CN110895320A - 基于深度学***面回波成像方法及装置 - Google Patents

基于深度学***面回波成像方法及装置 Download PDF

Info

Publication number
CN110895320A
CN110895320A CN201911053423.9A CN201911053423A CN110895320A CN 110895320 A CN110895320 A CN 110895320A CN 201911053423 A CN201911053423 A CN 201911053423A CN 110895320 A CN110895320 A CN 110895320A
Authority
CN
China
Prior art keywords
image
shot
images
neural network
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911053423.9A
Other languages
English (en)
Other versions
CN110895320B (zh
Inventor
郭华
胡张选
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201911053423.9A priority Critical patent/CN110895320B/zh
Priority to PCT/CN2019/119490 priority patent/WO2021082103A1/zh
Publication of CN110895320A publication Critical patent/CN110895320A/zh
Application granted granted Critical
Publication of CN110895320B publication Critical patent/CN110895320B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开了一种基于深度学***面回波成像方法及装置,其中,方法包括:获取单次激发平面回波的第一图像及相关辅助图像,并且获取多次激发方式所采集的满足预设条件的第二图像;根据第一图像及相关辅助图像和第二图像进行深度神经网络训练,得到网络权重参数,以生成深度神经网络;接收单次激发平面回波的第三图像及相关辅助图像,将第三图像及相关辅助图像输入至深度神经网络,生成成像结果。该方法可以实现在单次激发的快速扫描下获得高分辨率高信噪比的无变形磁共振图像,有效解决现有单次激发EPI技术中存在的信噪比、变形伪影严重、分辨率低的问题以及使用多次激发技术中存在的采集时间过长的问题。

Description

基于深度学***面回波成像方法及装置
技术领域
本发明涉及平面回波成像技术领域,特别涉及一种基于深度学***面回波成像方法及装置。
背景技术
EPI(Echo Planar Imaging,平面回波采集技术)的快速采集特点使其具有成像速度快,对运动不敏感等优势,在临床中得到了广泛应用,尤其是单次激发EPI,在一次RF激发后完成整个k空间的采集,在对成像速度要求高的应用中具有非常重要的价值,例如扩散成像、功能成像、灌注成像、心脏成像以及实时成像等。然而,EPI采集也有它本身的不足,较长的读出时间会引入
Figure BDA0002255919270000011
衰减造成的模糊效应,相位编码方向的较低带宽会导致在磁介质率相差较大的不同组织交界处产生严重的图像变形,从而影响重要组织结构的观察以及量化分析的结果。
单次激发EPI与并行采集技术的结合可以减少读出窗的长度以及ESP(effectiveecho spacing,有效回波间隔),减少
Figure BDA0002255919270000012
模糊效应以及图像变形,但是依然受限于加速倍数,同时会降低信噪比。MS-EPI(多次激发EPI)技术,例如iEPI(interleaved EPI),rsEPI(readout-segmented EPI,读出分段EPI),PROPELLER-EPI等将整个k空间采集分为若干部分,可以在保持信噪比的条件下减少上述问题,但是依然无法完全消除EPI特有的变形伪影。
PSF(Point spread function,基于点扩散函数编码)的EPI采集(PSF-EPI)为解决这些问题提供了一种有效方式,所得到的EPI完全无变形无T2*衰减引起的图像模糊,同时,tilted-CAIPI技术的采集加速大大提高了PSF-EPI的时间效率。磁共振成像中另一类无变形的快速成像方法包括快速自旋回波成像(fast spin echo,FSE)、快速梯度回波成像(fast field echo,FFE),这一类技术通过一次激发之后采集多个自旋回波或者梯度回波信号,即一次激发采集多个编码位置,达到加速采集的目的。然而,上述提及的无变形成像技术都是基于多次激发方式,大大延长了采集时间,在对时间效率要求较高的临床采集中往往难以应用,例如扩散磁共振成像、功能磁共振成像等。
发明内容
本申请是基于发明人对以下问题的认识和发现做出的:
受益于大数据分析的兴起以及大规模计算能力的进步,深度学习得到了极大发展,并在各种研究领域中发挥了巨大作用。在磁共振成像领域同样如此,涉及到磁共振成像的各个方面,包括但不限于图像采集、重建、恢复、量化分析、高分辨率重建等。相关研究例如由3T磁场强度所采集的磁共振图像生成得到7T所采集的图像;由低分辨率的T1加权图像生成高分辨率的T1加权图像等。这些研究为提高图像质量(例如提高图像分辨率、信噪比,减小图像伪影等)而不引入其他问题(例如采集时间增强、信噪比降低等)提供了新的思路。
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种基于深度学***面回波成像方法,该方法可以实现在单次激发的快速扫描下获得高分辨率高信噪比的无变形磁共振图像,有效解决现有单次激发EPI技术中存在的信噪比、变形伪影严重、分辨率低的问题以及使用多次激发技术中存在的采集时间过长的问题。
本发明的另一个目的在于提出一种基于深度学***面回波成像装置。
为达到上述目的,本发明一方面实施例提出了一种基于深度学***面回波成像方法,包括以下步骤:获取单次激发平面回波的第一图像及相关辅助图像,并且获取多次激发方式所采集的满足预设条件的第二图像;根据所述第一图像及相关辅助图像和所述第二图像进行深度神经网络训练,得到网络权重参数,以生成深度神经网络;接收单次激发平面回波的第三图像及相关辅助图像,将所述第三图像及相关辅助图像输入至所述深度神经网络,生成成像结果。
本发明实施例的基于深度学***面回波成像方法,将深度学习与单相位编码方向的单次激发EPI采集相结合,使用多次激发方式采集得到的无变形EPI图像作为标准进行网络学习,从而可以仅使用单相位编码方向的单次激发EPI的采集时间即可获得高分辨率高信噪比无变形的高质量图像,同时,结合辅助图像的策略,提高输出图像的质量。
另外,根据本发明上述实施例的基于深度学***面回波成像方法还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,训练过程中所使用的损失函数如下:
Figure BDA0002255919270000021
其中,u为网络所预测生成的图像,u*为实际采集的高质量图像,
Figure BDA0002255919270000022
为SSIM损失,|u-u*|1为l1范数损失,
Figure BDA0002255919270000023
为一阶梯度损失,
Figure BDA0002255919270000024
为二阶梯度损失,GSSIM为使多种损失函数值在同一尺度所使用的卷积核,来自于SSIM指数的计算过程,w1,w2,w3为各种损失函数在复合损失函数中所占的比重。
进一步地,在本发明的一个实施例中,所述相关辅助图像为T2加权结构像,T2-FLAIR,T1加权结构像等,所述第一图像和所述第三图像为单相位编码方向的单次激发EPI采集得到,且所述第一图像和所述第三图像为扩散磁共振图像,所述扩散磁共振成像包含无扩散编码梯度的图像及具有6个不同扩散编码梯度方向的图像。
进一步地,在本发明的一个实施例中,所述将所述第三图像及相关辅助图像输入至所述深度神经网络,生成成像结果,包括:分块输入单次激发EPI的所述第三图像以及相应的辅助图像;按块将输出组合成完整图像,得到所述成像结果。
为达到上述目的,本发明另一方面实施例提出了一种基于深度学***面回波成像装置,包括:获取模块,用于获取单次激发平面回波的第一图像及相关辅助图像,并且获取多次激发方式所采集的满足预设条件的第二图像;训练模块,用于根据所述第一图像及相关辅助图像和所述第二图像进行深度神经网络训练,得到网络权重参数,以生成深度神经网络;成像模块,用于接收单次激发平面回波的第三图像及相关辅助图像,将所述第三图像及相关辅助图像输入至所述深度神经网络,生成成像结果。
本发明实施例的基于深度学***面回波成像装置,将深度学习与单相位编码方向的单次激发EPI采集相结合,使用多次激发方式采集得到的无变形EPI图像作为标准进行网络学习,从而可以仅使用单相位编码方向的单次激发EPI的采集时间即可获得高分辨率高信噪比无变形的高质量图像,同时,结合辅助图像的策略,提高输出图像的质量。
另外,根据本发明上述实施例的基于深度学***面回波成像装置还可以具有以下附加的技术特征:
进一步地,在本发明的一个实施例中,训练过程中所使用的损失函数如下:
Figure BDA0002255919270000031
其中,u为网络所预测生成的图像,u*为实际采集的高质量图像,
Figure BDA0002255919270000032
为SSIM损失,|u-u*|1为l1范数损失,
Figure BDA0002255919270000033
为一阶梯度损失,
Figure BDA0002255919270000034
为二阶梯度损失,GSSIM为使多种损失函数值在同一尺度所使用的卷积核,来自于SSIM指数的计算过程,w1,w2,w3为各种损失函数在复合损失函数中所占的比重。
进一步地,在本发明的一个实施例中,所述相关辅助图像为T2加权结构像,T2-FLAIR,T1加权结构像等,所述第一图像和所述第三图像为单相位编码方向的单次激发EPI采集得到,且所述第一图像和所述第三图像为扩散磁共振图像,所述扩散磁共振成像包含无扩散编码梯度的图像及具有6个不同扩散编码梯度方向的图像。
进一步地,在本发明的一个实施例中,所述成像模块进一步用于分块输入单次激发EPI的所述第三图像以及相应的辅助图像,按块将输出组合成完整图像,得到所述成像结果。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本发明实施例的基于深度学***面回波成像方法的流程图;
图2为根据本发明一个实施例的基于深度学***面回波成像方法的流程图;
图3为根据本发明实施例的深度神经网络结构示意图;
图4为根据本发明实施例的基于深度学***面回波成像装置的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参照附图描述根据本发明实施例提出的基于深度学***面回波成像方法及装置,首先将参照附图描述根据本发明实施例提出的基于深度学***面回波成像方法。
图1是本发明一个实施例的基于深度学***面回波成像方法的流程图。
如图1所示,该基于深度学***面回波成像方法包括以下步骤:
在步骤S101中,获取单次激发平面回波的第一图像及相关辅助图像,并且获取多次激发方式所采集的满足预设条件的第二图像。
可以理解的是,本发明实施例采集单次激发EPI的图像以及相关辅助图像,并采集多次激发方式的高分辨率高信噪比无变形图像。其中,第一图像为单次激发EPI的图像,满足预设条件的第二图像为高分辨率高信噪比无变形图像。
进一步地,在本发明的一个实施例中,相关辅助图像为T2加权结构像,T2-FLAIR,T1加权结构像等,第一图像和第三图像为单相位编码方向的单次激发EPI采集得到,且第一图像和第三图像为扩散磁共振图像,扩散磁共振成像包含无扩散编码梯度的图像及具有6个不同扩散编码梯度方向的图像。
具体而言,本发明实施例中所使用的单次激发EPI图像为扩散磁共振成像,包含无扩散编码梯度(b0)的图像以及具有6个不同扩散编码梯度方向(b1)的图像,输出为使用同一扩散编码策略并采用多次激发方式采集的高分辨率高信噪比无变形图像(本发明实施例中使用PSF-EPI方式进行采集)。同时,在常规扫描中,除了扩散磁共振图像外,一般会扫描多种对比度的图像,例如T2加权结构像等,为充分利用这些数据,本发明实施例提出使用辅助图像的策略,即深度神经网络的输入不仅仅包括单次激发EPI图像,还包括采集的辅助图像,例如T2加权结构像、T2-FLAIR、T1加权结构像等(如图2所示),构成复合多通道图像。使用这一策略,可以大大提高神经网络的学习效果,提升输出图像的质量。
在步骤S102中,根据第一图像及相关辅助图像和第二图像进行深度神经网络训练,得到网络权重参数,以生成深度神经网络。
可以理解的是,训练阶段:使用单次激发EPI所采集的图像以及相关辅助图像与多次激发方式所采集的高分辨率高信噪比无变形图像进行深度神经网络训练,得到网络权重参数。
具体而言,本发明实施例中所使用的深度神经网络结构如图3所示,输入图像包含8个通道(分别为单次激发EPI采集的b0图、6个b1图以及辅助的T2加权结构像),输出图像包含7个通道(分别为PSF-EPI采集的b0图、6个b1图)。网络使用了常用的U-net结构,其中特征的尺度缩放通过带步长的卷积层以及反卷积层实现。每个卷积层均包含了BN层(BatchNormalization)以及激活层(ReLU)。
训练过程中图像沿相位编码方向进行了分块训练,输入矩阵大小为217*32*8,输出矩阵大小为224*32*8,每层的卷积核大小及卷积核数目此处不详细列出。训练过程中所使用的损失函数如下:
Figure BDA0002255919270000051
其中,u为网络所预测生成的图像,u*为实际采集的高质量图像,
Figure BDA0002255919270000052
为SSIM(structural similarity index)损失,|u-u*|1为l1范数损失(mean absolute error,MAE),
Figure BDA0002255919270000053
为一阶梯度损失(gradient loss),
Figure BDA0002255919270000054
为二阶梯度损失,GSSIM为使多种损失函数值在同一尺度所使用的卷积核,来自于SSIM指数的计算过程,w1,w2,w3为各种损失函数在复合损失函数中所占的比重。
本发明实施例对成像对比度不加限制,除实施例中应用于单次激发EPI采集的扩散磁共振成像外,也可以应用于使用该方法采集的T1加权、T2加权、T2*加权、质子密度(PD)加权等;本发明实施例中使用了单相位编码方向的EPI图像,也可以同时输入双方向相位编码方向的EPI图像,本发明对此不加限制;高分辨率高信噪比无变形图像的采集方式不局限于点扩散函数编码的EPI(PSF-EPI),也可以使用多次激发的自旋回波采集(FSE),或者,梯度回波采集(FFE)等,或者使用图像变形矫正算法(如fieldmap矫正,topup,或者两者相结合)来获得高分辨率无变形图像;本发明实施例中所使用的扩散成像的扩散准备序列为PGSE(pulsed gradient spin echo,脉冲梯度自旋回波),也可以使用STE(stimulatedecho,受激回波)扩散准备序列,振荡梯度自旋回波(oscillating gradient spin echo,OGSE)扩散准备序列,双重扩散编码(double diffusion encoding,DDE)扩散准备序列,凸优化扩散编码(convex optimized diffusion encoding,CODE)扩散准备序列等;本发明实施例对U-net所使用的网络层数、卷积核数目、卷积核大小、激活方式、正则化方式、激活方式、损失函数等均不加限制;本发明对训练过程所使用的优化器(如Adam、SGD等),各种参数(如学习率、batch-size等)等亦不加限制;本发明中所使用的网络结构不限制于U-net,亦可以使用ResNet(Residual Networks)、GAN(Generative Adversarial Network)等及其变种;本发明对输入图像及输出图像的矩阵大小不加限制,取决于所采集的图像分辨率、图像模态及分块的大小等;本发明实施例对所选择使用的辅助图像不加限制,可以使用T2加权结构像、T1加权结构像、T2-FLAIR等或其组合。
在步骤S103中,接收单次激发平面回波的第三图像及相关辅助图像,将第三图像及相关辅助图像输入至深度神经网络,生成成像结果。
可以理解的是,在测试(应用)阶段:输入单次激发EPI所采集的图像及相关辅助图像至训练阶段得到的深度神经网络,生成相应的高分辨率高信噪比无变形的高质量图像。
进一步地,在本发明的一个实施例中,将第三图像及相关辅助图像输入至深度神经网络,生成成像结果,包括:分块输入单次激发EPI的第三图像以及相应的辅助图像;按块将输出组合成完整图像,得到成像结果。
可以理解的是,在经过训练阶段得到网络权重参数之后,与训练过程类似(如图2所示),分块输入单次激发EPI图像以及相应的辅助图像,之后按块将输出组合成完整图像,即可以获得相应的高分辨率高信噪比的无变形图像。
综上,本发明实施例将深度学习与单次激发EPI采集技术相结合,由单次激发EPI采集所得到的图像学习生成由多次激发技术采集所得到的高分辨率高信噪比无变形图像,从而达到仅使用单次激发EPI采集所需时间快速获得高质量的磁共振图像的目的。
根据本发明实施例提出的基于深度学***面回波成像方法,将深度学习与单相位编码方向的单次激发EPI采集相结合,使用多次激发方式采集得到的无变形EPI图像作为标准进行网络学习,从而可以仅使用单相位编码方向的单次激发EPI的采集时间即可获得高分辨率高信噪比无变形的高质量图像,同时,结合辅助图像的策略,提高输出图像的质量。
其次参照附图描述根据本发明实施例提出的基于深度学***面回波成像装置。
图4是本发明一个实施例的基于深度学***面回波成像装置的结构示意图。
如图4所示,该基于深度学***面回波成像装置10包括:获取模块100、训练模块200和成像模块300。
其中,获取模块100用于获取单次激发平面回波的第一图像及相关辅助图像,并且获取多次激发方式所采集的满足预设条件的第二图像;训练模块200用于根据第一图像及相关辅助图像和第二图像进行深度神经网络训练,得到网络权重参数,以生成深度神经网络;成像模块300用于接收单次激发平面回波的第三图像及相关辅助图像,将第三图像及相关辅助图像输入至深度神经网络,生成成像结果。本发明实施例的装置10可以实现在单次激发的快速扫描下获得高分辨率高信噪比的无变形磁共振图像,有效解决现有单次激发EPI技术中存在的信噪比、变形伪影严重、分辨率低的问题以及使用多次激发技术中存在的采集时间过长的问题。
进一步地,在本发明的一个实施例中,训练过程中所使用的损失函数如下:
Figure BDA0002255919270000071
其中,u为网络所预测生成的图像,u*为实际采集的高质量图像,
Figure BDA0002255919270000072
为SSIM损失,|u-u*|1为l1范数损失,
Figure BDA0002255919270000073
为一阶梯度损失,
Figure BDA0002255919270000074
为二阶梯度损失,GSSIM为使多种损失函数值在同一尺度所使用的卷积核,来自于SSIM指数的计算过程,w1,w2,w3为各种损失函数在复合损失函数中所占的比重。
进一步地,在本发明的一个实施例中,所述相关辅助图像为T2加权结构像,T2-FLAIR,T1加权结构像等,第一图像和第三图像为单相位编码方向的单次激发EPI采集得到,且第一图像和第三图像为扩散磁共振图像,扩散磁共振成像包含无扩散编码梯度的图像及具有6个不同扩散编码梯度方向的图像。
进一步地,在本发明的一个实施例中,成像模块300进一步用于分块输入单次激发EPI的第三图像以及相应的辅助图像,按块将输出组合成完整图像,得到成像结果。
需要说明的是,前述对基于深度学***面回波成像方法实施例的解释说明也适用于该实施例的基于深度学***面回波成像装置,此处不再赘述。
根据本发明实施例提出的基于深度学***面回波成像装置,将深度学习与单相位编码方向的单次激发EPI采集相结合,使用多次激发方式采集得到的无变形EPI图像作为标准进行网络学习,从而可以仅使用单相位编码方向的单次激发EPI的采集时间即可获得高分辨率高信噪比无变形的高质量图像,同时,结合辅助图像的策略,提高输出图像的质量。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (8)

1.一种基于深度学***面回波成像方法,其特征在于,包括以下步骤:
获取单次激发平面回波的第一图像及相关辅助图像,并且获取多次激发方式所采集的满足预设条件的第二图像;
根据所述第一图像及相关辅助图像和所述第二图像进行深度神经网络训练,得到网络权重参数,以生成深度神经网络;以及
接收单次激发平面回波的第三图像及相关辅助图像,将所述第三图像及相关辅助图像输入至所述深度神经网络,生成成像结果。
2.根据权利要求1所述的方法,其特征在于,训练过程中所使用的损失函数如下:
Figure FDA0002255919260000011
其中,u为网络所预测生成的图像,u*为实际采集的高质量图像,
Figure FDA0002255919260000012
为SSIM损失,|u-u*|1为l1范数损失,
Figure FDA0002255919260000013
为一阶梯度损失,
Figure FDA0002255919260000014
为二阶梯度损失,GSSIM为使多种损失函数值在同一尺度所使用的卷积核,来自于SSIM指数的计算过程,w1,w2,w3为各种损失函数在复合损失函数中所占的比重。
3.根据权利要求1所述的方法,其特征在于,所述相关辅助图像为T2加权结构像、T2-FLAIR、T1加权结构像,第一图像和所述第三图像为单相位编码方向的单次激发EPI采集得到,且所述第一图像和所述第三图像为扩散磁共振图像,所述扩散磁共振成像包含无扩散编码梯度的图像及具有6个不同扩散编码梯度方向的图像。
4.根据权利要求3所述的方法,其特征在于,所述将所述第三图像及相关辅助图像输入至所述深度神经网络,生成成像结果,包括:
分块输入单次激发EPI的所述第三图像以及相应的辅助图像;
按块将输出组合成完整图像,得到所述成像结果。
5.一种基于深度学***面回波成像装置,其特征在于,包括:
获取模块,用于获取单次激发平面回波的第一图像及相关辅助图像,并且获取多次激发方式所采集的满足预设条件的第二图像;
训练模块,用于根据所述第一图像及相关辅助图像和所述第二图像进行深度神经网络训练,得到网络权重参数,以生成深度神经网络;以及
成像模块,用于接收单次激发平面回波的第三图像及相关辅助图像,将所述第三图像及相关辅助图像输入至所述深度神经网络,生成成像结果。
6.根据权利要求5所述的装置,其特征在于,训练过程中所使用的损失函数如下:
Figure FDA0002255919260000021
其中,u为网络所预测生成的图像,u*为实际采集的高质量图像,
Figure FDA0002255919260000022
为SSIM损失,|u-u*|1为l1范数损失,
Figure FDA0002255919260000023
为一阶梯度损失,
Figure FDA0002255919260000024
为二阶梯度损失,GSSIM为使多种损失函数值在同一尺度所使用的卷积核,来自于SSIM指数的计算过程,w1,w2,w3为各种损失函数在复合损失函数中所占的比重。
7.根据权利要求5所述的装置,其特征在于,所述相关辅助图像为T2加权结构像、T2-FLAIR、T1加权结构像,所述第一图像和所述第三图像为单相位编码方向的单次激发EPI采集得到,且所述第一图像和所述第三图像为扩散磁共振图像,所述扩散磁共振成像包含无扩散编码梯度的图像及具有6个不同扩散编码梯度方向的图像。
8.根据权利要求7所述的装置,其特征在于,所述成像模块进一步用于分块输入单次激发EPI的所述第三图像以及相应的辅助图像,按块将输出组合成完整图像,得到所述成像结果。
CN201911053423.9A 2019-10-31 2019-10-31 基于深度学***面回波成像方法及装置 Active CN110895320B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911053423.9A CN110895320B (zh) 2019-10-31 2019-10-31 基于深度学***面回波成像方法及装置
PCT/CN2019/119490 WO2021082103A1 (zh) 2019-10-31 2019-11-19 基于深度学***面回波成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911053423.9A CN110895320B (zh) 2019-10-31 2019-10-31 基于深度学***面回波成像方法及装置

Publications (2)

Publication Number Publication Date
CN110895320A true CN110895320A (zh) 2020-03-20
CN110895320B CN110895320B (zh) 2021-12-24

Family

ID=69787439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911053423.9A Active CN110895320B (zh) 2019-10-31 2019-10-31 基于深度学***面回波成像方法及装置

Country Status (2)

Country Link
CN (1) CN110895320B (zh)
WO (1) WO2021082103A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763958A (zh) * 2020-12-10 2021-05-07 复旦大学 一种基于神经网络的多次激发平面回波磁共振成像方法
CN113281690A (zh) * 2021-05-18 2021-08-20 上海联影医疗科技股份有限公司 一种磁共振成像方法和***
CN113855235A (zh) * 2021-08-02 2021-12-31 应葵 用于肝脏部位的微波热消融手术中磁共振导航方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113808017B (zh) * 2021-08-24 2024-06-28 北京理工大学 基于照明优化的结构光成像方法及装置
CN115494439B (zh) * 2022-11-08 2023-04-07 中遥天地(北京)信息技术有限公司 一种基于深度学习的时空编码图像校正方法
CN117011409B (zh) * 2023-08-10 2024-05-10 厦门大学 多部位物理智能高清扩散磁共振数据生成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109544652A (zh) * 2018-10-18 2019-03-29 江苏大学 基于深度生成对抗神经网络的核磁共振多加权成像方法
WO2019113428A1 (en) * 2017-12-08 2019-06-13 Rensselaer Polytechnic Institute A synergized pulsing-imaging network (spin)
CN110095742A (zh) * 2019-05-13 2019-08-06 上海东软医疗科技有限公司 一种基于神经网络的平面回波成像方法和装置
CN110234400A (zh) * 2016-09-06 2019-09-13 医科达有限公司 用于生成合成医学图像的神经网络
CN110346743A (zh) * 2019-07-22 2019-10-18 上海东软医疗科技有限公司 一种磁共振弥散加权成像方法和装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375519B2 (en) * 2006-04-20 2008-05-20 General Electric Company Method and apparatus of MR imaging with two dimensional phase and magnitude correction
CN109597012B (zh) * 2018-12-24 2020-08-04 厦门大学 一种基于残差网络的单扫描时空编码成像重建方法
CN109696647B (zh) * 2019-02-21 2021-05-28 奥泰医疗***有限责任公司 三维多次激发扩散加权成像的k空间采集方法及重建方法
CN110244246B (zh) * 2019-07-03 2021-07-16 上海联影医疗科技股份有限公司 磁共振成像方法、装置、计算机设备和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110234400A (zh) * 2016-09-06 2019-09-13 医科达有限公司 用于生成合成医学图像的神经网络
WO2019113428A1 (en) * 2017-12-08 2019-06-13 Rensselaer Polytechnic Institute A synergized pulsing-imaging network (spin)
CN109544652A (zh) * 2018-10-18 2019-03-29 江苏大学 基于深度生成对抗神经网络的核磁共振多加权成像方法
CN110095742A (zh) * 2019-05-13 2019-08-06 上海东软医疗科技有限公司 一种基于神经网络的平面回波成像方法和装置
CN110346743A (zh) * 2019-07-22 2019-10-18 上海东软医疗科技有限公司 一种磁共振弥散加权成像方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112763958A (zh) * 2020-12-10 2021-05-07 复旦大学 一种基于神经网络的多次激发平面回波磁共振成像方法
CN112763958B (zh) * 2020-12-10 2022-06-21 复旦大学 一种基于神经网络的多次激发平面回波磁共振成像方法
CN113281690A (zh) * 2021-05-18 2021-08-20 上海联影医疗科技股份有限公司 一种磁共振成像方法和***
CN113855235A (zh) * 2021-08-02 2021-12-31 应葵 用于肝脏部位的微波热消融手术中磁共振导航方法及装置

Also Published As

Publication number Publication date
WO2021082103A1 (zh) 2021-05-06
CN110895320B (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
CN110895320B (zh) 基于深度学***面回波成像方法及装置
US7202663B2 (en) Method for generating fast magnetic resonance images
CN102018514B (zh) 磁共振弥散张量成像方法及***
CN106997034B (zh) 基于以高斯模型为实例整合重建的磁共振扩散成像方法
CN108335339A (zh) 一种基于深度学习和凸集投影的磁共振重建方法
US11681001B2 (en) Deep learning method for nonstationary image artifact correction
CN108720834B (zh) 一种梯度回波多回波水脂分离方法及应用该方法的磁共振成像***
JP5127841B2 (ja) 磁気共鳴イメージング装置及び磁化率強調画像撮影方法
CN110133556B (zh) 一种磁共振图像处理方法、装置、设备及存储介质
CN105232045A (zh) 基于双回波的单扫描定量磁共振扩散成像方法
CN108596994A (zh) 一种基于深度学习和数据自洽的磁共振弥散加权成像方法
CN114140341B (zh) 一种基于深度学习的磁共振图像非均匀场校正方法
US11467240B2 (en) Methods, systems, and computer readable media for accelerating diffusion magnetic resonance imaging (MRI) acquisition via slice-interleaved diffusion encoding
CN114998458A (zh) 基于参考图像和数据修正的欠采样磁共振图像重建方法
CN113298902A (zh) 卷褶视野磁共振图像的重建方法、计算机设备及存储介质
CN101051075B (zh) 基于复奇异谱分析的磁共振部分k数据图像重建方法
CN106841273A (zh) 一种基于单扫描时空编码磁共振成像的水脂分离重建方法
CN109920017A (zh) 基于特征向量的自一致性的联合全变分Lp伪范数的并行磁共振成像重构方法
EP2856196A2 (en) System and method for magnetic resonance imaging using highly accelerated projection imaging
Dar et al. Learning deep mri reconstruction models from scratch in low-data regimes
CN110109036B (zh) 二维时空编码多扫磁共振成像非笛卡尔采样及重建方法
CN116758120A (zh) 一种基于深度学习的3t mra到7t mra的预测方法
JPWO2009081786A1 (ja) 磁気共鳴イメージング装置及び磁化率強調画像撮影方法
CN113920211B (zh) 一种基于深度学习的快速磁敏感加权成像方法
US11119173B2 (en) Dynamic imaging based on echo planar imaging sequence

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant