CN111100680A - 一种催化剂级配方法以及渣油加氢处理方法 - Google Patents

一种催化剂级配方法以及渣油加氢处理方法 Download PDF

Info

Publication number
CN111100680A
CN111100680A CN201811257597.2A CN201811257597A CN111100680A CN 111100680 A CN111100680 A CN 111100680A CN 201811257597 A CN201811257597 A CN 201811257597A CN 111100680 A CN111100680 A CN 111100680A
Authority
CN
China
Prior art keywords
catalyst
hydrogenation
carrier
sphere
conical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811257597.2A
Other languages
English (en)
Inventor
耿新国
蒋立敬
刘铁斌
翁延博
李洪广
金建辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201811257597.2A priority Critical patent/CN111100680A/zh
Publication of CN111100680A publication Critical patent/CN111100680A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/10Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing platinum group metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明提供了一种催化剂级配方法及渣油加氢处理方法。该方法在串联的多个加氢反应器中依次装填加氢保护剂床层、加氢脱金属催化剂床层、加氢脱硫催化剂床层、加氢脱氮和/或脱残炭催化剂床层,其中在加氢脱氮和/或脱残炭催化剂床层之后设有装填至少一种加氢处理催化剂M的催化剂床层L1,其中加氢处理催化剂M的载体,直径为2.5~8mm,载体外表面具有多个不互通的大孔道,大孔道的截面积沿径向由外向内逐级减小,每个大孔道底面面积为球体表面积的0.05%~5%,大孔道的最长深度为球形载体半径的30%~99%。本发明的方法适用于处理铁、钙杂质含量高的渣油,不但可有效地脱除和附着铁和/或钙杂质,催化剂整体活性高,而且还能延长装置的运转周期。

Description

一种催化剂级配方法以及渣油加氢处理方法
技术领域
本发明属于渣油加氢技术领域,特别涉及一种铁、钙杂质含量高的重劣质渣油的加氢处理方法。
背景技术
随着原油日益变重、变劣,越来越多的重油、渣油需要加工处理。重油、渣油的加工处理不但要将其裂化为低沸点的产物,如石脑油、中间馏分油及减压瓦斯油等,而且还要提高它们的氢碳比,这就需要通过脱碳或加氢的方法来实现。其中的脱碳工艺包括焦化、溶剂脱沥青、重油催化裂化等;加氢工艺包括加氢裂化、加氢精制、加氢处理等。加氢工艺既能加氢转化渣油,提高液体产品的产率,而且还能脱除其中的杂原子,产品质量好,具有明显的优势。因此,各炼油企业纷纷新建渣油加氢处理装置,加工更重质、劣质的渣油,以获取更好的效益。
重油、渣油加氢处理技术的原料裂化率较低,主要目的是为下游原料轻质化装置如催化裂化或焦化等装置提供原料。通过加氢处理,使劣质渣油中的硫、氮、金属等杂质含量及残炭值明显降低,从而获得下游原料轻质化装置能够接受的进料。
对于催化裂化装置来说,若进料中铁和/或钙含量过高,会降低重油分子与催化剂活性中心的可接近性,导致重油转化率降低。而且,进料中铁和/或钙含量过高还会使催化剂表面形成瘤状凸起,导致堆密度下降,进而影响反应器和再生器间的催化剂循环,严重时影响装置加工负荷。此外,铁具有脱氢作用,导致干气中的氢气/甲烷比偏高。总之,进料中铁和/或钙含量过高会导致重油转化率降低,产品选择性变差,影响装置加工负荷,进而影响全厂的经济效益。因此,控制催化裂化进料中的铁和/或钙含量是当务之急。
固定床渣油加氢工艺中,由于进料均为含有金属杂质的重油或渣油原料,在脱金属杂质过程中,金属杂质会沉积在催化剂的表面以及孔道中,尤其是铁和/或钙主要沉积在催化剂的外表面,会使催化剂床层的空隙率快速减小,导致床层压降上升,从而影响装置的操作周期。
CN1335368A公开了一种渣油处理方法。该方法如下:重、渣油原料在通过加氢反应之前,先经过吸附过滤的预处理过程,这样可以脱除原料携带的悬浮颗粒,还可以脱除原油中环烷酸铁生成的硫化亚铁及大部分易生焦的物质,以减少渣油加氢反应器结垢,延长装置的运转周期。但该方法需要额外增加预处理设备,而且在加氢处理之前,环烷酸铁并未发生反应,仍溶解于原料中,脱铁效果不好。
CN103289734A公开了一种高金属、高硫和高氮的劣质重油加氢处理工艺及催化剂级配组合,含有两个串联的上流式脱铁钙反应器、一个固定床脱金属反应器、一个固定床脱硫反应器和一个固定床脱氮反应器,其中上流式脱铁脱钙反应器内装填加氢脱铁脱钙催化剂,从催化剂颗粒中心到外表面,加氢脱铁脱钙催化剂的活性金属组分呈“蛋黄”分布,以延长装置的运转周期。该方法可以在一定程度上调节脱除的铁和钙在催化剂上的分布,但仍无法解决铁和钙杂质容易沉积到催化剂外表面,带来压降增长过快,从而影响装置的运转周期的问题。
发明内容
针对现有技术中的不足之处,本发明提供了一种催化剂级配方法及其在渣油加氢处理方法中的应用。本发明催化剂级配方法特别适用于处理铁、钙杂质含量高的渣油,不但可以有效地脱除和附着铁和/或钙杂质,催化剂整体活性高,而且还能延长装置的运转周期。
本发明的发明人经过大量的研究发现,渣油中的铁和钙可分为有机和无机两大类,其中无机类铁钙很容易脱除,但有机类铁钙并不容易脱除,即使是生成硫化亚铁和硫化钙,也是附着于催化剂表面,且极易脱落随物流穿透催化剂床层,脱落的硫化亚铁和硫化钙碎片及颗粒物会进入下游催化剂床层,尤其是存在粒度过渡和催化剂孔径过渡明显的两种催化剂界面位置,这样不但引起下游催化剂床层空隙率下降床层压降升高,甚至造成床层局部物流不均产生径向温差,而且还会影响下游的装置(比如催化裂化装置)运行。为此,发明人发明了一种催化剂M,并进行合理的级配装填,从而解决此问题。
本发明第一方面提供一种催化剂级配方法,该方法在串联的多个加氢反应器中按物流方向依次装填加氢保护剂床层、加氢脱金属催化剂床层、加氢脱硫催化剂床层,后部接加氢脱氮和/或脱残炭催化剂床层,其中在加氢脱氮和/或脱残炭催化剂床层之后设有装填至少一种加氢处理催化剂M的催化剂床层L1,所述的加氢处理催化剂M包括载体和加氢活性金属组分,所述载体为球体,直径为2.5~8.0mm,其中,载体外表面具有多个不互通的大孔道,且大孔道的截面积沿径向由外向内逐级减小,其中,每个大孔道底面面积为球体表面积的0.05%~5%,大孔道总底面的面积为球体表面积的5%~50%,大孔道的最长深度,以沿球体半径方向孔道长度计,为球形载体半径的30%~99%,优选为55%~96%。
本发明的催化剂级配方法中,所述的催化剂床层L1中催化剂的装填体积占所有加氢反应器中催化剂总装填体积的2%~15%,优选5%~10%。
所述加氢处理催化剂M中,所述载体中的大孔道的截面是指以载体球心为球心,以不同半径形成的球面,那么在该球面上大孔道对应的面即为截面。
进一步,所述载体表面的大孔道由外表面向球心方向延伸。
进一步,所述载体中的大孔道底面在球体外表面呈圆形、椭圆形、多边形、异形中的至少一种。
进一步,所述载体的大孔道为圆锥形孔道或棱锥形孔道,优选圆锥形孔道或棱锥形孔道的顶角的角度为5~50度。
其中,所述球体表面积的计算公式为S=πD²,D为球体的直径。
其中,所述大孔道的截面积沿径向由外向内逐级减小是指每个大孔道的截面积沿径向由外向内整个区间范围内呈现逐渐降低的趋势,但允许在一个或多个区间内维持恒定。所述区间是指大孔道的整个区间内的任意两个截面的距离,其中任意区间的间隔长度不超过大孔道最长深度的1/4。
进一步,所述载体的大孔道的截面积沿径向由外向内逐级减小,最小的截面积占大孔道底面面积的10%以下,优选为5%以下,进一步优选为2%以下。
进一步,所述载体的大孔道的截面积沿径向由外向内逐级减小,由底面到最长深度1/2处的截面积占大孔底面面积的20%~70%,优选为25%~65%。
进一步,所述大孔道的截面积沿径向由外向内逐级减小,由底面到最长深度1/2处的截面积占底面到最长深度1/4处的截面积30%~80%,优选为45%~75%。
进一步,所述大孔道的截面积沿径向由外向内逐级减小,由底面到最长深度3/4处的截面积占底面到最长深度1/2处的截面积40%~80%,优选为55%~75%。
进一步,所述大孔道的最小截面的宽度不超过30μm。
其中,所述大孔道在载体表面的分布,其中,任意相邻两个大孔道间的最小壁厚占球体直径的1/8~1/5。其中,优选所述载体表面的大孔道相同,即外形和大小基本相同,可以由相同的导模制成相同的大孔道,进一步优选,所述载体的大孔道均匀分布在球体表面。
所述的加氢处理催化剂M中,所述载体呈球形,设有顶点指向球心、底面在球体表面的圆锥形大孔道,球形载体直径为2.5~8.0mm,其中,每个圆锥形大孔道底面面积为球体表面积的0.05%~4.5%,圆锥形大孔道总底面的面积为球体表面积的5%~50%,圆锥形大孔道的高为球形载体半径的50%~99%,优选为55%~96%,其中圆锥形大孔道顶角的角度为5~50度,且所述载体的圆锥形孔道均匀分布在球体表面。
进一步,所述的加氢处理催化剂M的载体中,设有圆锥形大孔道4~40个,优选8~40个。
本发明的加氢处理催化剂M,以Al2O3-SiO2为载体,其中以载体的重量为基准,SiO2重量含量为20%~50%,优选为30%~40%。
本发明的加氢处理催化剂M的载体中,优选还含有第一金属组分氧化物,所述第一金属组分氧化物为NiO。所述第一金属组分氧化物NiO与Al2O3的摩尔比为0.03:1~0.13:1,优选为0.05:1~0.11:1。
本发明的加氢处理催化剂M的载体的性质如下:比表面积为100~200m2/g,孔容为0.70mL/g以上,优选0.75~1.15mL/g,孔直径20~100nm所占的孔容为总孔容的35%~60%,平均孔直径为15nm以上,优选为17~30nm。
本发明的加氢处理催化剂M中,所述活性金属组分包括第二金属组分即第ⅥB族金属和第三金属元素即第Ⅷ族金属元素,其中第ⅥB族金属优选为Mo,第Ⅷ族金属优选为Ni和/或Co。
本发明的加氢处理催化剂M中,以催化剂的重量为基准计,第二金属组分以氧化物计的含量为1.0%~30.0%,优选为1.5%~20%,第一金属组分和第三金属组分的总含量以氧化物计为1.0%~35.0%,优选为2.0%~25.0%,氧化硅的含量为25.0%~35.0%,氧化铝的含量为55.0%~65.0%。
本发明第二方面提供一种上述催化剂级配方法在渣油加氢处理方法中的应用,其中,在加氢处理反应条件下,渣油原料和氢气依次通过串联的多个加氢反应器,并与所述加氢反应器内按上述级配方法装填的催化剂接触进行加氢反应,得到加氢处理产物。
本发明的渣油加氢处理方法中,各反应器的操作条件各自独立地为:反应压力5~25MPa,反应温度300~430℃,液时体积空速0.05~5.0h-1,氢油体积比150∶1~1000∶1。
与现有技术相比,本发明的优点在于:
1、本发明方法在常规渣油加氢处理催化剂级配的基础上,在加氢脱氮和/或脱残炭催化剂床层之后设有装填有加氢处理催化剂M的催化剂床层L1,由于加氢处理催化剂M具有适宜的粒度、孔道结构和独特的通道结构,可脱除渣油中的铁钙杂质,有效地沉积并附着在催化剂外表面的大孔道中,这样减少了铁钙杂质对下游装置的影响,同时还具有较高的脱金属活性,进一步深度脱除金属杂质Ni和V,还具有一定的脱硫和脱残炭活性,更重要的是,常规渣油加氢过程是放热过程,加氢脱氮和/或脱残炭催化剂床层末端是反应温度最高的位置,混合渣油经过前部一系列催化剂床层的加氢处理之后,轻芳烃、中芳烃及部分胶质被大量饱和转化,沥青质也经过高活性催化剂床层加氢处理后芳香度更高,高芳香度的沥青质在芳烃和胶质大幅度减少的胶体环境里变得更不稳定,在高温区域更易缩聚形成积碳,通过在该处设加氢处理催化剂床层L1,使极易沉积的沥青质沉积到催化剂M的锥型大孔道内形成积碳,避免该部分积碳沉积到脱氮/脱残炭催化剂床层下部及下游的换热器、分离器及分馏***内,避免后续设备及管路因堵塞而被迫停工检修,缩短装置运行周期,因此通过催化剂床层L1的设置,并不需要增加催化剂总装填体积,就能达到良好的整体活性和稳定性,有利于延长加氢装置的运转周期。
2、本发明采用的加氢处理催化剂M的表面有一定数量和大小的大孔道,大孔道不互通不贯穿,且大孔道的截面积沿径向由外向内逐级减小,孔道形状优选为锥形(圆锥或棱锥)。催化剂颗粒上的大孔道可以大幅降低渣油分子向催化剂颗粒内部扩散的距离和阻力。不互通不贯穿的孔道避免渣油物流直接流出孔道,提高了渣油物流在孔道内的停留时间,增加了颗粒物及垢物的沉积几率。发明人经过大量的实验,创造性地发现,本发明的催化剂载体的孔道具有锥形结构,且锥形孔道前端为锐角,反应后的颗粒物、垢物在孔道20~30μm的距离内易架桥,形成微米级的网格,逐渐在大孔道内由内向外扩展,使铁等垢物沉积附着效率大幅提升。而一般制备的贯穿孔道都会在0.1mm以上,不易提供20~30μm距离的架桥空间,同时因为是贯穿孔道,有物流冲刷,垢物沉积难度增加,使垢物沉积附着效率降低。
3、本发明方法中,由于在催化剂载体中优选加入了少量的镍盐,这样在焙烧过程产生适量的镍铝尖晶石结构,在进一步提高催化剂的强度和抗水性能的同时,又不影响催化性能。
4、本发明催化剂级配装填方法可用于渣油的加氢处理,尤其适用于含铁的渣油的加氢处理,渣油中有机铁及无机铁以铁计的含量可在10μg/g以上,或20μg/g以上,钙含量可在10μg/g以上,或20μg/g以上。本发明催化剂级配装填方法不但可以有效地脱除和附着铁和/或钙杂质,催化剂整体活性高,而且还能延长装置的运转周期。
附图说明
图1为本发明渣油加氢处理催化剂M的载体制备过程的示意剖面图;
图2为形成模具壳体的半球形空腔模具示意图;
图3制备的催化剂M的载体剖面示意图;
图4制备的催化剂M的载体立体示意图;
附图标记说明如下:
1.模具壳体;2.膏状物料;3.能形成圆锥形大孔道的导模;4.空腔;5.圆锥形“芒刺”;6.圆锥形孔道。
具体实施方式
下面结合实施例对本发明的技术方案作进一步详细的说明,但实施例并不限制本发明的保护范围。本发明中,wt%为质量分数。
本发明中,所述的比表面积、孔容、孔径和孔分布是采用低温液氮吸附法测得的。
本发明加氢处理催化剂M可以采用如下方法制备,该方法包括:
(1)向硅源中加入酸性胶溶剂,进行酸化处理;
(2)向步骤(1)中加入拟薄水铝石、固化剂,配制成膏状物料;
(3)将步骤(2)所得膏状物料加入模具中,再将盛有膏状物料模具加热一定时间,使膏状物料固化成型;
(4)将步骤(3)物料脱出模具,经洗涤、干燥、焙烧,得到催化剂载体;
(5)将步骤(4)所得载体浸渍负载催化剂活性金属组分,再经干燥和焙烧,得到加氢处理催化剂M。
本发明加氢处理催化剂M的制备方法中,载体中优选引入第一金属氧化物,可以在步骤(1)和/或步骤(2)中引入第一金属源(镍源),优选引入方法具体如下:向步骤(1)所得的物料中加入镍源,并使之溶解于物料中。镍源可以采用可溶性镍盐,其中可溶性镍盐可以为硝酸镍、硫酸镍、氯化镍中的一种或几种,优选硝酸镍。
本发明加氢处理催化剂M的制备方法中,步骤(1)中所述硅源为水玻璃、硅溶胶中的一种或几种,其中硅以氧化硅计的质量含量为20%~40%,优选25%~35%;所述酸性胶溶剂为硝酸、甲酸、醋酸、柠檬酸中的一种或几种,优选为硝酸,所述酸性胶溶剂的质量浓度为55%~75%,优选60%~65%;酸性胶溶剂加入量以氢离子与二氧化硅的摩尔比为1:1.0~1:1.5;所述硅源进行酸化处理后的pH值为1.0~4.0,优选1.5~2.5。
本发明加氢处理催化剂M的制备方法中,步骤(2)所述拟薄水铝石的干基重量为70%以上,经高温焙烧转化为γ-Al2O3后的性质如下:孔容为0.95mL/g以上,优选孔容为0.95~1.2mL/g,比表面积为270m2/g以上,优选比表面积为270~330m2/g。所述固化剂为尿素、有机铵盐中的一种或多种。所述有机铵盐为六次甲基四铵。所述固化剂的加入量以氮原子与二氧化硅的摩尔比为1:1.5~1:2.0;所述配制成膏状物料中固含量以二氧化硅、氧化铝重量计为25%~45%,优选28%~40%,其膏状物料应具有一定流动性的可塑体。
本发明加氢处理催化剂M的制备方法中,步骤(3)所述模具包含带有球形空腔的壳体和能与本发明所要求的孔道形状匹配的导模,壳体选用刚性材质,外部形状可以为任意形状,优选为球形等对称几何形状。本发明以外部形状是球形,导膜结构为能形成圆锥形孔道的模具为例进行说明,球形壳体可由两个完全相同的半球体组成,也可以由四个四分之一球体组成。球形空腔的直径可以根据催化剂颗粒的大小来调节,使得最终球形载体的直径为2.5~10.0mm。所述导模的材料选用加热或燃烧可除掉的物质,比如石墨、木材、纸、石蜡或石油树脂等。所述导膜的结构与载体中的三维圆锥形孔道相配,且朝向球心方向有圆锥形“芒刺”,导膜底面与四分之一球体表面连接,导膜除去圆锥形“芒刺”部件的厚度d为0~2mm,导膜中的圆锥形“芒刺”呈中心对称。由此形成能够产生圆锥形孔道的导模。
所述导模的结构与载体中的孔道相配,除去导模后即产生圆锥形孔道。
本发明加氢处理催化剂M的制备方法中,步骤(3)首先将各部分球形壳体相互固定,使之成为两个完整的半球体空腔,将四个导模拼成两个半球形分别放入两个完整的半球体空腔内,这时将膏状物料注入或压入两个半球体空腔,充满整个空腔后将两个半球体合在一起形成一个完整的球体并固定。
本发明加氢处理催化剂M的制备方法中,步骤(3)将盛有膏状物料模具加热温度为70~200℃,优选100~150℃,恒温时间为30~240分钟,优选50~120分钟,使物料固化。
本发明加氢处理催化剂M的制备方法中,步骤(4)中脱出模具,即取下壳体由于模具中膏状物料受热后释放碱性气体,使膏状物料固化并收缩后自动脱出球形壳体。步骤(4)中,所述洗涤是用去离子水将脱出球形壳体后的球状物料洗涤至中性,由于采用四分之一球体作为导模,在洗涤过程中因为去离子水的冲刷、扰动和浸泡,可使导模与球体自动分离,球体留下所需的大孔道。所述干燥温度为100~150℃,干燥时间为4~10小时。所述焙烧温度为500~900℃,优选为550~800℃,焙烧时间为2~8小时。
本发明加氢处理催化剂M的制备方法中,所述步骤(5)中载体浸渍催化剂活性金属组分后的干燥和焙烧条件如下:在100~150℃干燥4~10小时,再在400~600℃焙烧2~6小时。
本发明中,加氢保护剂床层一般装填加氢保护剂,加氢脱金属催化剂床层一般装填加氢脱金属催化剂,加氢脱硫催化剂床层一般装填加氢脱硫催化剂,加氢脱氮和/或脱残炭催化剂床层一般装填加氢脱氮和/或脱残炭催化剂,即具有加氢脱氮和/或脱残炭功能的催化剂。上述催化剂可以采用本领域常规使用的催化剂,装填量也可以采用本领域常规的装填量。以所有反应器中催化剂的总装填体积为基准,所述加氢保护催化剂床层中的催化剂的装填量可以为5%~30%,所述加氢脱金属催化剂床层中的催化剂的装填量可以为5%~60%,所述加氢脱硫催化剂床层中的催化剂的装填量可以为15%~50%,所述加氢脱氮和/或脱残炭催化剂床层中的催化剂的装填量可以为5%~50%。
本发明中,所述加氢保护催化剂、加氢脱金属催化剂、加氢脱硫催化剂和加氢脱氮和/或脱残炭催化剂可以为本领域常规的具有这些功能的催化剂。一般地,上述催化剂都是以耐热多孔无机氧化物如氧化铝为载体,以第VIB 族和/ 或第VIII 族金属为活性金属组分,第VIB 族金属为W和Mo中的至少一种,第VIII 族金属为Co 和Ni 中的至少一种,还可以含有助剂组分,选自P、Si、F 和B 中的至少一种。使用时可以单独商购各种催化剂后组合使用,也可以直接商购包括上述各种催化剂的全系列渣油加氢处理催化剂,如中国石化抚顺石油化工研究院研制的FZC系列渣油加氢处理催化剂,加氢保护剂FZC-100B、FZC-12B、FZC-13B,加氢脱金属催化剂FZC-28A、FZC-204A,加氢脱硫催化剂FZC-33B、FZC-34A,加氢脱氮脱残炭催化剂FZC-41B。
本发明催化剂级配装填方法可用于渣油的加氢处理,尤其适用于含铁和/或钙的渣油的加氢处理。优选地,所述渣油原料中有机铁及无机铁以铁计的含量为10μg/g以上,更优选为20μg/g以上,钙含量为10μg/g以上,更优选为20μg/g以上。所述的渣油为常压渣油和减压渣油中的至少一种,也可以是含有渣油组分的重质油,比如稠油等。所述渣油原料中均可以含有各种常规杂质,比如硫、氮含量、沥青质、金属杂质和残炭等。所述渣油原料的性质可以为:硫含量不大于4wt%,氮含量不大于0.7wt%,金属含量 (Ni+V) 不大于140µg/g,残炭值不大于17wt%,沥青质含量不大于5wt%。所述渣油原料可以掺炼直馏蜡油和/或减压蜡油,或者可以掺炼二次加工蜡油和/或催化回炼油等。
本发明方法可以采用不同结构的加氢反应器,各个加氢反应器可以采用上流式进料,也可以采用下流式进料。
本发明中,所述多个加氢反应器的数目优选为2~5个;每个加氢反应器内的催化剂床层的数目为1~7个,优选为2~5个。所述加氢反应器的数目和每个加氢反应器内的加氢催化剂床层的数目可以根据需要进行适当的调整。
本发明中,若加氢脱金属催化剂床层与加氢脱硫催化剂床层分别置于不同的加氢反应器时,加氢处理催化剂床层L1优选置于加氢脱金属催化剂床层所在的反应器。
下面结合附图对本发明的加氢处理催化剂M作详细的说明。
本发明以外部形状是球形,导膜为能形成圆锥形孔道为例进行说明,如图1-4所示,本发明制备渣油加氢处理催化剂载体时,所述模具包含带有球形空腔的壳体1(见图1)和能形成圆锥形孔道的导模3(见图1)。本发明以外部形状是球形为例进行说明,球形壳体可由两个完全相同的半球体组成。球形空腔直径为D(见图1)。所述导模选用加热或燃烧可除掉的物质,比如石墨、木材、纸、石蜡或石油树脂等。所述导模的结构与载体中的三维圆锥形孔道相配,且朝向球心方向有圆锥形“芒刺”5,导膜底面与四分之一球体表面连接,导膜除去圆锥形“芒刺”5部件的厚度为d,导膜中的圆锥形“芒刺”呈中心对称。具体见图1和图3。除去导模后所产生的圆锥形孔道6。
本发明方法中,首先将各部分球形壳体相互固定,使之成为两个完整的半球体空腔4(见图2),将能三维圆锥形孔道的导模放入一个半球体空腔4内,这时将膏状物料2压入两个半球体空腔4,充满整个空腔后将两个半球体合在一起形成一个完整的球体并固定。导膜形成圆锥形孔道6,如图3所示。本发明制备的催化剂载体立体示意图如图4所示。
实施例1
称取氧化硅含量为30wt%的水玻璃400g加入烧杯中,启动搅拌装置,向烧杯中缓慢加入质量浓度为62%的硝酸溶液150g,再加入硝酸镍,搅拌溶解后烧杯中水玻璃溶液的pH值为2.0,再向上述溶液中加入385.3g拟薄水铝石(性质如下:孔容1.05mL/g,比表面积为306m2/g,干基为70wt%),控制载体中氧化镍和氧化铝的摩尔比为0.06:1,搅拌均匀后再加入固化剂尿素35g,待尿素全部溶解后加入去离子水,使烧杯中物料呈具有一定流动性的膏状,且以二氧化硅和氧化铝计的固含量为33%。
将上述膏状物料压入具有球形空腔的两个完全相同的半球体中。其中,一个半球体中放入导模,导模由木材制备。球形载体的导膜与载体相配,能够形成圆锥形孔道结构,导膜分成四分之一球体,且其具有朝向球心方向的6根圆锥形“芒刺”。圆锥形“芒刺”顶点指向球心,底面与四分之一球体表面连接。载体的圆锥形孔道均匀分布在球体表面。
膏状物料压入两个半球体空腔,充满整个空腔后将两个半球体合在一起形成一个完整的球体并固定。
将盛有膏状物料模具加热至为120℃,恒温60分钟,由于模具中膏状物料受热后释放氨气使膏状物料固化并收缩后自动脱模成为球状凝胶,再用去离子水洗涤球状凝胶至中性,在120℃下干燥5小时,经750℃焙烧3小时得到本发明球状催化剂载体A。其中,所得催化剂载体A的直径为3mm,圆锥形孔道的个数为24个,圆锥形孔道的高为1.2mm,圆锥形孔道顶角的角度为20度,圆锥形孔道的底面面积为球体表面积的0.754%,圆锥形底面的总面积为球体表面面积的18%。
将载体A浸渍Mo-Ni-P溶液,在120℃下干燥6小时,经500℃焙烧3小时得到本发明催化剂M1,催化剂性质见表1。
实施例2
制备过程如实施例1,只是增加硝酸镍的量,控制载体中氧化镍和氧化铝的摩尔比为0.10:1,制备的催化剂载体B及催化剂M2性质见表1。
其中,所得催化剂载体B的直径为8mm,圆锥形孔道的个数为40个,圆锥形孔道的高为3.5mm,圆锥形孔道顶角的角度为15度,圆锥形孔道的底面面积为球体表面积的0.43%,圆锥形底面的总面积为球体表面面积的17%。
实施例3
制备过程如实施例1,只是将固化剂尿素改为加入46.6g六次甲基四铵,制备的催化剂载体C及催化剂M3性质见表1。
其中,所得催化剂载体C的直径为6mm,圆锥形孔道的个数为40个,圆锥形孔道的高为2.5mm,圆锥形孔道顶角的角度为25度,圆锥形孔道的底面面积为球体表面积的1.17%,圆锥形底面的总面积为球体表面面积的46.85%。
实施例4
制备过程如实施例1,只是不加入硝酸镍,制备的催化剂载体D及催化剂M4性质见表1。
实施例5
制备过程如实施例1,只是将固化剂尿素的加入量改为至40g,制备的催化剂载体E及催化剂M5性质见表1。
其中,所得催化剂载体E的直径为2.8mm,圆锥形孔道的个数为40个,圆锥形孔道的高为0.8mm,圆锥形孔道顶角的角度为10度,圆锥形孔道的底面面积为球体表面积的0.19%,圆锥形底面的总面积为球体表面面积的7.6%。
实施例6
称取氧化硅含量为30wt%的水玻璃800g加入烧杯中,启动搅拌装置,向烧杯中缓慢加入质量浓度为62%的硝酸溶液299g,再加入硝酸镍,搅拌溶解后烧杯中水玻璃溶液的pH值为2.0,再向上述溶液中加入575g拟薄水铝石(性质如下:孔容1.05mL/g,比表面积为306m2/g,干基为70wt%),控制载体中氧化镍和氧化铝的摩尔比为0.06:1,搅拌均匀后再加入固化剂尿素75g,待尿素全部溶解后加入去离子水,使烧杯中物料呈具有一定流动性的膏状,且以二氧化硅和氧化铝计的固含量为35%。
球形载体的导膜与载体相配,能够形成圆锥形孔道结构,导膜分成四分之一球体,且其具有朝向球心方向的2根圆锥形“芒刺”。圆锥形“芒刺”顶点指向球心,底面与四分之一球体表面连接。载体的圆锥形孔道均匀分布在球体表面。
膏状物料压入两个半球体空腔,充满整个空腔后将两个半球体合在一起形成一个完整的球体并固定。
将盛有膏状物料模具加热至为120℃,恒温60分钟,由于模具中膏状物料受热后释放氨气使膏状物料固化并收缩后自动脱模成为球状凝胶,再用去离子水洗涤球状凝胶至中性,在120℃下干燥5小时,经800℃焙烧3小时得到本发明球状催化剂载体F。所得催化剂载体F的直径为5mm,圆锥形孔道的个数为8个,圆锥形孔道的高为1.8mm,圆锥形孔道顶角的角度为45度,圆锥形孔道的底面面积为球体表面积的3.66%,圆锥形底面的总面积为球体表面面积的29.29%。
将载体F浸渍Mo-Ni-P溶液,在120℃下干燥6小时,经550℃焙烧3小时得到本发明催化剂M6,催化剂性质见表1。
比较例1
称取氧化硅含量为30wt%的水玻璃400g加入烧杯中,启动搅拌装置,向烧杯中缓慢加入质量浓度为62%的硝酸溶液150g,再加入42.9g硝酸镍,搅拌溶解后烧杯中水玻璃溶液的pH值为2.0,再向上述溶液中加入385.3g拟薄水铝石(性质如下:孔容1.05mL/g,比表面积为306m2/g,干基为70wt%),搅拌均匀后再加入固化剂尿素35g,待尿素全部溶解后加入去离子水,使烧杯中物料呈具有一定流动性的膏状,且以二氧化硅和氧化铝计的固含量为33%。
将上述膏状物料压入两个相同的半球状中空结构的刚性体模具中,球形空腔直径与实施例1相同无导膜。充满整个空腔后将两个半球体合在一起形成一个完整的球体并固定。
将盛有膏状物料模具加热至为120℃,恒温60分钟,由于模具中膏状物料受热后释放氨气使膏状物料固化并收缩后自动脱模成为球状凝胶,再用去离子水洗涤球状凝胶至中性,在120℃下干燥5小时,经750℃焙烧3小时得到本比较例球状催化剂载体G,所得催化剂载体G的直径为3mm。
将载体G浸渍Mo-Ni-P溶液,在120℃下干燥6小时,经500℃焙烧3小时得到本比较例催化剂GC,催化剂性质见表1。
比较例2
称取氧化硅含量为30wt%的水玻璃400g加入烧杯中,启动搅拌装置,向烧杯中缓慢加入质量浓度为62%的硝酸溶液150g,再加入42.9g硝酸镍,搅拌溶解后烧杯中水玻璃溶液的pH值为2.0,再向上述溶液中加入385.3g拟薄水铝石(性质如下:孔容1.05mL/g,比表面积为306m2/g,干基为70wt%),搅拌均匀后再加入固化剂尿素35g,待尿素全部溶解后加入去离子水,使烧杯中物料呈具有一定流动性的膏状,且以二氧化硅和氧化铝计的固含量为33%。
将上述膏状物料压入两个相同的半球状中空结构的刚性体模具中,调节球形空腔直径使得最终催化剂载体的直径为8mm,无导膜。充满整个空腔后将两个半球体合在一起形成一个完整的球体并固定。
将盛有膏状物料模具加热至为120℃,恒温60分钟,由于模具中膏状物料受热后释放氨气使膏状物料固化并收缩后自动脱模成为球状凝胶,再用去离子水洗涤球状凝胶至中性,在120℃下干燥5小时,经750℃焙烧3小时得到本比较例球状催化剂载体H,所得催化剂载体H的直径为8mm。
将载体H浸渍Mo-Ni-P溶液,在120℃下干燥6小时,经500℃焙烧3小时得到本比较例催化剂HC,催化剂性质见表1。
表1 本发明实施例和比较例所制备催化剂载体以及催化剂的性质
催化剂载体编号 A B C D E F G H
孔容,mL/g 0.784 0.775 0.774 0.782 0.781 0.783 0.776 0.774
比表面积,m<sup>2</sup>/g 142 144 145 141 142 143 145 141
平均孔直径,nm 22.5 22.6 22.4 22.5 22.6 22.5 22.1 22.5
孔分布,%
<8.0 nm 0.8 0.9 0.7 0.8 0.8 0.9 1.1 1.2
8-20 nm 62.4 62.1 62.3 62.5 62.2 62.1 63.2 63.4
20-100 nm 36.8 37 37 36.7 37 37 35.7 35.4
催化剂编号 M1 M2 M3 M4 M5 M6 G<sub>C</sub> H<sub>C</sub>
金属含量,wt%
MoO<sub>3</sub> 15.7 15.6 15.7 15.7 15.5 15.6 15.7 15.6
NiO 4.5 5.1 4.5 2.3 4.5 4.6 4.5 4.4
侧压强度,N/粒 42 44 35 39 49 40 87 93
实施例7-12
本实施例采用四个下流式加氢反应器,第一反应器(R1)设加氢保护剂床层,其中装填加氢保护剂,第二反应器(R2)设有加氢脱金属催化剂床层,其中装填加氢脱金属催化剂,第三反应器(R3)设有加氢脱硫催化剂床层,其中装填加氢脱硫催化剂,第四反应器(R4)设有加氢脱氮/脱残炭催化剂床层和加氢处理催化剂M的催化剂床层L1,两床层的装填体积比为4:1,其中分别装填加氢脱氮/脱残炭催化剂和加氢处理催化剂M,R1、R2、R3与R4装填催化剂的体积比为20:25:25:30;其中实施例7-12中的催化剂床层L1分别装填了实施例1-6制备的加氢处理催化剂M1-M6,具体催化剂种类和各反应器的装填量见表3。本实施例所处理的渣油原料的性质见表2,比较例所用部分催化剂性质见表4,所采用的操作条件见表5,具体反应结果见表6。
比较例3-4
同实施例7,区别在于:催化剂床层L1分别采用催化剂Gc和Hc代替催化剂M1。
比较例5
同实施例7,区别在于:不设有催化剂床层L1,采用加氢脱氮/脱残炭催化剂替代。
表2 原料性质
项目 原料A
S, wt% 3.41
N,μg/g 4181
残炭(CCR),wt% 14.31
密度 (20℃), kg/m<sup>3</sup> 993.8
粘度(100℃), mm<sup>2</sup>/s 143
Ni+V,µg/g 124
Fe,µg/g 26.3
Ca,µg/g 23.1
表3 实施例7-12和比较例3-5中催化剂装填情况
R1 R2 R3 R4
实施例7 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A: M1=4:1
实施例8 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A: M2=4:1
实施例9 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A: M3=4:1
实施例10 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A: M4=4:1
实施例11 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A: M5=4:1
实施例12 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A: M6=4:1
比较例3 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A: Gc=4:1
比较例4 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A: Hc=4:1
比较例5 FZC-100B:FZC-12B :FZC-13B =2:3:4 FZC-28A: FZC-204=4:1 FZC-33B:FZC-34A=6:4 FZC-41A
表4 本发明比较例所用催化剂的性质
催化剂型号 FZC-41A
颗粒形状 四叶草
颗粒直径/mm 1.20
颗粒长度/mm 9.0
强度/N.(mm)<sup>-1</sup> 25.6
比表面/m<sup>2</sup>.g<sup>-1</sup> 240
孔容/cm<sup>3</sup>.g<sup>-1</sup> 0.44
磨损率/wt% 0.75
化学组成/wt%
MoO<sub>3</sub> 18.31
NiO 5.42
表5各实施例和比较例的操作条件
名称 实施例7 实施例8 实施例9 实施例10 实施例11 实施例12
渣油原料 原料A 原料A 原料A 原料A 原料A 原料A
反应压力,MPa 16.5 16.5 16.5 16.5 16.5 17.5
液时体积空速,h<sup>-1</sup> 0.25 0.25 0.25 0.25 0.25 0.18
氢油体积比 680 680 680 680 680 800
反应温度,℃
R1 390 390 390 390 390 370
R2 390 390 390 390 390 370
R3 390 390 390 390 390 370
R4 390 390 390 390 390 370
续表5各实施例和比较例的操作条件
名称 比较例3 比较例4 比较例5
渣油原料 原料A 原料A 原料A
反应压力,MPa 16.5 16.5 16.5
液时体积空速,h<sup>-1</sup> 0.25 0.25 0.25
氢油体积比 680 680 680
反应温度,℃
R1 390 390 390
R2 390 390 390
R3 390 390 390
R4 390 390 390
表6 各例渣油加氢生成油的性质
实施例7 实施例8 实施例9 实施例10 实施例11 实施例12
运转时间,h 5000 5000 5000 5000 5000 5000
密度(20℃),g/cm<sup>3</sup> 934.7 930.8 933.5 937.1 932.5 930.8
S,wt% 0.36 0.33 0.37 0.39 0.36 0.30
N,µg.g<sup>-1</sup> 1640 1570 1630 1730 1620 1440
CCR,wt% 4.56 4.4 4.66 5.23 4.62 4.13
Ni+V,µg.g<sup>-1</sup> 10 9 10.3 12 10.3 10.4
Fe,µg.g<sup>-1</sup> 2.1 1.9 2.2 2.9 2 2.0
Ca,µg.g<sup>-1</sup> 1.4 1.3 1.2 2 1.2 2.0
床层总压降,MPa 1.44 1.37 1.42 1.46 1.43 1.34
续表6各例渣油加氢生成油的性质
比较例3 比较例4 比较例5
运转时间,h 5000 5000 5000
密度(20℃),g/cm<sup>3</sup> 937.7 938.1 936.2
S,wt% 0.41 0.41 0.40
N,µg.g<sup>-1</sup> 1870 1890 1860
CCR,wt% 5.09 5.12 5.06
Ni+V,µg.g<sup>-1</sup> 12.8 12.9 12.3
Fe,µg.g<sup>-1</sup> 6.5 6.6 6.3
Ca,µg.g<sup>-1</sup> 5.5 5.7 5.3
床层总压降,MPa 1.6 1.62 1.75
由表6可见,通过采用本发明催化剂M及级配装填方法,具有较高的杂质脱除率和较小的床层压降,尤其是铁钙得到了有效脱除,床层总压降得到有效降低。而当催化剂床层L1采用催化剂Gc或Hc时,由于加氢处理催化剂没有通道,延长了渣油扩散的路径,影响了活性,同时因缺少锥形孔道的容杂质容积碳空间,沉积的积碳等杂质占用了更多的颗粒间空间,使床层空隙率降低压降增大,影响催化剂活性及使用寿命。并且,当催化剂床层L1采用本领域常规的脱氮/脱残炭催化剂时,也并不能有效脱除渣油原料中铁钙杂质。由此充分说明,本发明催化剂级配方法特别适用于处理铁、钙杂质含量高的渣油,不但可以有效地脱除和附着铁和/或钙杂质,催化剂整体活性高,而且还能降低床层压降,延长装置的运转周期。

Claims (21)

1.一种催化剂级配方法,其特征在于,该方法在串联的多个加氢反应器中按物流方向依次装填加氢保护剂床层、加氢脱金属催化剂床层、加氢脱硫催化剂床层,后部接加氢脱氮和/或脱残炭催化剂床层,其中在加氢脱氮和/或脱残炭催化剂床层之后设有装填至少一种加氢处理催化剂M的催化剂床层L1,所述的加氢处理催化剂M包括载体和加氢活性金属组分,所述载体为球体,直径为2.5~8.0mm,其中,载体外表面具有多个不互通的大孔道,且大孔道的截面积沿径向由外向内逐级减小,其中,每个大孔道底面面积为球体表面积的0.05%~5%,大孔道总底面的面积为球体表面积的5%~50%,大孔道的最长深度,以沿球体半径方向孔道长度计,为球形载体半径的30%~99%,优选为55%~96%。
2.根据权利要求1所述的方法,其特征在于,所述的催化剂床层L1中催化剂的装填体积占所有加氢反应器中催化剂总装填体积的2%~15%,优选5%~10%。
3.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道由外表面向球心方向延伸。
4.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道的底面在球体外表面呈圆形、椭圆形、多边形、异形中的至少一种。
5.根据权利要求4所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道为圆锥形孔道或棱锥形孔道,优选,圆锥形孔道或棱锥形孔道的顶角的角度为5~50度。
6.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道的最小截面积占大孔道底面面积的10%以下,优选为5%以下,进一步优选为2%以下。
7.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道由底面到最长深度1/2处的截面积占大孔底面面积的20%~70%,优选为25%~65%。
8.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道由底面到最长深度1/2处的截面积占底面到最长深度1/4处的截面积30%~80%,优选为45%~75%。
9.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道由底面到最长深度3/4处的截面积占底面到最长深度1/2处的截面积40%~80%,优选为55%~75%。
10.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道的最小截面的宽度不超过30μm。
11.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M中,大孔道在载体表面的分布,其中,任意相邻两个大孔道间的最小壁厚占球体直径的1/8~1/5;优选,所述载体表面的大孔道相同;再优选,所述载体的大孔道均匀分布在球体表面。
12.根据权利要求1所述的方法,其特征在于,所述的加氢处理催化剂M的载体,呈球形,设有顶点指向球心、底面在球体表面的圆锥形大孔道,球形载体直径为2.5~8.0mm,其中,每个圆锥形大孔道底面面积为球体表面积的0.05%~4.5%,圆锥形大孔道总底面的面积为球体表面积的5%~50%,圆锥形大孔道的高为球形载体半径的50%~99%,优选为55%~96%,其中圆锥形大孔道顶角的角度为5~50度,且所述载体的圆锥形孔道均匀分布在球体表面。
13.根据权利要求12所述的方法,其特征在于,所述的加氢处理催化剂M的载体,设有圆锥形大孔道4~40个,优选为8~40个。
14.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M的载体,以Al2O3-SiO2为载体,其中SiO2重量含量为20%~50%,优选为30%~40%。
15.根据权利要求14所述的方法,其特征在于,所述加氢处理催化剂M的载体中,还含有第一金属组分氧化物,所述第一金属组分氧化物为NiO;所述第一金属组分氧化物NiO与Al2O3的摩尔比为0.03:1~0.13:1,优选为0.05:1~0.11:1。
16.根据权利要求1~15任一所述的方法,其特征在于,所述加氢处理催化剂M载体的性质如下:比表面积为100~200m2/g,孔容为0.70mL/g以上,优选0.75~1.15mL/g,孔直径20~100nm所占的孔容为总孔容的35%~60%,平均孔直径为15nm以上,优选为17~30nm。
17.根据权利要求1所述的方法,其特征在于,所述加氢处理催化剂M的活性金属组分包括第二金属组分即第ⅥB族金属元素和第三金属组分即第Ⅷ族金属元素,其中第ⅥB族金属元素优选为Mo,第Ⅷ族金属元素优选为Ni和/或Co。
18.根据权利要求17所述的方法,其特征在于,以催化剂的重量为基准计,第二金属组分以氧化物计的含量为1.0%~30.0%,优选为1.5%~20%,第一金属组分和第三金属组分的总含量以氧化物计为1.0%~35.0%,优选为2.0%~25.0%,氧化硅的含量为25.0%~35.0%,氧化铝的含量为55.0%~65.0%。
19.一种渣油加氢处理方法,其特征在于,在加氢处理反应条件下,渣油原料和氢气依次通过串联的多个加氢反应器,并与所述加氢反应器内按权利要求1~18任一所述的级配方法装填的催化剂接触进行加氢反应,得到加氢处理产物。
20.根据权利要求19所述的方法,其特征在于,各反应器的操作条件各自独立地为:反应压力5~25MPa,反应温度300~430℃,液时体积空速0.05~5.0h-1,氢油体积比150∶1~1000∶1。
21.根据权利要求19所述的方法,其特征在于,所述渣油原料中含有铁和/或钙,其中有机铁及无机铁以铁计的含量为10μg/g以上,进一步为20μg/g以上,钙含量为10μg/g以上,进一步为20μg/g以上。
CN201811257597.2A 2018-10-26 2018-10-26 一种催化剂级配方法以及渣油加氢处理方法 Pending CN111100680A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811257597.2A CN111100680A (zh) 2018-10-26 2018-10-26 一种催化剂级配方法以及渣油加氢处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811257597.2A CN111100680A (zh) 2018-10-26 2018-10-26 一种催化剂级配方法以及渣油加氢处理方法

Publications (1)

Publication Number Publication Date
CN111100680A true CN111100680A (zh) 2020-05-05

Family

ID=70418390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811257597.2A Pending CN111100680A (zh) 2018-10-26 2018-10-26 一种催化剂级配方法以及渣油加氢处理方法

Country Status (1)

Country Link
CN (1) CN111100680A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600690A (en) * 2020-10-30 2022-05-11 Jemmtec Ltd Catalyst support
CN116060087A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢催化剂的级配方法和在精制微晶蜡中的应用
CN116060086A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢催化剂的级配方法和在制备微晶蜡中的应用
GB2619695A (en) * 2022-04-29 2023-12-20 Jemmtec Ltd Catalyst support

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499203A (en) * 1982-06-17 1985-02-12 Societe Francaise Des Produits Pour Catalyse Pro-Catalyse Supported catalyst of increased resistance to poisons, useful for hydrotreating metal-containing oil fractions
US20050211603A1 (en) * 2004-03-23 2005-09-29 Denis Guillaume Doped spherically-shaped supported catalyst and process for hydrotreating and hydroconverting metal-containing oil fractions
CN103045302A (zh) * 2011-10-17 2013-04-17 中国石油化工股份有限公司 一种加氢处理催化剂的级配方法
CN103059936A (zh) * 2011-10-20 2013-04-24 中国石油化工股份有限公司 一种重质油品的加氢处理方法
CN103289734A (zh) * 2012-03-01 2013-09-11 中国石油天然气股份有限公司 高金属、高硫和高氮的劣质重油经催化剂组合加氢处理工艺
CN103769238A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种多孔道材料及催化剂的制备方法
CN107875979A (zh) * 2016-09-29 2018-04-06 中国石油化工股份有限公司 一种固定床加氢催化剂的级配装填方法和应用
CN108686702A (zh) * 2018-06-06 2018-10-23 重集团大连工程建设有限公司 沸腾床煤焦油加氢处理-加氢裂化复合催化剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499203A (en) * 1982-06-17 1985-02-12 Societe Francaise Des Produits Pour Catalyse Pro-Catalyse Supported catalyst of increased resistance to poisons, useful for hydrotreating metal-containing oil fractions
US20050211603A1 (en) * 2004-03-23 2005-09-29 Denis Guillaume Doped spherically-shaped supported catalyst and process for hydrotreating and hydroconverting metal-containing oil fractions
CN103045302A (zh) * 2011-10-17 2013-04-17 中国石油化工股份有限公司 一种加氢处理催化剂的级配方法
CN103059936A (zh) * 2011-10-20 2013-04-24 中国石油化工股份有限公司 一种重质油品的加氢处理方法
CN103289734A (zh) * 2012-03-01 2013-09-11 中国石油天然气股份有限公司 高金属、高硫和高氮的劣质重油经催化剂组合加氢处理工艺
CN103769238A (zh) * 2012-10-24 2014-05-07 中国石油化工股份有限公司 一种多孔道材料及催化剂的制备方法
CN107875979A (zh) * 2016-09-29 2018-04-06 中国石油化工股份有限公司 一种固定床加氢催化剂的级配装填方法和应用
CN108686702A (zh) * 2018-06-06 2018-10-23 重集团大连工程建设有限公司 沸腾床煤焦油加氢处理-加氢裂化复合催化剂及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2600690A (en) * 2020-10-30 2022-05-11 Jemmtec Ltd Catalyst support
CN116060087A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢催化剂的级配方法和在精制微晶蜡中的应用
CN116060086A (zh) * 2021-10-29 2023-05-05 中国石油化工股份有限公司 一种加氢催化剂的级配方法和在制备微晶蜡中的应用
CN116060087B (zh) * 2021-10-29 2024-05-07 中国石油化工股份有限公司 一种加氢催化剂的级配方法和在精制微晶蜡中的应用
GB2619695A (en) * 2022-04-29 2023-12-20 Jemmtec Ltd Catalyst support

Similar Documents

Publication Publication Date Title
CN111100680A (zh) 一种催化剂级配方法以及渣油加氢处理方法
CA2093412C (en) Novel hydroconversion process employing catalyst with specified pore size distribution
CN109894155B (zh) 一种用于渣油加氢处理的催化剂载体、催化剂及其制法
CN101460596B (zh) 用于低硫燃料生产的改进加氢裂化器后处理催化剂
JP2000000470A (ja) 水素化処理触媒及び重質油の水素化処理方法
CA2143166A1 (en) Catalyst for residual conversion demonstrating reduced toluene insolubles
CA2508630A1 (en) Hydro processing of hydrocarbon using a mixture of catalysts
CN111100676A (zh) 一种催化剂级配方法及其在渣油加氢处理方法中的应用
EP0590894B2 (en) Hydroconversion process
CN102465034A (zh) 一种劣质渣油的加工方法
CN109894156B (zh) 渣油加氢处理催化剂载体、催化剂及其制备方法
CN111100679A (zh) 一种渣油加氢处理方法
CN111097547A (zh) 渣油加氢处理催化剂载体、催化剂及其制备方法
CN112745892A (zh) 一种渣油加氢处理的方法
CN109897664B (zh) 一种含酸原油的加氢处理方法
CN111100678A (zh) 一种利用上流式反应器加氢处理渣油的方法
CN111100675A (zh) 采用上流式反应器加工处理重烃原料的方法
CN111100693A (zh) 重烃原料的加氢处理方法
CN109897667B (zh) 一种采用上流式反应器加工处理重烃原料的方法
CN109897665B (zh) 采用上流式反应器处理重烃原料的方法
CN109897670B (zh) 一种重烃原料的加氢处理方法
CN109894107B (zh) 用于渣油加氢处理的催化剂载体、催化剂及其制备方法
CN111097545A (zh) 一种渣油加氢处理催化剂载体、催化剂及其制备方法
JP2672348B2 (ja) 重質油の水素化処理用触媒
CA3108880C (en) Hydroprocessing catalyst for heavy distillate streams, method of manufacture and application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200505