草机100相对于充电站的距离、方位,以及自动割草机100的行走速度,进一步地,可以得到自动割草机100从充电站200出发后行走的完整轨迹路径。在本实施例中,自动割草机相对于充电站的距离、方位则为自动割草机与充电站之间的相对位置信息和相对角度关系。
在本实施例中,控制模块120还可以根据相对位置信息和相对角度信息规划自动割草机100的行走路径。具体而言,控制模块120根据上述自动割草机100与充电站200之间的相对位置信息和相对角度信息,生成自动割草机100接下来的行走路径,并控制自动割草机100按照生成的行走路径行走。
上述自动割草机,通过在自动割草机上设置电性连接的惯性导航器件与控制模块,从而可以检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息,并根据角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息,进而根据相对位置信息和相对角度信息规划自动割草机的行走路径。在自动割草机需要回归充电站时,不需要依赖工作边界的通电导线来进行行走路径的规划,使得自动割草机的应用越来越广泛。
在一个实施例中,惯性导航器件110具体可以采用光纤类型惯性导航器件或微机电***MEMS(Micro-Electro-Mechanical System,简称MEMS)类型惯性导航器件。由于光纤类型惯性导航器件具有结构紧凑,灵敏度高,工作可靠的优点,MEMS类型惯性器件还具有体积小,抗冲击,可靠性高,寿命长,成本低的优点。因此,应用于自动割草机不会过多的增加自动割草机的体积和重量,且有利于提高整体的可靠性。在一个更优的实施例中,惯性导航器件110采用MEMS类型惯性器件。当然,惯性导航器件也可以采用其他类型的器件,只要能够实现以上本实施例所述的功能即可,本实施例并不对此进行限定。在一个实施例中,如图1、图3(a)、图3(b)以及图3(c)所示,自动割草机100还包括多个驱动轮130,惯性导航器件110在水平面300上的垂直投影110’位于自动割草机100的多个驱动轮130在水平面300上的垂直投影130’的几何中心点。
其中,水平面300为惯性导航器件110的垂直投影所位于的平面。驱动轮130可以有多个,例如驱动轮130具体的个数可以为2个、3个、4个或其他能够实现驱动自动割草机100移动的任意个数。
举例来说,如图3(a)所示,自动割草机100包括两个驱动轮130,惯性导航器件110在水平面300上的垂直投影110’则位于自动割草机100的两个驱动轮130在水平面300上的垂直投影130’的几何中心点处。其中,几何中心点是指两个驱动轮130的垂直投影130’的中心点的连线310的中心处,且连线310的中心处与惯性导航器件110的垂直投影110’的中心点相重合。
如图3(b)所示,自动割草机100还可以包括三个驱动轮130,惯性导航器件110在水平面300上的垂直投影110’则位于自动割草机100的三个驱动轮130在水平面300上的垂直投影130’的几何中心点处。具体的,三个驱动轮130的垂直投影130’的中心点依次连接从而形成三角形320,几何中心点则可以是该三角形320的中心处,且三角形320的中心处与惯性导航器件110的垂直投影110’的中心点相重合。
如图3(c)所示,自动割草机100也可以包括四个驱动轮130,惯性导航器件110在水平面300上的垂直投影110’则位于自动割草机100的四个驱动轮130在水平面300上的垂直投影130’的几何中心点处。具体的,四个驱动轮130的垂直投影130’的中心点依次连接从而形成四边形330,几何中心点则可以是该四边形330的中心处,且四边形330的中心处与惯性导航器件110的垂直投影110’的中心点相重合。
通过上述实施例可知,惯性导航器件110在水平面300上的投影110’的中心点与多个驱动轮130在水平面300上的垂直投影130’的几何中心点相重合,由此确定惯性导航器件的安装位置。本实施例中对于惯性导航器件110的高度不做限定,在上述前提下只要保证其位于自动割草机100内部即可。
上述实施例中,惯性导航器件110由于在水平面上的垂直投影位于多个驱动轮130的中心,因此,其采集到的角速度空间矢量信息与加速度空间矢量信息能够更好地反映出自动割草机100运动的角速度空间矢量信息与加速度空间矢量信息,从而增强其采集信息的准确性。可理解的是,在其他实施例中,也可以在自动割草机的其他非几何中心的位置固定惯性导航器件110。
在一个实施例中,如图4所示,惯性导航器件具有互相垂直的三根敏感轴410、420、430,在本实施例中,以互相垂直的三根敏感轴410、420、430作为坐标系。因此,惯性导航器件采集到的角速度矢量信息与加速度矢量信息以该坐标系中三维坐标的形式表达,并传递给控制模块120。
其中,敏感轴410与自动割草机100的中轴线500平行,自动割草机100的中轴线500为通过自动割草机100中心且与自动割草机行走的方向垂直的直线。敏感轴420与自动割草机上的多个驱动轮130确定的虚拟地平面600平行,且与自动割草机直线行走时前进的方向平行,虚拟地平面600为多个驱动轮130各自与地面接触的点共同确定的平面。由于敏感轴410、420、430互相垂直,因此,当敏感轴410和敏感轴420的方向确定后,敏感轴430的方向自然就确定了。
通常情况下,如果惯性导航器件的敏感轴和需要感测的基准方向之间存在夹角,则必需通过投影转换才能将采集到的数据反映到敏感轴上,投影转换越多,则数据的精确性就越低。本实施例中,为了克服此问题,通过将敏感轴420与自动割草机多个驱动轮130确定的虚拟地平面600平行,且与自动割草机直线行走时前进的方向平行设置,因此,惯性导航器件110的敏感轴的方向与采集角速度空间矢量信息与加速度空间矢量信息时需要感测的基准方向之间不存在夹角,故而可减少投影转换,有利于减少计算误差,提高数据的精确度。
在一个实施例中,如图5所示,惯性导航器件110包括陀螺仪111与加速度计112,陀螺仪111与加速度计112分别与控制模块120电连接。其中,陀螺仪111用于获得自动割草机的角速度空间矢量信息,加速度计112用于获得自动割草机的加速度空间矢量信息。
具体的,陀螺仪111具有能够精确测量运动物体的转动、偏转的功能,能够连续地测出物体的角速度空间矢量信息。加速度计112主要用于测量物体的加速度,能够连续地测出物体的加速度空间矢量信息。因此,本实施例中采用陀螺仪111与加速度计112,能够精确地测量出自动割草机100离开充电站200后每一时刻的角速度空间矢量信息与加速度空间矢量信息。
本领域技术人员可以理解,图1至图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案的限定,具体的自动割草机可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本申请实施例还提供了一种自动割草机的控制方法,该自动割草机上设置有惯性导航器件,以该方法应用于上述自动割草机中的控制模块为例进行说明,如图6所示,该控制方法包括如下步骤:
步骤S602,接收惯性导航器件检测的自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息。
其中,自动割草机从充电站出发时刻开始(该时刻前机器静止),设置于自动割草机上的惯性导航器件则开始工作,检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息,交将检测到的角速度空间矢量信息与加速度空间矢量信息发送给自动割草机的控制模块。
步骤S604,根据惯性导航器件检测的自动割草机某一时刻的角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息。
控制模块接收到惯性导航器件发送的角速度空间矢量信息与加速度空间矢量信息后,对其进行数学计算,如积分计算、微分计算或其他计算等,从而获得自动割草机与充电站之间的相对位置信息和相对角度信息。其中,自动割草机与充电站之间的相对位置信息和相对角度信息包括自动割草机相对于充电站的距离、方位等。
步骤S606,根据相对位置信息和相对角度信息规划自动割草机的行走路径。
具体的,控制模块可以根据计算的自动割草机与充电站之间的相对位置信息和相对角度信息,确定自动割草机与工作区域之间的相对关系,从而规划合适的工作行走路径;或者根据此相对位置信息和相对角度信息规划返回充电站的行走路径。并控制自动割草机按照规划的行走路径行走。
上述自动割草机的控制方法,通过在自动割草机上设置惯性导航器件与控制模块,从而检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息,并根据角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息,进而根据相对位置信息和相对角度信息规划自动割草机的行走路径。因此,不需要依赖工作边界的通电导线来进行行走路径的规划,不仅节省了资源,而且使得自动割草机的应用越来越广泛。
在一个实施例中,如图7所示,根据相对位置信息和相对角度信息规划自动割草机的行走路径,包括如下步骤:
步骤S702,根据预设工作区域信息以及自动割草机与充电站之间的相对位置信息和相对角度信息,确定自动割草机与工作区域之间的位置关系。
其中,预设工作区域信息可以是预先设置的工作区域的数据,也可以是自动割草机通过自身的传感器件检测到的工作区域的物理边界信息。其为一个固定的区域,且由于充电站的位置也是确定的,故而,预设的工作区域与充电站之间也具有对应的位置关系。自动割草机上的控制模块在得知自动割草机与充电站之间的相对位置信息和相对角度信息后,即可根据充电站与预设的工作区域之间的位置关系,获得自动割草机与工作区域之间的位置关系,即自动割草机具体在工作区域内的哪一处,或者自动割草机是否处于工作区域的边界等。
步骤S704,根据相对位置信息、相对角度信息与位置关系,生成自动割草机的行走路径。
具体的,控制模块确定了自动割草机与充电站之间的相对位置信息、相对角度信息以及自动割草机与工作区域之间的位置关系后,可以据此生成自动割草机的行走路径。例如,可以直接根据自动割草机与充电站之间的相对位置信息和相对角度信息生成返回充电站的行走路径,在此过程中,控制模块可以参考自动割草机的电量情况,可以根据生成的行走路径以非割草的方式直接返回充电站;也可以结合自动割草机与工作区域之间的位置关系生成行走路径,以割草的方式按行走路径返回充电站。当然,在电量充足的情况下,还可以根据上述相对位置信息、和相对角度信息与位置关系,生成合适的割草工作路径,也可以结合预设的割草图案生成对应的割草工作路径,从而使得割草后草坪上出现预设的图案。
步骤S706,控制自动割草机按照行走路径行走。
具体的,控制模块按上述步骤生成行走路径后,则控制自动割草机按行走路径行走或在行走的同时进行割草。从而不会产生因过度重复的路径而导致的过度割草及碾压,不仅提高了工作效率,而且可以达到节省电力、延长电池寿命的作用,且使得草坪更加均匀美观。
在一个实施例中,当控制模块根据相对位置信息、相对角度信息与位置关系生成的自动割草机的行走路径为自动割草机返回充电站的行走路径时,控制模块控制自动割草机按照返回充电站的行走路径行走以返回所述充电站之后,还要根据当前的相对位置信息和相对角度信息控制自动割草机与充电站对接。具体的,如图8所示,控制自动割草机与充电站对接具体可以包括以下步骤:
步骤S802,获取惯性导航器件位于自动割草机上的位置信息。
由于惯性导航器件设置在自动割草机上,安装完成后,惯性导航器件和自动割草机的相对位置固定,因此,惯性导航器件位于自动割草机上的位置信息可以是设备安装完成后录入的,也可以是通过其他传感器件测得的。
步骤S804,根据惯性导航器件位于自动割草机上的位置信息以及自动割草机与充电站之间的相对位置信息和相对角度信息确定自动割草机与充电站对接的预设位置的偏差。
具体的,如前述实施例所述,充电站200设置有固定的用于自动割草机100停泊的停泊空间210,即该停泊空间210为自动割草机与充电站对接的预设位置。因此,控制模块通过自动割草机与充电站的相对位置信息和相对角度信息,以及惯性导航器件在自动割草机上的位置信息,即可判断出自动割草机与充电站上的停泊空间的距离和方位的偏差。
步骤S806,根据偏差调整自动割草机上的驱动轮移动和转动,以使自动割草机到达与充电站对接的预设位置。
控制模块根据上述确定的偏差控制自动割草机的多个驱动轮移动或转动,从而可以小幅调节自动割草机的位置、割草机头部的方位,以及驱动轮的角度,以将自动割草机调整到适合对接充电站的姿态,使得自动割草机能够顺利进入停泊空间,实现与充电站对接,以完成后续的充电。
应该理解的是,虽然图6-图8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图6-图8中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种自动割草机,其特征在于,所述自动割草机上设置有惯性导航器件与控制模块,所述控制模块与所述惯性导航器件连接;
所述惯性导航器件用于检测所述自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;
所述控制模块用于根据所述惯性导航器件检测的所述自动割草机每一时刻的角速度空间矢量信息与加速度空间矢量信息,计算所述自动割草机与充电站之间的相对位置信息和相对角度信息;并根据所述相对位置信息和相对角度信息规划所述自动割草机的行走路径。
2.根据权利要求1所述的自动割草机,其特征在于,所述惯性导航器件包括陀螺仪与加速度计,所述陀螺仪用于获得所述自动割草机每一时刻的角速度空间矢量信息,所述加速度计用于获得所述自动割草机每一时刻的加速度空间矢量信息。
3.根据权利要求1所述的自动割草机,其特征在于,所述自动割草机包括多个驱动轮,所述惯性导航器件在水平面上的垂直投影位于所述多个驱动轮在所述水平面上的垂直投影的几何中心点。
4.根据权利要求3所述的自动割草机,其特征在于,所述惯性导航器件具有互相垂直的三根敏感轴,所述三根敏感轴中的一根敏感轴与所述自动割草机的中轴线平行,另一根敏感轴与所述多个驱动轮确定的虚拟地平面平行,且与所述自动割草机直线行走时前进的方向平行。
5.根据权利要求1至4任一项所述的自动割草机,其特征在于,所述惯性导航器件为光纤类型惯性导航器件或MEMS类型惯性导航器件。
6.一种自动割草机的控制方法,其特征在于,所述自动割草机上设置有惯性导航器件,所述方法包括:
接收所述惯性导航器件检测的所述自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;
根据所述惯性导航器件检测的所述自动割草机每一时刻的角速度空间矢量信息与加速度空间矢量信息,计算所述自动割草机与充电站之间的相对位置信息和相对角度信息;
根据所述相对位置信息和相对角度信息规划所述自动割草机的行走路径。
7.根据权利要求6的所述自动割草机的控制方法,其特征在于,所述根据所述相对位置信息和相对角度信息规划所述自动割草机的行走路径,包括:
根据预设工作区域信息以及所述自动割草机与充电站之间的相对位置信息和相对角度信息,确定所述自动割草机与所述工作区域之间的位置关系;
根据所述相对位置信息、相对角度信息与所述位置关系,生成所述自动割草机的行走路径;
控制所述自动割草机按照所述行走路径行走。
8.根据权利要求7的所述自动割草机的控制方法,其特征在于,所述自动割草机的行走路径包括:所述自动割草机的割草工作路径和所述自动割草机返回所述充电站的行走路径中的任一种;
所述控制所述自动割草机按照所述行走路径行走,包括:
控制所述自动割草机按照所述割草工作路径行走并割草;或者
控制所述自动割草机按照返回所述充电站的行走路径行走以返回所述充电站。
9.根据权利要求8的所述自动割草机的控制方法,其特征在于,所述控制所述自动割草机按照返回所述充电站的行走路径行走以返回所述充电站之后,还包括:
根据所述相对位置信息和相对角度信息控制所述自动割草机与所述充电站对接。
10.根据权利要求9的所述自动割草机的控制方法,其特征在于,所述根据所述相对位置信息和相对角度信息控制所述自动割草机与所述充电站的对接,包括:
获取所述惯性导航器件位于所述自动割草机上的位置信息;
根据所述惯性导航器件相位于所述自动割草机上的位置信息以及所述自动割草机与充电站之间的相对位置信息和相对角度信息确定所述自动割草机与充电站对接的预设位置的偏差;
根据所述偏差调整自动割草机上的驱动轮移动和转动,以使所述自动割草机到达与充电站对接的预设位置。
CN201811324045.9A 2018-11-08 2018-11-08 自动割草机及其控制方法 Active CN111158356B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811324045.9A CN111158356B (zh) 2018-11-08 2018-11-08 自动割草机及其控制方法
PCT/CN2019/115345 WO2020093970A1 (zh) 2018-11-08 2019-11-04 自动割草机及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811324045.9A CN111158356B (zh) 2018-11-08 2018-11-08 自动割草机及其控制方法

Publications (2)

Publication Number Publication Date
CN111158356A true CN111158356A (zh) 2020-05-15
CN111158356B CN111158356B (zh) 2021-08-10

Family

ID=70554798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811324045.9A Active CN111158356B (zh) 2018-11-08 2018-11-08 自动割草机及其控制方法

Country Status (2)

Country Link
CN (1) CN111158356B (zh)
WO (1) WO2020093970A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487982A (zh) * 2020-06-03 2020-08-04 格力博(江苏)股份有限公司 自走动力设备及自走动力设备的回充路径规划方法
CN115812411A (zh) * 2022-11-29 2023-03-21 宁波东贝智能科技有限公司 一种基于割草机的无人机导航方法、***、存储介质及智能终端

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE545372C2 (en) * 2021-06-11 2023-07-18 Husqvarna Ab Method of assisting a user of a robotic tool system based on the inclination of the tool at a docking station, a robotic tool and robotic tool system

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056362A1 (en) * 2000-02-02 2001-08-09 Logical Technologies Limited An autonomous mobile apparatus for performing work within a predefined area
CN201787954U (zh) * 2010-07-16 2011-04-06 国营红峰机械厂 光纤惯性导航测量***
KR20140042346A (ko) * 2012-09-28 2014-04-07 주식회사 두시텍 초기정렬 주행 시스템
CN104406586A (zh) * 2014-12-04 2015-03-11 南京邮电大学 基于惯性传感器的行人导航装置和方法
CN104460665A (zh) * 2014-10-13 2015-03-25 上海交通大学 基于道路曲率地图的磁导航无人车及其地图的建立方法
CN104596508A (zh) * 2015-02-15 2015-05-06 杭州酷班科技有限公司 基于区域定位结合惯性导航和地图路径的室内导航方法
CN106020188A (zh) * 2016-05-17 2016-10-12 杭州申昊科技股份有限公司 一种基于激光导航的变电站巡检机器人自主充电方法
CN106338991A (zh) * 2016-08-26 2017-01-18 南京理工大学 一种基于惯性导航和二维码的机器人及定位导航方法
CN106767795A (zh) * 2017-01-20 2017-05-31 福州大学 一种基于惯性导航的移动机器人位移计算算法
CN106950586A (zh) * 2017-01-22 2017-07-14 无锡卡尔曼导航技术有限公司 用于农机作业的gnss/ins/车辆组合导航方法
CN107045137A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动工作***,自移动设备及其控制方法
CN107703930A (zh) * 2017-10-11 2018-02-16 珠海市微半导体有限公司 机器人的续扫控制方法
CN108227704A (zh) * 2016-12-15 2018-06-29 苏州宝时得电动工具有限公司 自移动设备及其移动方法、存储介质和服务器
CN108535755A (zh) * 2018-01-17 2018-09-14 南昌大学 基于mems的gnss/imu车载实时组合导航方法
CN108571970A (zh) * 2018-04-26 2018-09-25 杭州晶智能科技有限公司 一种室内移动机器人的指纹地图构建方法
CN108571965A (zh) * 2018-04-12 2018-09-25 杭州晶智能科技有限公司 基于rssi和三角位置的移动机器人定位充电基座的智能方法
CN108627171A (zh) * 2018-04-20 2018-10-09 杭州晶智能科技有限公司 基于无线信号强度梯度的移动机器人定位充电基座的智能方法
CN108733062A (zh) * 2018-06-25 2018-11-02 山东大学 家庭陪护机器人自主充电***及方法
CN108759565A (zh) * 2018-06-07 2018-11-06 哈尔滨工业大学 一种基于虚拟比例导引的运载火箭子级返回段精确制导方法
CN108762259A (zh) * 2018-05-11 2018-11-06 杭州晶智能科技有限公司 基于无线信号强度的割草机器人遍历路径规划方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107830859A (zh) * 2017-10-31 2018-03-23 努比亚技术有限公司 一种定位方法、装置及计算机可读存储介质

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001056362A1 (en) * 2000-02-02 2001-08-09 Logical Technologies Limited An autonomous mobile apparatus for performing work within a predefined area
CN201787954U (zh) * 2010-07-16 2011-04-06 国营红峰机械厂 光纤惯性导航测量***
KR20140042346A (ko) * 2012-09-28 2014-04-07 주식회사 두시텍 초기정렬 주행 시스템
CN104460665A (zh) * 2014-10-13 2015-03-25 上海交通大学 基于道路曲率地图的磁导航无人车及其地图的建立方法
CN104406586A (zh) * 2014-12-04 2015-03-11 南京邮电大学 基于惯性传感器的行人导航装置和方法
CN104596508A (zh) * 2015-02-15 2015-05-06 杭州酷班科技有限公司 基于区域定位结合惯性导航和地图路径的室内导航方法
CN107045137A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动工作***,自移动设备及其控制方法
CN106020188A (zh) * 2016-05-17 2016-10-12 杭州申昊科技股份有限公司 一种基于激光导航的变电站巡检机器人自主充电方法
CN106338991A (zh) * 2016-08-26 2017-01-18 南京理工大学 一种基于惯性导航和二维码的机器人及定位导航方法
CN108227704A (zh) * 2016-12-15 2018-06-29 苏州宝时得电动工具有限公司 自移动设备及其移动方法、存储介质和服务器
CN106767795A (zh) * 2017-01-20 2017-05-31 福州大学 一种基于惯性导航的移动机器人位移计算算法
CN106950586A (zh) * 2017-01-22 2017-07-14 无锡卡尔曼导航技术有限公司 用于农机作业的gnss/ins/车辆组合导航方法
CN107703930A (zh) * 2017-10-11 2018-02-16 珠海市微半导体有限公司 机器人的续扫控制方法
CN108535755A (zh) * 2018-01-17 2018-09-14 南昌大学 基于mems的gnss/imu车载实时组合导航方法
CN108571965A (zh) * 2018-04-12 2018-09-25 杭州晶智能科技有限公司 基于rssi和三角位置的移动机器人定位充电基座的智能方法
CN108627171A (zh) * 2018-04-20 2018-10-09 杭州晶智能科技有限公司 基于无线信号强度梯度的移动机器人定位充电基座的智能方法
CN108571970A (zh) * 2018-04-26 2018-09-25 杭州晶智能科技有限公司 一种室内移动机器人的指纹地图构建方法
CN108762259A (zh) * 2018-05-11 2018-11-06 杭州晶智能科技有限公司 基于无线信号强度的割草机器人遍历路径规划方法
CN108759565A (zh) * 2018-06-07 2018-11-06 哈尔滨工业大学 一种基于虚拟比例导引的运载火箭子级返回段精确制导方法
CN108733062A (zh) * 2018-06-25 2018-11-02 山东大学 家庭陪护机器人自主充电***及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487982A (zh) * 2020-06-03 2020-08-04 格力博(江苏)股份有限公司 自走动力设备及自走动力设备的回充路径规划方法
CN111487982B (zh) * 2020-06-03 2024-02-06 格力博(江苏)股份有限公司 自走动力设备及自走动力设备的回充路径规划方法
CN115812411A (zh) * 2022-11-29 2023-03-21 宁波东贝智能科技有限公司 一种基于割草机的无人机导航方法、***、存储介质及智能终端

Also Published As

Publication number Publication date
WO2020093970A1 (zh) 2020-05-14
CN111158356B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
US11044845B2 (en) Moving robot and control method thereof
EP3381257B1 (en) Method for generating a representation of a working area of an autonomous lawn mower and autonomous lawn mower system
CN111158356B (zh) 自动割草机及其控制方法
CN102768535B (zh) 自动工作***、自动行走设备及其转向方法
KR102430445B1 (ko) 이동 로봇 및 그 제어방법
EP3073345B1 (en) Control apparatus for autonomously navigating utility vehicle
CN105823478A (zh) 一种自主避障导航信息共享和使用方法
CN108575095B (zh) 自移动设备及其定位***、定位方法和控制方法
JP7203120B2 (ja) 制御システム、制御装置、自律作業機、制御装置の動作方法、自律作業機の制御方法及びプログラム
US11852484B2 (en) Method for determining the orientation of a robot, orientation determination apparatus of a robot, and robot
CN112578779A (zh) 地图建立方法、自移动设备、自动工作***
EP3494769B1 (en) Mobile robot and control method thereof
CN110986920B (zh) 定位导航方法、装置、设备及存储介质
CN114104139B (zh) 一种仿生足式机器人步足平台融合越障及自主跟随***
EP4293468A2 (en) Robotic mower and control method thereof
US20210263521A1 (en) Autonomous work machine, method of controlling the same, and storage medium
CN108536146A (zh) 基于路径和rssi的移动机器人定位充电基座的智能控制方法
CN112731934B (zh) 基于区域分割的智能割草机快速回充电站的方法
KR102488523B1 (ko) 이동 로봇 및 그 제어방법
US20220374017A1 (en) Working robot system
CN115700419A (zh) 机器人及其自动回充方法、控制装置、存储介质
CN114355905A (zh) 机器人自动充电方法、装置、机器人和存储介质
JP7410150B2 (ja) 自律作業機、自律作業機の制御方法及びプログラム
US20230112518A1 (en) Working robot and control method
CN116360432A (zh) 一种割草机的断点续割控制方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant