WO2020093970A1 - 自动割草机及其控制方法 - Google Patents

自动割草机及其控制方法 Download PDF

Info

Publication number
WO2020093970A1
WO2020093970A1 PCT/CN2019/115345 CN2019115345W WO2020093970A1 WO 2020093970 A1 WO2020093970 A1 WO 2020093970A1 CN 2019115345 W CN2019115345 W CN 2019115345W WO 2020093970 A1 WO2020093970 A1 WO 2020093970A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic
lawnmower
charging station
inertial navigation
information
Prior art date
Application number
PCT/CN2019/115345
Other languages
English (en)
French (fr)
Inventor
盛晓初
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2020093970A1 publication Critical patent/WO2020093970A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector

Definitions

  • the invention relates to the technical field of electrical appliances, in particular to an automatic lawn mower and a control method thereof.
  • Automatic lawn mowers can replace the manual completion of lawn trimming work, liberating users from the arduous work of lawn maintenance, and thus are receiving more and more users.
  • Automatic lawn mowers can replace the manual completion of lawn trimming work, liberating users from the arduous work of lawn maintenance, and thus are receiving more and more users.
  • Automatic lawn mowers usually consume electrical energy as power. Based on this, there has been a charging station supporting the automatic lawn mower.
  • the charging station can provide electrical energy for the automatic lawn mower as an energy supplement for the automatic lawn mower.
  • the working boundary of the automatic lawn mower is generally determined by arranging the conducting wire, and the charging station is usually provided on the conducting wire of the working boundary.
  • An automatic lawn mower is provided with an inertial navigation device and a control module, wherein the control module is connected to the inertial navigation device;
  • the inertial navigation device is used to detect the angular velocity space vector information and acceleration space vector information at every moment after the automatic lawn mower leaves the charging station;
  • the control module is used to calculate the relative position information and relative angle information between the automatic mower and the charging station according to the angular velocity space vector information and the acceleration space vector information of the automatic mower detected by the inertial navigation device at each moment;
  • the position information plans the walking path of the automatic lawn mower.
  • the inertial navigation device includes a gyroscope and an accelerometer, wherein the gyroscope is used to obtain the angular velocity space vector information of the automatic lawn mower at each moment, and the accelerometer is used to obtain the automatic lawn mower at each moment Acceleration space vector information.
  • the automatic lawnmower includes a plurality of driving wheels, wherein the vertical projection of the inertial navigation device on the horizontal plane is located at the geometric center point of the vertical projection of the plurality of driving wheels on the horizontal plane.
  • the inertial navigation device has three sensitive axes perpendicular to each other, one of the three sensitive axes is parallel to the central axis of the automatic lawnmower, and the other sensitive axis is determined by multiple virtual drive wheels.
  • the ground plane is parallel and parallel to the advancing direction of the automatic lawn mower when walking straight.
  • the inertial navigation device is an optical fiber type inertial navigation device or a MEMS type inertial navigation device.
  • the relative position information and relative angle information between the automatic mower and the charging station are calculated; Angle information plans the walking path of the automatic lawn mower.
  • planning the walking path of the automatic lawnmower based on the relative position information and the relative angle information includes:
  • the preset work area information and the relative position information and relative angle information between the automatic mower and the charging station determine the positional relationship between the automatic mower and the work area
  • the walking path of the automatic lawnmower includes any one of a cutting working path of the automatic lawnmower and a walking path of the automatic lawnmower to the charging station;
  • control the automatic lawn mower to follow the walking path including:
  • the method further includes:
  • the automatic lawn mower is controlled to dock with the charging station.
  • controlling the docking of the automatic lawn mower to the charging station according to the relative position information and the relative angle information includes:
  • the above-mentioned automatic lawn mower and its control method can detect the angular velocity space vector information and acceleration space vector information at every moment after the automatic lawn mower leaves the charging station by installing an inertial navigation device and a control module on the automatic lawn mower According to the angular velocity space vector information and the acceleration space vector information, the relative position information and relative angle information between the automatic lawn mower and the charging station are calculated, and then the walking path of the automatic lawn mower is planned according to the relative position information and the relative angle information.
  • the automatic lawnmower can accurately obtain the relative position and relative angle of itself and the charging station to plan the mowing path, especially when returning to the charging station, without relying on the power line of the working boundary
  • the planning of the walking path makes the application of automatic lawn mowers more and more widespread.
  • FIG. 1 is a schematic diagram of application of an automatic lawn mower in one embodiment
  • FIG. 2 is a schematic diagram of the internal structure of an automatic lawnmower in an embodiment
  • FIG. 3 (a) is a schematic diagram of the relative positions of the inertial navigation device and the driving wheel in an embodiment
  • FIG. 3 (b) is a schematic diagram of the relative position of the inertial navigation device and the driving wheel in another embodiment
  • FIG. 3 (c) is a schematic diagram of the relative positions of the inertial navigation device and the driving wheel in yet another embodiment
  • FIG. 4 is a schematic diagram of the position of a sensitive axis of an inertial navigation device in an embodiment
  • FIG. 5 is a schematic diagram of an internal structure of an inertial navigation device in an embodiment
  • FIG. 6 is a schematic flowchart of a control method of an automatic lawnmower in an embodiment
  • FIG. 7 is a schematic flowchart of a control method of an automatic lawnmower in another embodiment
  • FIG. 8 is a schematic flowchart of a method for docking an automatic lawn mower with a charging station in an embodiment.
  • the embodiment of the present application provides an automatic lawn mower, which can be applied to the application environment shown in FIG. 1.
  • the electric energy of the automatic lawnmower 100 generally mainly comes from the charging station 200, and the charging station 200 is usually provided near the working area of the automatic lawnmower 100.
  • the charging station 200 After the charging station 200 is installed, its position is usually fixed, and the charging station 200 is provided with a fixed parking space 210 for the automatic lawn mower 100 to park, and the automatic lawn mower 100 can be carried out in the parking space 210 Charge.
  • the automatic lawnmower 100 After the automatic lawnmower 100 is charged and needs work, it starts from the parking space 210 of the charging station 200 and goes to the work area for mowing, and returns to the charging station 200 when the work is completed or when charging is required. Specifically, it is Return to the parking space 210 provided for the automatic lawnmower 100 in the charging station 200 for charging.
  • the automatic lawnmower 100 in addition to the necessary machine body, drive, and mowing parts (not shown in the figure), also includes an inertial navigation device 110.
  • a control module 120 wherein the control module 120 is connected to the inertial navigation device 110 to enable communication.
  • the inertial navigation device 110 may be installed on the main board of the automatic lawn mower, or may be independently installed on the automatic lawn mower, so as to ensure connection with the control module 120.
  • the inertial navigation device 110 provided on the automatic lawnmower 100 starts to work, and the moment when the automatic lawnmower 100 leaves the charging station 200 is recorded as the initial And detect the angular velocity space vector information and acceleration space vector information at each moment after the automatic lawnmower 100 leaves the charging station 200, and send the detected angular velocity space vector information and acceleration space vector information to the control module 120.
  • the control module 120 receives the angular velocity space vector information and the acceleration space vector information of the automatic lawnmower 100 detected by the inertial navigation device 110 at each moment.
  • the control module 120 integrates the angular velocity space vector information in time to obtain the rotation angle information of the automatic lawnmower; integrates the acceleration space vector information in time to obtain the speed information of the automatic lawnmower. Then, the angle information is integrated in time to obtain relative angle information; the speed information is integrated in time to obtain relative position information.
  • the control module 120 calculates the angular velocity space vector information and acceleration space vector information at each moment after the automatic lawnmower 100 leaves the charging station 200, and can obtain the timestamp at each moment after the automatic lawnmower 100 leaves the charging station 200.
  • Relative angle information and relative position information By analyzing and processing the relative angle information and relative position information at each moment when the automatic lawnmower 100 is walking, the distance and orientation of the automatic lawnmower 100 relative to the charging station and the walking speed of the automatic lawnmower 100 can be obtained. Further, the complete trajectory path of the automatic lawnmower 100 after walking from the charging station 200 can be obtained.
  • the distance and orientation of the automatic lawnmower relative to the charging station are relative position information and relative angle relationship between the automatic lawnmower and the charging station.
  • control module 120 can also plan the walking path of the automatic lawnmower 100 according to the relative position information and the relative angle information. Specifically, the control module 120 generates the following walking path of the automatic lawnmower 100 according to the relative position information and relative angle information between the automatic lawnmower 100 and the charging station 200, and controls the automatic lawnmower 100 according to the generated Walking on the walking path.
  • the above-mentioned automatic lawn mower can detect the angular velocity space vector information and acceleration space vector information at every moment after the automatic lawn mower leaves the charging station by providing an electrically connected inertial navigation device and a control module on the automatic lawn mower According to the angular velocity space vector information and the acceleration space vector information, the relative position information and relative angle information between the automatic lawn mower and the charging station are calculated, and then the walking path of the automatic lawn mower is planned according to the relative position information and the relative angle information.
  • the automatic lawnmower needs to return to the charging station, it does not need to rely on the current-carrying wires of the working boundary to plan the walking path, making the application of the automatic lawnmower more and more widely.
  • the inertial navigation device 110 may specifically adopt an optical fiber type inertial navigation device or a micro-electromechanical system MEMS (Micro-Electro-Mechanical System, MEMS for short) type inertial navigation device.
  • MEMS Micro-Electro-Mechanical System
  • the MEMS type inertial device also has the advantages of small size, impact resistance, high reliability, long life, and low cost. Therefore, the application to the automatic lawn mower will not increase the volume and weight of the automatic lawn mower too much, and is beneficial to improve the overall reliability.
  • the inertial navigation device 110 uses a MEMS type inertial device.
  • the inertial navigation device may also use other types of devices, as long as it can implement the functions described in this embodiment above, which is not limited in this embodiment.
  • the automatic lawnmower 100 further includes a plurality of driving wheels 130, and the inertial navigation device 110 is on the horizontal plane 300
  • the vertical projection 110 'on the top is located at the geometric center point of the vertical projection 130' of the multiple drive wheels 130 of the automatic lawnmower 100 on the horizontal plane 300.
  • the horizontal plane 300 is a plane where the vertical projection of the inertial navigation device 110 is located.
  • the automatic lawnmower 100 includes two driving wheels 130, and the vertical projection 110 'of the inertial navigation device 110 on the horizontal plane 300 is located on the two driving wheels of the automatic lawnmower 100.
  • 130 is at the geometric center of the vertical projection 130 'on the horizontal plane 300.
  • the geometric center point refers to the center of the line 310 of the center point of the vertical projection 130 'of the two driving wheels 130, and the center of the line 310 coincides with the center point of the vertical projection 110' of the inertial navigation device 110 .
  • the automatic lawnmower 100 may further include three driving wheels 130, and the vertical projection 110 'of the inertial navigation device 110 on the horizontal plane 300 is located on the three driving wheels 130 of the automatic lawnmower 100.
  • the center points of the vertical projections 130 'of the three driving wheels 130 are connected in sequence to form a triangle 320, and the geometric center point may be the center of the triangle 320, and the center of the triangle 320 and the inertial navigation device 110 are perpendicular projections The center points of 110 'coincide.
  • the automatic lawnmower 100 may also include four driving wheels 130, and the vertical projection 110 'of the inertial navigation device 110 on the horizontal plane 300 is located on the four driving wheels 130 of the automatic lawnmower 100.
  • the center points of the vertical projections 130 ′ of the four driving wheels 130 are connected in sequence to form a quadrilateral 330, and the geometric center point may be the center of the quadrilateral 330, and the center of the quadrilateral 330 and the vertical projection of the inertial navigation device 110 The center points of 110 'coincide.
  • the center point of the projection 110 'of the inertial navigation device 110 on the horizontal plane 300 coincides with the geometric center point of the vertical projection 130' of the multiple drive wheels 130 on the horizontal plane 300, thereby determining the inertial navigation device's Installation location.
  • the height of the inertial navigation device 110 is not limited, and as long as it is located inside the automatic lawnmower 100 under the above premise.
  • the inertial navigation device 110 since the vertical projection of the inertial navigation device 110 is located in the center of the plurality of driving wheels 130, the angular velocity space vector information and the acceleration space vector information it collects can better reflect the automatic lawn mower The 100-speed angular velocity space vector information and acceleration space vector information enhance the accuracy of the collected information. It can be understood that, in other embodiments, the inertial navigation device 110 may also be fixed at other non-geometric centers of the automatic lawnmower.
  • the inertial navigation device has three sensitive axes 410, 420, and 430 that are perpendicular to each other.
  • the three sensitive axes 410, 420, and 430 that are perpendicular to each other are used as coordinate systems. Therefore, the angular velocity vector information and the acceleration vector information collected by the inertial navigation device are expressed in the form of three-dimensional coordinates in the coordinate system, and are transmitted to the control module 120.
  • the sensitive shaft 410 is parallel to the central axis 500 of the automatic lawnmower 100, and the central axis 500 of the automatic lawnmower 100 is a straight line passing through the center of the automatic lawnmower 100 and perpendicular to the direction in which the automatic lawnmower travels.
  • the sensitive shaft 420 is parallel to the virtual ground plane 600 determined by the multiple driving wheels 130 of the automatic lawn mower, and parallel to the direction of advancement when the automatic lawn mower travels straight.
  • the virtual ground plane 600 is the multiple driving wheels 130 each contacting the ground The points together determine the plane. Since the sensitive axes 410, 420, and 430 are perpendicular to each other, when the directions of the sensitive axis 410 and the sensitive axis 420 are determined, the direction of the sensitive axis 430 is naturally determined.
  • the sensitive shaft 420 is parallel to the virtual ground plane 600 determined by the multiple driving wheels 130 of the automatic lawnmower, and is set in parallel with the direction of advancement of the automatic lawnmower when walking straight, therefore, There is no angle between the direction of the sensitive axis of the inertial navigation device 110 and the reference direction that needs to be sensed when the angular velocity space vector information and the acceleration space vector information are collected, so the projection conversion can be reduced, which is helpful to reduce calculation errors and improve data accuracy degree.
  • the inertial navigation device 110 includes a gyroscope 111 and an accelerometer 112, and the gyroscope 111 and the accelerometer 112 are electrically connected to the control module 120, respectively.
  • the gyroscope 111 is used to obtain the angular velocity space vector information of the automatic lawn mower
  • the accelerometer 112 is used to obtain the acceleration space vector information of the automatic lawn mower.
  • the gyroscope 111 has the function of accurately measuring the rotation and deflection of the moving object, and can continuously measure the angular velocity space vector information of the object.
  • the accelerometer 112 is mainly used to measure the acceleration of an object, and can continuously measure the acceleration space vector information of the object. Therefore, in this embodiment, the gyroscope 111 and the accelerometer 112 are used to accurately measure the angular velocity space vector information and the acceleration space vector information at every moment after the automatic lawnmower 100 leaves the charging station 200.
  • FIGS. 1 to 5 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the solution of the present application.
  • the specific automatic lawn mower may include More or fewer components are shown in, or some components are combined, or have different component arrangements.
  • the embodiment of the present application also provides a control method of an automatic lawn mower, which is provided with an inertial navigation device.
  • the method is applied to the control module in the automatic lawn mower as an example for illustration, as shown in FIG. 6
  • the control method includes the following steps:
  • Step S602 Receive angular velocity space vector information and acceleration space vector information at each moment after the automatic lawn mower detected by the inertial navigation device leaves the charging station.
  • the automatic lawnmower starts from the starting time of the charging station (the machine is stationary before this time), and the inertial navigation device installed on the automatic lawnmower starts to work, detecting the angular velocity space vector at every moment after the automatic lawnmower leaves the charging station
  • the information and the acceleration space vector information intersect and send the detected angular velocity space vector information and the acceleration space vector information to the control module of the automatic lawn mower.
  • Step S604 Calculate the relative position information and relative angle information between the automatic lawnmower and the charging station according to the angular velocity space vector information and the acceleration space vector information of the automatic lawnmower at a certain moment detected by the inertial navigation device.
  • the control module After receiving the angular velocity space vector information and acceleration space vector information sent by the inertial navigation device, the control module performs mathematical calculations on it, such as integral calculation, differential calculation, or other calculations, to obtain the relative between the automatic lawn mower and the charging station Position information and relative angle information.
  • the relative position information and relative angle information between the automatic lawnmower and the charging station include the distance, orientation, etc. of the automatic lawnmower relative to the charging station.
  • Step S606 Plan the walking path of the automatic lawnmower according to the relative position information and the relative angle information.
  • control module may determine the relative relationship between the automatic lawnmower and the work area according to the calculated relative position information and relative angle information between the automatic lawnmower and the charging station, so as to plan a suitable working walking path; or According to this relative position information and relative angle information, a walking path to the charging station is planned. And control the automatic lawn mower to follow the planned walking path.
  • the control method of the above-mentioned automatic lawn mower by installing an inertial navigation device and a control module on the automatic lawn mower, thereby detecting the angular velocity space vector information and acceleration space vector information at every moment after the automatic lawn mower leaves the charging station, and according to the angular velocity
  • the space vector information and the acceleration space vector information calculate the relative position information and relative angle information between the automatic lawnmower and the charging station, and then plan the walking path of the automatic lawnmower based on the relative position information and the relative angle information. Therefore, there is no need to rely on the current-carrying wires at the working boundary to plan the walking path, which not only saves resources, but also makes the application of the automatic lawn mower more and more widely.
  • planning the walking path of the automatic lawnmower based on the relative position information and the relative angle information includes the following steps:
  • Step S702 Determine the positional relationship between the automatic lawnmower and the working area according to the preset working area information and the relative position information and relative angle information between the automatic lawnmower and the charging station.
  • the preset working area information may be data of a preset working area, or may be physical boundary information of the working area detected by the automatic lawn mower through its own sensor device. It is a fixed area, and since the position of the charging station is also determined, there is also a corresponding positional relationship between the preset working area and the charging station. After learning the relative position information and relative angle information between the automatic mower and the charging station, the control module on the automatic mower can obtain automatic mowing according to the positional relationship between the charging station and the preset working area The positional relationship between the machine and the working area, that is, where the automatic mower is in the working area, or whether the automatic mower is located at the boundary of the working area, etc.
  • step S704 a walking path of the automatic lawnmower is generated according to the relative position information, the relative angle information and the positional relationship.
  • the walking path of the automatic lawnmower can be generated accordingly .
  • the walking path back to the charging station can be directly generated based on the relative position information and relative angle information between the automatic lawnmower and the charging station.
  • the control module can refer to the power situation of the automatic lawnmower The walking path returns directly to the charging station in a non-mowing manner; it can also be combined with the positional relationship between the automatic lawnmower and the work area to generate a walking path, and returns to the charging station according to the walking path in the manner of mowing.
  • Step S706 Control the automatic lawn mower to walk along the walking path.
  • control module controls the automatic lawnmower to walk along the walking path or to cut grass while walking. Therefore, excessive cutting and rolling caused by excessive repeated paths will not occur, which not only improves work efficiency, but also saves power and extends battery life, and makes the lawn more uniform and beautiful.
  • controlling the docking of the automatic lawn mower to the charging station may specifically include the following steps:
  • Step S802 Obtain position information of the inertial navigation device on the automatic lawn mower.
  • the inertial navigation device Since the inertial navigation device is installed on the automatic lawn mower, the relative position of the inertial navigation device and the automatic lawn mower is fixed after the installation is completed. Therefore, the position information of the inertial navigation device on the automatic lawn mower can be entered after the installation of the equipment is completed. It can also be measured by other sensor devices.
  • Step S804 Determine the deviation of the preset position where the automatic mower and the charging station are docked according to the position information of the inertial navigation device on the automatic mower and the relative position information and relative angle information between the automatic mower and the charging station.
  • the charging station 200 is provided with a fixed parking space 210 for parking the automatic lawnmower 100, that is, the parking space 210 is a preset position where the automatic lawnmower is docked with the charging station. Therefore, the control module can determine the parking space between the automatic lawnmower and the charging station through the relative position information and relative angle information of the automatic lawnmower and the charging station, and the position information of the inertial navigation device on the automatic lawnmower The deviation of distance and bearing.
  • Step S806 Adjust the movement and rotation of the driving wheel on the automatic lawnmower according to the deviation, so that the automatic lawnmower reaches a preset position docked with the charging station.
  • the control module controls the multiple driving wheels of the automatic lawn mower to move or rotate according to the determined deviation, so that the position of the automatic lawn mower, the orientation of the head of the lawn mower, and the angle of the driving wheels can be adjusted slightly to cut the automatic mower
  • the lawnmower is adjusted to a posture suitable for docking with the charging station, so that the automatic lawnmower can smoothly enter the parking space and realize docking with the charging station to complete subsequent charging.
  • steps in the flowcharts of FIGS. 6-8 are sequentially displayed according to the arrows, these steps are not necessarily executed in the order indicated by the arrows. Unless clearly stated in this article, the execution of these steps is not strictly limited in order, and these steps can be executed in other orders. Moreover, at least some of the steps in FIGS. 6 to 8 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. These sub-steps or The execution order of the stages is not necessarily sequential, but may be executed in turn or alternately with other steps or sub-steps of the other steps or at least a part of the stages.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory can include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain (Synchlink) DRAM
  • SLDRAM synchronous chain (Synchlink) DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Harvester Elements (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种自动割草机及其控制方法,其中,自动割草机(100)上设置有惯性导航器件(110)与控制模块(120),惯性导航器件(110)用于检测自动割草机(100)离开充电站(200)后每一时刻的角速度空间矢量信息与加速度空间矢量信息;控制模块(120)用于根据该信息计算自动割草机(100)与充电站(200)之间的相对位置信息和相对角度信息,并规划自动割草机(100)的行走路径。该自动割草机及其控制方法在离开充电站后能够准确得知自身的相对位置和相对角度,特别是在需要回归充电站时,不需要依赖工作边界的通电导线来进行行走路径的规划,在节约资源的同时使得自动割草机的应用越来越广泛。

Description

自动割草机及其控制方法
本申请要求了申请日为2018年11月8日,申请号为201811324045.9的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电器技术领域,特别是涉及一种自动割草机及其控制方法。
背景技术
随着小型智能化电器技术的发展,出现了自动割草机,自动割草机能够代替人工完成对草坪的修整工作,将用户从草坪维护的繁重工作中解放出来,从而受到越来越多用户的青睐。
自动割草机通常消耗电能作为动力,基于此,出现了与自动割草机所配套的充电站,充电站能够为自动割草机提供电能作为自动割草机的能源补充。现有技术中,一般通过布置通电导线,以确定自动割草机的工作边界,而充电站通常设置在工作边界的通电导线上。自动割草机返回充电站时只能先行走到工作边界的通电导线上,再沿通电导线返回充电站。
由于目前自动割草机需要依赖于工作边界的通电导线来规划行走路径,从而制约了自动割草机智能化的进一步发展。
发明内容
基于此,有必要针对目前自动割草机无法准确得知自身的相对位置和角度,特别回归充电时,需要依赖于工作边界的通电导线来规划行走路径的问题,提供一种自动割草机及其控制方法。
一种自动割草机,该自动割草机上设置有惯性导航器件与控制模块,其中控制模块与惯性导航器件连接;
惯性导航器件用于检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;
控制模块用于根据惯性导航器件检测的自动割草机每一时刻的角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息;并根据相对位置信息规划自动割草机的行走路径。
在其中一个实施例中,惯性导航器件包括陀螺仪与加速度计,其中,陀螺仪用于获得自动割草机每一时刻的角速度空间矢量信息,加速度计用于获得自动割草机每一时刻的加速度空间矢量信息。
在其中一个实施例中,自动割草机包括多个驱动轮,其中,惯性导航器件在水平面上的垂直投影位于多个驱动轮在水平面上的垂直投影的几何中心点。
在其中一个实施例中,惯性导航器件具有互相垂直的三根敏感轴,三根敏感轴中的一根敏感轴与自动割草机的中轴线平行,另一根敏感轴与多个驱动轮确定的虚拟地平面平行,且与自动割草机直线行走时前进的方向平行。
在其中一个实施例中,惯性导航器件为光纤类型惯性导航器件或MEMS类型惯性导航器件。
一种自动割草机的控制方法,其中,自动割草机上设置有惯性导航器件,该方法包括:
接收惯性导航器件检测的自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;
根据惯性导航器件检测的自动割草机每一时刻的角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度 信息;并根据相对位置信息和相对角度信息规划自动割草机的行走路径。
在其中一个实施例中,根据相对位置信息和相对角度信息规划自动割草机的行走路径,包括:
根据预设工作区域信息以及自动割草机与充电站之间的相对位置信息和相对角度信息,确定自动割草机与工作区域之间的位置关系;
根据相对位置信息、相对角度信息与位置关系,生成自动割草机的行走路径;
控制自动割草机按照行走路径行走。
在其中一个实施例中,自动割草机的行走路径包括:自动割草机的割草工作路径和自动割草机返回充电站的行走路径中的任一种;
则控制自动割草机按照行走路径行走,包括:
控制自动割草机按照割草工作路径行走并割草;或者
控制自动割草机按照返回充电站的行走路径行走以返回充电站。
在其中一个实施例中,控制自动割草机按照返回充电站的行走路径行走以返回充电站之后,还包括:
根据相对位置信息和相对角度信息控制自动割草机与充电站对接。
在其中一个实施例中,根据相对位置信息和相对角度信息控制自动割草机与充电站的对接,包括:
获取惯性导航器件位于自动割草机上的位置信息;
根据惯性导航器件位于自动割草机上的位置信息以及自动割草机与充电站之间的相对位置信息和相对角度信息确定自动割草机与充电站对接的预设位置的偏差;
根据偏差调整自动割草机上的驱动轮移动和转动,以使自动割草机到达与 充电站对接的预设位置。
上述自动割草机及其控制方法,通过在自动割草机上设置惯性导航器件与控制模块,从而可以检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息,并根据角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息,进而根据相对位置信息和相对角度信息规划自动割草机的行走路径。因此,自动割草机在离开充电站后能够准确得到自身与充电站的相对位置和相对角度,以进行割草路径规划,特别在需要回归充电站时,不需要依赖工作边界的通电导线来进行行走路径的规划,使得自动割草机的应用越来越广泛。
附图说明
图1为一个实施例中自动割草机的应用示意图;
图2为一个实施例中自动割草机的内部结构示意图;
图3(a)为一个实施例中惯性导航器件与驱动轮的相对位置的示意图;
图3(b)为另一个实施例中惯性导航器件与驱动轮的相对位置的示意图;
图3(c)为又一个实施例中惯性导航器件与驱动轮的相对位置的示意图;
图4为一个实施例中惯性导航器件的敏感轴位置示意图;
图5为一个实施例中惯性导航器件的内部结构示意图;
图6为一个实施例中自动割草机的控制方法的流程示意图;
图7为另一个实施例中自动割草机的控制方法的流程示意图;
图8为一个实施例中自动割草机与充电站对接的方法流程示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实 施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供了一种自动割草机,可以应用于如图1所示的应用环境中。具体的,如图1所示,自动割草机100的电能一般主要来源于充电站200,充电站200通常设置在自动割草机100工作区域的附近。当充电站200安装完毕后,其位置通常是固定的,并且,充电站200设置有固定的用于自动割草机100停泊的停泊空间210,自动割草机100可以在该停泊空间210内进行充电。自动割草机100充电完成后,需要工作时,从充电站200的停泊空间210出发,去往工作区域进行割草工作,在工作完毕或需要充电时再返回充电站200,具体而言,是返回充电站200中为自动割草机100设置的停泊空间210内进行充电。
在本实施例中,如图2所示,该自动割草机除了包括必要的机器主体、驱动、割草部件(图中未示出)之外,该自动割草机100还包括惯性导航器件110、控制模块120,其中,控制模块120与惯性导航器件110相连接,以能够通信。具体的,惯性导航器件110可以安装在自动割草机的主板上,也可以独立安装在自动割草机上,在确保与控制模块120连接即可。自动割草机100从充电站200的停泊空间210出发时,设置在自动割草机100上的惯性导航器件110即开始工作,并将自动割草机100离开充电站200时的瞬间记录为初始时刻,并检测自动割草机100离开充电站200后每一时刻的角速度空间矢量信息与加速度空间矢量信息,将检测到的角速度空间矢量信息与加速度空间矢量信息发送给控制模块120。
控制模块120则接收惯性导航器件110检测的自动割草机100每一时刻的角速度空间矢量信息与加速度空间矢量信息。控制模块120对角速度空间矢量信息按时间积分,获得自动割草机的转角信息;对加速度空间矢量信息按时间 积分,获得自动割草机的速度信息。再对转角信息按时间积分,获得相对角度信息;对速度信息按时间积分,获得相对位置信息。
控制模块120按照以上步骤,对自动割草机100离开充电站200后每一时刻的角速度空间矢量信息与加速度空间矢量信息进行计算,可以得到自动割草机100离开充电站200后每一时刻的相对角度信息与相对位置信息。通过对自动割草机100行走时每一时刻的相对角度信息与相对位置信息的分析处理,可以得到自动割草机100相对于充电站的距离、方位,以及自动割草机100的行走速度,进一步地,可以得到自动割草机100从充电站200出发后行走的完整轨迹路径。在本实施例中,自动割草机相对于充电站的距离、方位则为自动割草机与充电站之间的相对位置信息和相对角度关系。
在本实施例中,控制模块120还可以根据相对位置信息和相对角度信息规划自动割草机100的行走路径。具体而言,控制模块120根据上述自动割草机100与充电站200之间的相对位置信息和相对角度信息,生成自动割草机100接下来的行走路径,并控制自动割草机100按照生成的行走路径行走。
上述自动割草机,通过在自动割草机上设置电性连接的惯性导航器件与控制模块,从而可以检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息,并根据角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息,进而根据相对位置信息和相对角度信息规划自动割草机的行走路径。在自动割草机需要回归充电站时,不需要依赖工作边界的通电导线来进行行走路径的规划,使得自动割草机的应用越来越广泛。
在一个实施例中,惯性导航器件110具体可以采用光纤类型惯性导航器件或微机电***MEMS(Micro-Electro-Mechanical System,简称MEMS)类型惯 性导航器件。由于光纤类型惯性导航器件具有结构紧凑,灵敏度高,工作可靠的优点,MEMS类型惯性器件还具有体积小,抗冲击,可靠性高,寿命长,成本低的优点。因此,应用于自动割草机不会过多的增加自动割草机的体积和重量,且有利于提高整体的可靠性。在一个更优的实施例中,惯性导航器件110采用MEMS类型惯性器件。当然,惯性导航器件也可以采用其他类型的器件,只要能够实现以上本实施例所述的功能即可,本实施例并不对此进行限定。在一个实施例中,如图1、图3(a)、图3(b)以及图3(c)所示,自动割草机100还包括多个驱动轮130,惯性导航器件110在水平面300上的垂直投影110’位于自动割草机100的多个驱动轮130在水平面300上的垂直投影130’的几何中心点。
其中,水平面300为惯性导航器件110的垂直投影所位于的平面。驱动轮130可以有多个,例如驱动轮130具体的个数可以为2个、3个、4个或其他能够实现驱动自动割草机100移动的任意个数。
举例来说,如图3(a)所示,自动割草机100包括两个驱动轮130,惯性导航器件110在水平面300上的垂直投影110’则位于自动割草机100的两个驱动轮130在水平面300上的垂直投影130’的几何中心点处。其中,几何中心点是指两个驱动轮130的垂直投影130’的中心点的连线310的中心处,且连线310的中心处与惯性导航器件110的垂直投影110’的中心点相重合。
如图3(b)所示,自动割草机100还可以包括三个驱动轮130,惯性导航器件110在水平面300上的垂直投影110’则位于自动割草机100的三个驱动轮130在水平面300上的垂直投影130’的几何中心点处。具体的,三个驱动轮130的垂直投影130’的中心点依次连接从而形成三角形320,几何中心点则可以是该三角形320的中心处,且三角形320的中心处与惯性导航器件110的垂直投影110’的中心点相重合。
如图3(c)所示,自动割草机100也可以包括四个驱动轮130,惯性导航器件110在水平面300上的垂直投影110’则位于自动割草机100的四个驱动轮130在水平面300上的垂直投影130’的几何中心点处。具体的,四个驱动轮130的垂直投影130’的中心点依次连接从而形成四边形330,几何中心点则可以是该四边形330的中心处,且四边形330的中心处与惯性导航器件110的垂直投影110’的中心点相重合。
通过上述实施例可知,惯性导航器件110在水平面300上的投影110’的中心点与多个驱动轮130在水平面300上的垂直投影130’的几何中心点相重合,由此确定惯性导航器件的安装位置。本实施例中对于惯性导航器件110的高度不做限定,在上述前提下只要保证其位于自动割草机100内部即可。
上述实施例中,惯性导航器件110由于在水平面上的垂直投影位于多个驱动轮130的中心,因此,其采集到的角速度空间矢量信息与加速度空间矢量信息能够更好地反映出自动割草机100运动的角速度空间矢量信息与加速度空间矢量信息,从而增强其采集信息的准确性。可理解的是,在其他实施例中,也可以在自动割草机的其他非几何中心的位置固定惯性导航器件110。
在一个实施例中,如图4所示,惯性导航器件具有互相垂直的三根敏感轴410、420、430,在本实施例中,以互相垂直的三根敏感轴410、420、430作为坐标系。因此,惯性导航器件采集到的角速度矢量信息与加速度矢量信息以该坐标系中三维坐标的形式表达,并传递给控制模块120。
其中,敏感轴410与自动割草机100的中轴线500平行,自动割草机100的中轴线500为通过自动割草机100中心且与自动割草机行走的方向垂直的直线。敏感轴420与自动割草机上的多个驱动轮130确定的虚拟地平面600平行,且与自动割草机直线行走时前进的方向平行,虚拟地平面600为多个驱动轮130 各自与地面接触的点共同确定的平面。由于敏感轴410、420、430互相垂直,因此,当敏感轴410和敏感轴420的方向确定后,敏感轴430的方向自然就确定了。
通常情况下,如果惯性导航器件的敏感轴和需要感测的基准方向之间存在夹角,则必需通过投影转换才能将采集到的数据反映到敏感轴上,投影转换越多,则数据的精确性就越低。本实施例中,为了克服此问题,通过将敏感轴420与自动割草机多个驱动轮130确定的虚拟地平面600平行,且与自动割草机直线行走时前进的方向平行设置,因此,惯性导航器件110的敏感轴的方向与采集角速度空间矢量信息与加速度空间矢量信息时需要感测的基准方向之间不存在夹角,故而可减少投影转换,有利于减少计算误差,提高数据的精确度。
在一个实施例中,如图5所示,惯性导航器件110包括陀螺仪111与加速度计112,陀螺仪111与加速度计112分别与控制模块120电连接。其中,陀螺仪111用于获得自动割草机的角速度空间矢量信息,加速度计112用于获得自动割草机的加速度空间矢量信息。
具体的,陀螺仪111具有能够精确测量运动物体的转动、偏转的功能,能够连续地测出物体的角速度空间矢量信息。加速度计112主要用于测量物体的加速度,能够连续地测出物体的加速度空间矢量信息。因此,本实施例中采用陀螺仪111与加速度计112,能够精确地测量出自动割草机100离开充电站200后每一时刻的角速度空间矢量信息与加速度空间矢量信息。
本领域技术人员可以理解,图1至图5中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案的限定,具体的自动割草机可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
本申请实施例还提供了一种自动割草机的控制方法,该自动割草机上设置有惯性导航器件,以该方法应用于上述自动割草机中的控制模块为例进行说明,如图6所示,该控制方法包括如下步骤:
步骤S602,接收惯性导航器件检测的自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息。
其中,自动割草机从充电站出发时刻开始(该时刻前机器静止),设置于自动割草机上的惯性导航器件则开始工作,检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息,交将检测到的角速度空间矢量信息与加速度空间矢量信息发送给自动割草机的控制模块。
步骤S604,根据惯性导航器件检测的自动割草机某一时刻的角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息。
控制模块接收到惯性导航器件发送的角速度空间矢量信息与加速度空间矢量信息后,对其进行数学计算,如积分计算、微分计算或其他计算等,从而获得自动割草机与充电站之间的相对位置信息和相对角度信息。其中,自动割草机与充电站之间的相对位置信息和相对角度信息包括自动割草机相对于充电站的距离、方位等。
步骤S606,根据相对位置信息和相对角度信息规划自动割草机的行走路径。
具体的,控制模块可以根据计算的自动割草机与充电站之间的相对位置信息和相对角度信息,确定自动割草机与工作区域之间的相对关系,从而规划合适的工作行走路径;或者根据此相对位置信息和相对角度信息规划返回充电站的行走路径。并控制自动割草机按照规划的行走路径行走。
上述自动割草机的控制方法,通过在自动割草机上设置惯性导航器件与控 制模块,从而检测自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息,并根据角速度空间矢量信息与加速度空间矢量信息,计算自动割草机与充电站之间的相对位置信息和相对角度信息,进而根据相对位置信息和相对角度信息规划自动割草机的行走路径。因此,不需要依赖工作边界的通电导线来进行行走路径的规划,不仅节省了资源,而且使得自动割草机的应用越来越广泛。
在一个实施例中,如图7所示,根据相对位置信息和相对角度信息规划自动割草机的行走路径,包括如下步骤:
步骤S702,根据预设工作区域信息以及自动割草机与充电站之间的相对位置信息和相对角度信息,确定自动割草机与工作区域之间的位置关系。
其中,预设工作区域信息可以是预先设置的工作区域的数据,也可以是自动割草机通过自身的传感器件检测到的工作区域的物理边界信息。其为一个固定的区域,且由于充电站的位置也是确定的,故而,预设的工作区域与充电站之间也具有对应的位置关系。自动割草机上的控制模块在得知自动割草机与充电站之间的相对位置信息和相对角度信息后,即可根据充电站与预设的工作区域之间的位置关系,获得自动割草机与工作区域之间的位置关系,即自动割草机具体在工作区域内的哪一处,或者自动割草机是否处于工作区域的边界等。
步骤S704,根据相对位置信息、相对角度信息与位置关系,生成自动割草机的行走路径。
具体的,控制模块确定了自动割草机与充电站之间的相对位置信息、相对角度信息以及自动割草机与工作区域之间的位置关系后,可以据此生成自动割草机的行走路径。例如,可以直接根据自动割草机与充电站之间的相对位置信息和相对角度信息生成返回充电站的行走路径,在此过程中,控制模块可以参 考自动割草机的电量情况,可以根据生成的行走路径以非割草的方式直接返回充电站;也可以结合自动割草机与工作区域之间的位置关系生成行走路径,以割草的方式按行走路径返回充电站。当然,在电量充足的情况下,还可以根据上述相对位置信息、和相对角度信息与位置关系,生成合适的割草工作路径,也可以结合预设的割草图案生成对应的割草工作路径,从而使得割草后草坪上出现预设的图案。
步骤S706,控制自动割草机按照行走路径行走。
具体的,控制模块按上述步骤生成行走路径后,则控制自动割草机按行走路径行走或在行走的同时进行割草。从而不会产生因过度重复的路径而导致的过度割草及碾压,不仅提高了工作效率,而且可以达到节省电力、延长电池寿命的作用,且使得草坪更加均匀美观。
在一个实施例中,当控制模块根据相对位置信息、相对角度信息与位置关系生成的自动割草机的行走路径为自动割草机返回充电站的行走路径时,控制模块控制自动割草机按照返回充电站的行走路径行走以返回所述充电站之后,还要根据当前的相对位置信息和相对角度信息控制自动割草机与充电站对接。具体的,如图8所示,控制自动割草机与充电站对接具体可以包括以下步骤:
步骤S802,获取惯性导航器件位于自动割草机上的位置信息。
由于惯性导航器件设置在自动割草机上,安装完成后,惯性导航器件和自动割草机的相对位置固定,因此,惯性导航器件位于自动割草机上的位置信息可以是设备安装完成后录入的,也可以是通过其他传感器件测得的。
步骤S804,根据惯性导航器件位于自动割草机上的位置信息以及自动割草机与充电站之间的相对位置信息和相对角度信息确定自动割草机与充电站对接的预设位置的偏差。
具体的,如前述实施例所述,充电站200设置有固定的用于自动割草机100停泊的停泊空间210,即该停泊空间210为自动割草机与充电站对接的预设位置。因此,控制模块通过自动割草机与充电站的相对位置信息和相对角度信息,以及惯性导航器件在自动割草机上的位置信息,即可判断出自动割草机与充电站上的停泊空间的距离和方位的偏差。
步骤S806,根据偏差调整自动割草机上的驱动轮移动和转动,以使自动割草机到达与充电站对接的预设位置。
控制模块根据上述确定的偏差控制自动割草机的多个驱动轮移动或转动,从而可以小幅调节自动割草机的位置、割草机头部的方位,以及驱动轮的角度,以将自动割草机调整到适合对接充电站的姿态,使得自动割草机能够顺利进入停泊空间,实现与充电站对接,以完成后续的充电。
应该理解的是,虽然图6-图8的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图6-图8中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、 存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种自动割草机,其特征在于,所述自动割草机上设置有惯性导航器件与控制模块,所述控制模块与所述惯性导航器件连接;
    所述惯性导航器件用于检测所述自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;
    所述控制模块用于根据所述惯性导航器件检测的所述自动割草机每一时刻的角速度空间矢量信息与加速度空间矢量信息,计算所述自动割草机与充电站之间的相对位置信息和相对角度信息;并根据所述相对位置信息和相对角度信息规划所述自动割草机的行走路径。
  2. 根据权利要求1所述的自动割草机,其特征在于,所述惯性导航器件包括陀螺仪与加速度计,所述陀螺仪用于获得所述自动割草机每一时刻的角速度空间矢量信息,所述加速度计用于获得所述自动割草机每一时刻的加速度空间矢量信息。
  3. 根据权利要求1所述的自动割草机,其特征在于,所述自动割草机包括多个驱动轮,所述惯性导航器件在水平面上的垂直投影位于所述多个驱动轮在所述水平面上的垂直投影的几何中心点。
  4. 根据权利要求3所述的自动割草机,其特征在于,所述惯性导航器件具有互相垂直的三根敏感轴,所述三根敏感轴中的一根敏感轴与所述自动割草机的中轴线平行,另一根敏感轴与所述多个驱动轮确定的虚拟地平面平行,且与所述自动割草机直线行走时前进的方向平行。
  5. 根据权利要求1至4任一项所述的自动割草机,其特征在于,所述惯性导航器件为光纤类型惯性导航器件或MEMS类型惯性导航器件。
  6. 一种自动割草机的控制方法,其特征在于,所述自动割草机上设置有惯性导航器件,所述方法包括:
    接收所述惯性导航器件检测的所述自动割草机离开充电站后每一时刻的角速度空间矢量信息与加速度空间矢量信息;
    根据所述惯性导航器件检测的所述自动割草机每一时刻的角速度空间矢量信息与加速度空间矢量信息,计算所述自动割草机与充电站之间的相对位置信息和相对角度信息;
    根据所述相对位置信息和相对角度信息规划所述自动割草机的行走路径。
  7. 根据权利要求6的所述自动割草机的控制方法,其特征在于,所述根据所述相对位置信息和相对角度信息规划所述自动割草机的行走路径,包括:
    根据预设工作区域信息以及所述自动割草机与充电站之间的相对位置信息和相对角度信息,确定所述自动割草机与所述工作区域之间的位置关系;
    根据所述相对位置信息、相对角度信息与所述位置关系,生成所述自动割草机的行走路径;
    控制所述自动割草机按照所述行走路径行走。
  8. 根据权利要求7的所述自动割草机的控制方法,其特征在于,所述自动割草机的行走路径包括:所述自动割草机的割草工作路径和所述自动割草机返回所述充电站的行走路径中的任一种;
    所述控制所述自动割草机按照所述行走路径行走,包括:
    控制所述自动割草机按照所述割草工作路径行走并割草;或者
    控制所述自动割草机按照返回所述充电站的行走路径行走以返回所述充电站。
  9. 根据权利要求8的所述自动割草机的控制方法,其特征在于,所述控制所述自动割草机按照返回所述充电站的行走路径行走以返回所述充电站之后,还包括:
    根据所述相对位置信息和相对角度信息控制所述自动割草机与所述充电站对接。
  10. 根据权利要求9的所述自动割草机的控制方法,其特征在于,所述根据所述相对位置信息和相对角度信息控制所述自动割草机与所述充电站的对接,包括:
    获取所述惯性导航器件位于所述自动割草机上的位置信息;
    根据所述惯性导航器件相位于所述自动割草机上的位置信息以及所述自动割草机与充电站之间的相对位置信息和相对角度信息确定所述自动割草机与充电站对接的预设位置的偏差;
    根据所述偏差调整自动割草机上的驱动轮移动和转动,以使所述自动割草机到达与充电站对接的预设位置。
PCT/CN2019/115345 2018-11-08 2019-11-04 自动割草机及其控制方法 WO2020093970A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811324045.9A CN111158356B (zh) 2018-11-08 2018-11-08 自动割草机及其控制方法
CN201811324045.9 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020093970A1 true WO2020093970A1 (zh) 2020-05-14

Family

ID=70554798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115345 WO2020093970A1 (zh) 2018-11-08 2019-11-04 自动割草机及其控制方法

Country Status (2)

Country Link
CN (1) CN111158356B (zh)
WO (1) WO2020093970A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2150750A1 (en) * 2021-06-11 2022-12-12 Husqvarna Ab Method of assisting a user of a robotic tool system, robotic tool, and robotic tool system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487982B (zh) * 2020-06-03 2024-02-06 格力博(江苏)股份有限公司 自走动力设备及自走动力设备的回充路径规划方法
CN115812411A (zh) * 2022-11-29 2023-03-21 宁波东贝智能科技有限公司 一种基于割草机的无人机导航方法、***、存储介质及智能终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251727A1 (en) * 2000-02-02 2002-10-30 Logical Technologies Limited An autonomous mobile apparatus for performing work within a predefined area
CN106338991A (zh) * 2016-08-26 2017-01-18 南京理工大学 一种基于惯性导航和二维码的机器人及定位导航方法
CN107045137A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动工作***,自移动设备及其控制方法
CN107703930A (zh) * 2017-10-11 2018-02-16 珠海市微半导体有限公司 机器人的续扫控制方法
CN107830859A (zh) * 2017-10-31 2018-03-23 努比亚技术有限公司 一种定位方法、装置及计算机可读存储介质
CN108227704A (zh) * 2016-12-15 2018-06-29 苏州宝时得电动工具有限公司 自移动设备及其移动方法、存储介质和服务器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201787954U (zh) * 2010-07-16 2011-04-06 国营红峰机械厂 光纤惯性导航测量***
KR101387665B1 (ko) * 2012-09-28 2014-04-21 주식회사 두시텍 초기정렬 주행 시스템
CN104460665A (zh) * 2014-10-13 2015-03-25 上海交通大学 基于道路曲率地图的磁导航无人车及其地图的建立方法
CN104406586B (zh) * 2014-12-04 2017-03-15 南京邮电大学 基于惯性传感器的行人导航装置和方法
CN104596508A (zh) * 2015-02-15 2015-05-06 杭州酷班科技有限公司 基于区域定位结合惯性导航和地图路径的室内导航方法
CN106020188B (zh) * 2016-05-17 2018-10-30 杭州申昊科技股份有限公司 一种基于激光导航的变电站巡检机器人自主充电方法
CN106767795B (zh) * 2017-01-20 2019-10-15 福州大学 一种基于惯性导航的移动机器人位移计算算法
CN106950586A (zh) * 2017-01-22 2017-07-14 无锡卡尔曼导航技术有限公司 用于农机作业的gnss/ins/车辆组合导航方法
CN108535755B (zh) * 2018-01-17 2021-11-19 南昌大学 基于mems的gnss/imu车载实时组合导航方法
CN108571965A (zh) * 2018-04-12 2018-09-25 杭州晶智能科技有限公司 基于rssi和三角位置的移动机器人定位充电基座的智能方法
CN108627171A (zh) * 2018-04-20 2018-10-09 杭州晶智能科技有限公司 基于无线信号强度梯度的移动机器人定位充电基座的智能方法
CN108571970A (zh) * 2018-04-26 2018-09-25 杭州晶智能科技有限公司 一种室内移动机器人的指纹地图构建方法
CN108762259B (zh) * 2018-05-11 2020-12-15 杭州晶一智能科技有限公司 基于无线信号强度的割草机器人遍历路径规划方法
CN108759565B (zh) * 2018-06-07 2019-05-10 哈尔滨工业大学 一种基于虚拟比例导引的运载火箭子级返回段精确制导方法
CN108733062A (zh) * 2018-06-25 2018-11-02 山东大学 家庭陪护机器人自主充电***及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1251727A1 (en) * 2000-02-02 2002-10-30 Logical Technologies Limited An autonomous mobile apparatus for performing work within a predefined area
CN107045137A (zh) * 2016-02-06 2017-08-15 苏州宝时得电动工具有限公司 自动工作***,自移动设备及其控制方法
CN106338991A (zh) * 2016-08-26 2017-01-18 南京理工大学 一种基于惯性导航和二维码的机器人及定位导航方法
CN108227704A (zh) * 2016-12-15 2018-06-29 苏州宝时得电动工具有限公司 自移动设备及其移动方法、存储介质和服务器
CN107703930A (zh) * 2017-10-11 2018-02-16 珠海市微半导体有限公司 机器人的续扫控制方法
CN107830859A (zh) * 2017-10-31 2018-03-23 努比亚技术有限公司 一种定位方法、装置及计算机可读存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2150750A1 (en) * 2021-06-11 2022-12-12 Husqvarna Ab Method of assisting a user of a robotic tool system, robotic tool, and robotic tool system
US20220397907A1 (en) * 2021-06-11 2022-12-15 Husqvarna Ab Method of assisting a user of a robotic tool system, robotic tool, and robotic tool system
SE545372C2 (en) * 2021-06-11 2023-07-18 Husqvarna Ab Method of assisting a user of a robotic tool system based on the inclination of the tool at a docking station, a robotic tool and robotic tool system

Also Published As

Publication number Publication date
CN111158356B (zh) 2021-08-10
CN111158356A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
CN110168465B (zh) 智能割草***
US11044845B2 (en) Moving robot and control method thereof
WO2020093970A1 (zh) 自动割草机及其控制方法
KR102430445B1 (ko) 이동 로봇 및 그 제어방법
KR102439184B1 (ko) 이동 로봇 및 그 제어방법
CN112518739B (zh) 履带式底盘机器人侦察智能化自主导航方法
JP2021516403A (ja) ロボットの再測位方法
CN111164380B (zh) 机器人的方位确定的方法、机器人的方位确定设备和机器人
EP3494769B1 (en) Mobile robot and control method thereof
CN113593284B (zh) 矿井巷道内车辆的路径规划方法及装置、电子设备
CN109813305B (zh) 基于激光slam的无人叉车
CN111090284B (zh) 自行走设备返回基站的方法及自行走设备
CN109144068A (zh) 三向前移式导航切换agv叉车的电控方式及控制装置
CN109656240A (zh) 一种车辆路径跟踪控制装置、方法和车辆
CN109407653A (zh) 一种室内通用多移动机器人算法验证***
CN104331078A (zh) 一种基于位置映射算法的多机器人协作定位方法
CN110275519A (zh) 位置推断***、位置检测方法以及程序
CN107943026B (zh) Mecanum轮巡视机器人及其巡视方法
KR20190081334A (ko) 복합 측위 기반의 이동 궤적 추적 방법 및 그 장치
JP2019078569A (ja) 位置認識方法、位置認識装置、基準点設置用移動体、作業用移動体、及び位置認識システム
KR102488523B1 (ko) 이동 로봇 및 그 제어방법
CN116481541A (zh) 一种无需卫星导航的车辆自主返航控制方法、装置及介质
US20240077880A1 (en) Slope location correction method and apparatus, robot and readable storage medium
KR102588455B1 (ko) 경사도 보정을 이용한 gnss 기반의 차량 운전주행 시험 장치
JP7410150B2 (ja) 自律作業機、自律作業機の制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19883105

Country of ref document: EP

Kind code of ref document: A1