CN110863103B - 一种提高钢渣中铁回收率的钢渣处理方法 - Google Patents

一种提高钢渣中铁回收率的钢渣处理方法 Download PDF

Info

Publication number
CN110863103B
CN110863103B CN201911144387.7A CN201911144387A CN110863103B CN 110863103 B CN110863103 B CN 110863103B CN 201911144387 A CN201911144387 A CN 201911144387A CN 110863103 B CN110863103 B CN 110863103B
Authority
CN
China
Prior art keywords
steel slag
treatment
iron
air
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911144387.7A
Other languages
English (en)
Other versions
CN110863103A (zh
Inventor
蒋亮
韩凤兰
陈宇红
侯俊峰
李吉林
秦春
李涌泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North Minzu University
Original Assignee
North Minzu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North Minzu University filed Critical North Minzu University
Priority to CN201911144387.7A priority Critical patent/CN110863103B/zh
Publication of CN110863103A publication Critical patent/CN110863103A/zh
Application granted granted Critical
Publication of CN110863103B publication Critical patent/CN110863103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/005Preliminary treatment of scrap
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Abstract

本发明公开了一种提高钢渣中铁回收率的钢渣处理方法,通过在对钢渣进行固相改质前进行预处理,向熔融状态下的原钢渣通入氮气的同时进行冷却并在冷却后进行液氮低温粉碎和研磨,能够有效提高钢渣中的孔隙率并增大孔隙内径,同时以高的比表面积状态与氧气充分接触,从而使钢渣在固相改质时空气中的氧气能够深入钢渣内部充分反应,冷态钢渣在空气中进行煅烧,促使钢渣中铁氧化物和氧化镁向强磁性镁铁尖晶石转变更加充分,进而使处理后的钢渣在磁选时铁回收率得到提高,钢渣中的铁、镁杂质转变为强磁性镁铁尖晶石后,钢渣的易磨性能够达到更为理想的水平,同时尾渣作为水泥应用时强度能够得到很大程度上的提高。

Description

一种提高钢渣中铁回收率的钢渣处理方法
技术领域
本发明涉及一种钢渣处理方法,特别是一种提高钢渣中铁回收率的钢渣处理方法。
背景技术
钢渣是炼钢过程产生的副产品,其排放量巨大,长期以来未得到有效利用。堆砌放置的钢渣不仅严重占用有限的土地资源,污染水与土壤,同时也是一种巨大的资源浪费。一方面钢渣中含有部分胶凝矿物,可作为水泥混凝土的部分原料使用;另一方面,钢渣中还存在含量较高的氧化亚铁及一定质量的游离氧化钙和氧化镁,氧化亚铁无法通过磁选直接分离且易引起钢渣水泥强度降低。
铁在钢渣中一般以FeO、Fe2O3及单质Fe的形式存在,并且占据了相当大的比例(质量百分比10-25%),颗粒较大的单质Fe可以经磁选分离,而弱磁性的FeO、Fe2O3和小部分单质Fe在磁选后依然存在于尾渣中。直接放弃尾渣中的这部分铁是对资源的极大浪费,同时铁氧化物的存在会导致尾渣易磨性变差,使得尾渣作为水泥、陶瓷等原料在应用过程中受到限制。因而尾渣中铁的回收,对于钢渣再利用、节约企业资源、降低环境污染、增加企业经济效益等方面都有着长远的现实意义。
基于氧化法的研究基础,目前提出了转炉钢渣的固相改质工艺,通过对冷态钢渣在空气中进行煅烧,使钢渣中铁氧化物和氧化镁向强磁性镁铁尖晶石发生转变,强磁性镁铁尖晶石可通过磁选分离,钢渣经过固相改质形成镁铁尖晶石的工艺整个过程中不会排放产生温室效应的气体。然而在转炉钢渣的固相改质过程中,由于转炉钢渣难以与空气中的氧气充分接触造成钢渣铁氧化物和氧化镁向强磁性镁铁尖晶石的转变不够充分,进而造成钢渣中的铁回收率较低。
发明内容
转炉钢渣的固相改质工艺是采取氧化气氛下煅烧钢渣的方式,以完成钢渣原矿中非磁性氧化亚铁和氧化镁向磁性富铁相聚集的转变,钢渣表面必须存在足够大的孔洞才能保证氧分子能够进入产物层深处与剩余反应物结合。在现有的转炉钢渣的固相改质工艺过程中,由于转炉钢渣难以与空气中的氧气充分接触造成钢渣铁氧化物和氧化镁向强磁性镁铁尖晶石的转变不够充分,进而造成钢渣中的铁回收率较低。
本发明的目的在于提供一种提高钢渣中铁回收率的钢渣处理方法,通过在对钢渣进行固相改质前进行预处理,向熔融状态下的原钢渣通入氮气的同时进行冷却并在冷却后进行液氮低温粉碎和研磨,以提高钢渣中的孔隙率、孔隙大小和比表面积,使钢渣在进行固相改质时,空气中的氧气能够和钢渣内部充分接触,从而使强磁性镁铁尖晶石的转变更加充分,进而提高钢渣中的铁回收率。
本发明的目的是通过以下技术方案来实现的:
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:第一步,对原钢渣进行预熔融处理,在惰性气体保护下加热原钢渣使原钢渣完全熔融,随后向熔融的原钢渣中通入氮气,通入氮气的同时对熔融的原钢渣进行冷却至室温;第二步,对第一步中得到的预熔融处理钢渣进行液氮低温粉碎处理,粉碎并进一步研磨至钢渣粒径小于0.1mm;第三步,将第二步中液氮低温粉碎并研磨后的钢渣在高温下通入空气煅烧以进行固相改质处理。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:所述第一步处理向熔融的原钢渣中通入氮气的速度为4-6L/min。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:所述第一步处理中的惰性气体为氩气。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:所述第一步处理中将原钢渣加热至1500℃从而完全熔融。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:所述第一步处理中通入氮气的同时以10℃/min的冷却速度对熔融的原钢渣进行冷却至室温。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:所述第三步固相改质处理具体是将第二步中液氮低温粉碎并研磨后的钢渣松装于氧化铝坩埚并置于高温箱式马弗炉内,马弗炉内预先通入氮气以确保炉内没有空气存在,设定升温速率,当达到设定的温度时将氮气切换为空气,监控并调节空气通入速率,保温一定时间后将空气重新切换为氮气并快速冷却至室温。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:第三步处理中所述升温速率为10℃/min。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:第三步处理中所述设定的温度为1100℃。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:第三步处理中通过LZB玻璃转子流量计监控空气通入速率。
一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:第三步处理中所述空气通入速率为7.5L/min。
本发明具有以下优点:
钢渣经过通气预熔融处理和液氮体温粉碎研磨处理的预处理步骤再进行固相改质,能够有效提高钢渣中的孔隙率并增大孔隙内径,同时以高的比表面积状态与氧气充分接触,从而使钢渣在固相改质时空气中的氧气能够深入钢渣内部充分反应,冷态钢渣在空气中进行煅烧,促使钢渣中铁氧化物和氧化镁向强磁性镁铁尖晶石转变更加充分,进而使处理后的钢渣在磁选时铁回收率得到提高,钢渣中的铁、镁杂质转变为强磁性镁铁尖晶石后,钢渣的易磨性能够达到更为理想的水平,同时尾渣作为水泥应用时强度能够得到很大程度上的提高,
附图说明
图1为实施例2中处理后的钢渣显微组织形貌;
图2为实施例4中处理后的钢渣显微组织形貌。
图中:圆圈处的黑点为多个孔隙中的一个。
具体实施方式
实施例1
第一步,对原钢渣进行预熔融处理,取50g原钢渣松装入容积为100mL的氧化铝坩埚中,置于高温箱式马弗炉内,通过Rh/Pt标准热电偶测温,炉内温度通过可编程调节器控制,精度为±3℃。在氩气保护下首先加热至1500℃使原钢渣完全熔融,随后向熔融的原钢渣中以4L/min的速度通入氮气,通入氮气的同时以10℃/min的冷却速度对熔融的原钢渣进行冷却至室温。
第二步,对第一步中得到的预熔融处理钢渣进行液氮低温粉碎处理,粉碎并进一步研磨至钢渣粒径小于0.1mm。
第三步,将第二步中液氮低温粉碎并研磨后的钢渣松装于氧化铝坩埚,并置于高温箱式马弗炉内,马弗炉内预先通入氮气以确保炉内没有空气存在,升温速率设定为10℃/min,当到达1100℃时,将氮气切换为空气,通过LZB玻璃转子流量计监控空气通入速率,调节空气通入速率为7.5L/min,保温30min后,将空气重新切换为氮气并快速冷却至室温。
实施例2
第一步,对原钢渣进行预熔融处理,取50g原钢渣松装入容积为100mL的氧化铝坩埚中,置于高温箱式马弗炉内,通过Rh/Pt标准热电偶测温,炉内温度通过可编程调节器控制,精度为±3℃。在氩气保护下首先加热至1500℃使原钢渣完全熔融,随后向熔融的原钢渣中以5L/min的速度通入氮气,通入氮气的同时以10℃/min的冷却速度对熔融的原钢渣进行冷却至室温。
第二步,对第一步中得到的预熔融处理钢渣进行液氮低温粉碎处理,粉碎并进一步研磨至钢渣粒径小于0.1mm。
第三步,将第二步中液氮低温粉碎并研磨后的钢渣松装于氧化铝坩埚,并置于高温箱式马弗炉内,马弗炉内预先通入氮气以确保炉内没有空气存在,升温速率设定为10℃/min,当到达1100℃时,将氮气切换为空气,通过LZB玻璃转子流量计监控空气通入速率,调节空气通入速率为7.5L/min,保温30min后,将空气重新切换为氮气并快速冷却至室温。
实施例3
第一步,对原钢渣进行预熔融处理,取50g原钢渣松装入容积为100mL的氧化铝坩埚中,置于高温箱式马弗炉内,通过Rh/Pt标准热电偶测温,炉内温度通过可编程调节器控制,精度为±3℃。在氩气保护下首先加热至1500℃使原钢渣完全熔融,随后向熔融的原钢渣中以6L/min的速度通入氮气,通入氮气的同时以10℃/min的冷却速度对熔融的原钢渣进行冷却至室温。
第二步,对第一步中得到的预熔融处理钢渣进行液氮低温粉碎处理,粉碎并进一步研磨至钢渣粒径小于0.1mm。
第三步,将第二步中液氮低温粉碎并研磨后的钢渣松装于氧化铝坩埚,并置于高温箱式马弗炉内,马弗炉内预先通入氮气以确保炉内没有空气存在,升温速率设定为10℃/min,当到达1100℃时,将氮气切换为空气,通过LZB玻璃转子流量计监控空气通入速率,调节空气通入速率为7.5L/min,保温30min后,将空气重新切换为氮气并快速冷却至室温。
实施例4
称取50g原钢渣松装于氧化铝坩埚,并置于高温箱式马弗炉内,马弗炉内预先通入氮气以确保炉内没有空气存在,升温速率设定为10℃/min,当到达1100℃时,将氮气切换为空气,通过LZB玻璃转子流量计监控空气通入速率,调节空气通入速率为7.5L/min,保温30min后,将空气重新切换为氮气并快速冷却至室温。
对原钢渣和固相改质钢渣分别进行湿式磁选,湿式磁选效果可通过磁感应强度在0.1T时的磁选回收率进行评价。回收率b(%)表示精矿所含Fe与原矿所含Fe的质量比。
回收率:b=((Qx×β)/(Q。×α))×100%
其中:Q。表示原矿质量(t);Qx表示精矿质量(t);α表示原矿品位(%);β表示精矿品位(%)。
样品 回收率b
实施例1 71.2%
实施例2 75.3%
实施例3 72.5%
实施例4 62.6%
从图1和图2所示的钢渣显微组织形貌可以看出,通过在对钢渣进行固相改质前进行预处理,向熔融状态下的原钢渣通入氮气的同时进行冷却并在冷却后进行液氮低温粉碎和研磨,经过上述处理后的钢渣从微观形貌上观察,其孔隙大小和数量都远远高于未经过上述预处理而直接进行固相改质的钢渣。从磁选回收率的角度来看,经过预处理的钢渣中铁回收率明显高于没有经过预处理的钢渣,从另一个角度可以说明经过预处理而孔隙率提高孔径增大的钢渣能够更充分地形成强磁性镁铁尖晶石,从而使钢渣中的铁回收率得到提高。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (9)

1.一种提高钢渣中铁回收率的钢渣处理方法,其特征在于:第一步,对原钢渣进行预熔融处理,在惰性气体保护下加热原钢渣使原钢渣完全熔融,随后向熔融的原钢渣中通入氮气, 通入氮气的同时对熔融的原钢渣进行冷却至室温;第二步,对第一步中得到的预熔融处理钢渣进行液氮低温粉碎处理,粉碎并进一步研磨至钢渣粒径小于 0.1mm;第三步,将第二步中液氮低温粉碎并研磨后的钢渣在高温下通入空气煅烧以进行固相改质处理;所述第三步固相改质处理具体是将第二步中液氮低温粉碎并研磨后的钢渣松装于氧化铝坩埚并置于高温箱式马弗炉内,马弗炉内预先通入氮气以确保炉内没有空气存在,设定升温速率,当达到设定的温度时将氮气切换为空气,监控并调节空气通入速率,保温一定时间后将空气重新切换为氮气并快速冷却至室温。
2.一种根据权利要求 1 中的钢渣处理方法,其特征在于:所述第一步处理向熔融的原钢渣中通入氮气的速度为 4-6L/min。
3.一种根据权利要求 2 中的钢渣处理方法,其特征在于:所述第一步处理中的惰性气体为氩气。
4.一种根据权利要求 1-3 之一中的钢渣处理方法,其特征在于:所述第一步处理中将原钢渣加热至 1500℃从而完全熔融。
5.一种根据权利要求 1-3 之一中的钢渣处理方法,其特征在于:所述第一步处理中通入氮气的同时以 10℃/min 的冷却速度对熔融的原钢渣进行冷却至室温。
6.一种根据权利要求 1 所述的钢渣处理方法,其特征在于:第三步处理中所述升温速率为 10℃/min 。
7.一种根据权利要求1所述的钢渣处理方法,其特征在于:第三步处理中所述设定的温度为 1100℃。
8.一种根据权利要求1 所述的钢渣处理方法,其特征在于:第三步处理中通过 LZB 玻璃转子流量计监控空气通入速率。
9.一种根据权利要求 1所述的钢渣处理方法,其特征在于:第三步处理中所述空气通入速率为 7.5 L/min。
CN201911144387.7A 2019-11-20 2019-11-20 一种提高钢渣中铁回收率的钢渣处理方法 Active CN110863103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911144387.7A CN110863103B (zh) 2019-11-20 2019-11-20 一种提高钢渣中铁回收率的钢渣处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911144387.7A CN110863103B (zh) 2019-11-20 2019-11-20 一种提高钢渣中铁回收率的钢渣处理方法

Publications (2)

Publication Number Publication Date
CN110863103A CN110863103A (zh) 2020-03-06
CN110863103B true CN110863103B (zh) 2021-07-27

Family

ID=69655221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911144387.7A Active CN110863103B (zh) 2019-11-20 2019-11-20 一种提高钢渣中铁回收率的钢渣处理方法

Country Status (1)

Country Link
CN (1) CN110863103B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699287B (zh) * 2021-09-02 2022-07-08 南京华电节能环保股份有限公司 一种基于高温渣余热回收的高炉熔渣干法处理装置
CN114472464A (zh) * 2022-01-14 2022-05-13 江苏大学 一种高效回收含磷钢渣中铁和磷资源的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206729A (zh) * 2011-04-11 2011-10-05 东北大学 一种循环利用lf炉钢渣的方法
CN103849695A (zh) * 2012-12-07 2014-06-11 攀钢集团攀枝花钢铁研究院有限公司 一种钢渣的处理方法
CN105936985A (zh) * 2016-06-30 2016-09-14 东华大学 一种高性能多尺寸纳米结构方钴矿材料的制备方法
CN106492981A (zh) * 2016-09-20 2017-03-15 北京科技大学 一种提高钢渣铁组分回收率的方法
CN108070687A (zh) * 2017-12-01 2018-05-25 北方民族大学 一种转炉钢渣固相氧化改质方法
CN108588342A (zh) * 2018-07-17 2018-09-28 山东钢铁股份有限公司 一种rh炉钢包顶渣高效环流改质冶炼方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206729A (zh) * 2011-04-11 2011-10-05 东北大学 一种循环利用lf炉钢渣的方法
CN103849695A (zh) * 2012-12-07 2014-06-11 攀钢集团攀枝花钢铁研究院有限公司 一种钢渣的处理方法
CN105936985A (zh) * 2016-06-30 2016-09-14 东华大学 一种高性能多尺寸纳米结构方钴矿材料的制备方法
CN106492981A (zh) * 2016-09-20 2017-03-15 北京科技大学 一种提高钢渣铁组分回收率的方法
CN108070687A (zh) * 2017-12-01 2018-05-25 北方民族大学 一种转炉钢渣固相氧化改质方法
CN108588342A (zh) * 2018-07-17 2018-09-28 山东钢铁股份有限公司 一种rh炉钢包顶渣高效环流改质冶炼方法

Also Published As

Publication number Publication date
CN110863103A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
CN108658483B (zh) 一种钢渣还原回收铁及二次渣制备辅助性胶凝材料的方法
CN103343174B (zh) 一种从含钛混合熔渣中分离钛铁钒钙的方法
CN102626670B (zh) 一种回转窑还原磁化处理赤泥制备铁精粉的方法
CN104611566B (zh) 废旧锂离子电池中有价金属回收的方法
CN110863103B (zh) 一种提高钢渣中铁回收率的钢渣处理方法
CN109880999B (zh) 一种复合添加剂改质后回收铜渣中铁的方法和应用
CN109055720B (zh) 一种基于碱法改性和低温硫化还原的铜渣制备铁粉的方法
CN111621611B (zh) 基于气基能源的两步法高磷含铁资源铁磷高效分离的方法
CN102534194A (zh) 一种红土镍矿生产镍铁的方法
WO2022237705A1 (zh) 硅酸盐固废的除杂方法及其应用
CN105087864A (zh) 一种用钒钛磁铁矿直接生产碳化钛的方法
CN105039626A (zh) 一种钒渣制备方法
CN116239401B (zh) 一种炼钢厂液态钢渣处理方法
CN104846189A (zh) 含菱铁矿的混合铁矿流态化焙烧分选方法
CN104828877A (zh) 转炉钢渣中氧化铁的回收方法
CN108609875B (zh) 一种利用转炉渣制备水泥混合料的方法
CN113215388B (zh) 将铌粗精矿中的铌矿物转化为铌钙矿及生产铌精矿的方法
Han et al. Particle size distribution of metallic iron during coal-based reduction of an oolitic iron ore
CN104911342A (zh) 一种含硼的含铬型钒钛磁铁矿球团的制备方法
CN108893572A (zh) 一种硼铁矿中有价组元综合回收利用的方法
CN108998605B (zh) 一种采用渣、铁热态分离回收利用钢渣的方法
CN111041155A (zh) 一种中碳碱性钢水保温覆盖剂及其制备方法
CN110592400A (zh) 一种高硅低钙类型的石煤新型提钒的选冶联合方法
CN102912057A (zh) 钒钛磁铁精矿在隧道窑中还原粒铁的方法
CN115627350B (zh) 高磷铁矿和石煤联用的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant