CN110836919B - 一种手性识别材料及其制备方法 - Google Patents

一种手性识别材料及其制备方法 Download PDF

Info

Publication number
CN110836919B
CN110836919B CN201911196788.7A CN201911196788A CN110836919B CN 110836919 B CN110836919 B CN 110836919B CN 201911196788 A CN201911196788 A CN 201911196788A CN 110836919 B CN110836919 B CN 110836919B
Authority
CN
China
Prior art keywords
chiral
catio
long
cysteine
afterglow luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911196788.7A
Other languages
English (en)
Other versions
CN110836919A (zh
Inventor
张文妍
杨晓莉
管航敏
叶原丰
郝凌云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinling Institute of Technology
Original Assignee
Jinling Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinling Institute of Technology filed Critical Jinling Institute of Technology
Priority to CN201911196788.7A priority Critical patent/CN110836919B/zh
Publication of CN110836919A publication Critical patent/CN110836919A/zh
Application granted granted Critical
Publication of CN110836919B publication Critical patent/CN110836919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7701Chalogenides
    • C09K11/7703Chalogenides with alkaline earth metals

Abstract

本发明涉及手性识别材料技术领域,具体涉及一种手性识别材料及其制备方法;它包括表面负载有金属纳米颗粒的长余辉发光材料;以及手性半胱氨酸,在所述金属纳米颗粒表面自组装形成手性分子层。本发明利用长余辉材料与手性识别材料之间的异质结,将长寿命电子从长余辉材料中转移到手性识别材料表面,向手性识别材料表面注入大量长寿命电子,有效增强了电极上的电流密度,放大了电化学识别信号。同时,利用手性分子对电子的自旋过滤作用,当电子流过组装在金属纳米颗粒表面的手性分子层时将被自旋极化,因此电极表面的电磁场发生变化,与电解液中的L和D氨基酸对映体之间的作用力差异将被放大,检测灵敏度得到提高。

Description

一种手性识别材料及其制备方法
技术领域
本发明涉及手性识别材料技术领域,具体涉及一种手性识别材料及其制备方法。
背景技术
手性分子是指与其镜像不能互相重合的具有一定构型或构象的分子。手性与生命现象密切相关,显著影响物质的性能。例如,R构型的沙利度胺分子具有镇静或止咳作用,而S构型的沙利度胺分子具有强烈的致畸作用。由于人们对手性异构体的认识不足,滥用了没有拆分R和S构型的沙利度胺,导致大量畸形儿的出生,自此手性异构受到了人们的广泛重视。
氨基酸是最基础的手性对映体,L-氨基酸是构成蛋白质的一种基本单元,而D-氨基酸很少参与蛋白质的构成,甚至会对生命体系产生一些副作用。氨基酸的手性识别检测,在生命、环境、农药、材料等领域中均具有重要的理论和实际研究意义,急需开发检测成本低、检测周期短的手性识别材料及手性识别技术,来区分氨基酸对映体。电化学方法具有操作简便、识别灵敏度较高,成本低等优点。电化学方法实现手性识别的原理,是利用能够和手性分子发生作用的手性识别材料作为电极,当手性识别材料靠近电解液中的两种手性对映异构体时,会产生两种强度不同的作用力,这两种作用力强度的不同将导致电化学信号的差异,实现手性识别。
显然,为了提高电化学手性识别的信号灵敏度,需要设法提高手性识别材料与两种手性对映异构体的作用力强度差。此外,还需要设法提高手性识别材料表面的电子传输效率和寿命。
目前,尚无文献和专利报道此类研究。
发明内容
本发明的目的在于针对现有技术的缺陷和不足,提供一种利用手性分子自旋过滤效应及长余辉材料的长寿命电子增益的表面负载有金属纳米颗粒的长余辉发光材料及其制备方法。
本发明所述的一种手性识别材料,它包括表面负载有金属纳米颗粒的长余辉发光材料;以及手性半胱氨酸,在所述金属纳米颗粒表面自组装形成手性分子层。
另外,根据本发明公开的一种手性识别材料还具有如下附加技术特征:
进一步地,所述长余辉发光材料为CaTiO3:Pr3+长余辉发光材料。
进一步地,所述长余辉发光材料尺寸为1-10μm。
进一步地,所述金属纳米颗粒选自金纳米颗粒、银纳米颗粒或铂纳米颗粒中的任意一种或多种。
进一步地,所述表面负载有金属纳米颗粒的长余辉发光材料中,长余辉发光材料的重量百分比为99%-99.9%,表面负载有金属纳米颗粒的重量百分比为0.1%-1%。
上述任意一种的手性识别材料的制备方法,包括如下步骤:
S1,采用微波还原法在长余辉发光材料表面负载金属纳米颗粒,形成金属纳米颗粒与长余辉发光材料的异质结,得到表面负载有金属纳米颗粒的长余辉发光材料;
S2,采用原位键合法用手性半胱氨酸在表面负载有金属纳米颗粒的长余辉发光材料的金属纳米颗粒表面自组装形成手性分子层,得到手性识别材料。
另外,根据本发明公开的一种手性识别材料的制备方法还具有如下附加技术特征:
进一步地,采用微波还原法在长余辉发光材料表面负载金属纳米颗粒,形成金属纳米颗粒与长余辉发光材料的异质结,得到表面负载有金属纳米颗粒的长余辉发光材料的方法包括如下步骤:
将所述长余辉发光材料在金属盐溶液中浸渍,并超声20-60分钟,再微波加热2-10分钟,取固体,洗涤,得表面负载有金属纳米颗粒的长余辉发光材料。
进一步地,所述金属盐溶液选自硝酸银溶液、氯铂酸钾溶液、四氯金酸溶液中的任意一种或多种。
进一步地,所述述金属盐溶液的溶剂为水与乙二醇体积比为(10-20):1的混合溶液。
进一步地,采用原位键合法用手性半胱氨酸在表面负载有金属纳米颗粒的长余辉发光材料的金属纳米颗粒表面自组装形成手性分子层,得到手性识别材料的方法包括如下步骤:
将表面负载有金属纳米颗粒的长余辉发光材料浸没在半胱氨酸水溶液中24-72小时,即得手性识别材料。
本发明的有益之处在于:
(1)本发明利用长余辉材料与手性识别材料之间的异质结,将长寿命电子从长余辉材料中转移到手性识别材料表面,向手性识别材料表面注入大量长寿命电子,有效增强了电极上的电流密度,放大了电化学识别信号。
(2)本发明利用手性分子对电子的自旋过滤作用:L-半胱胺酸或D-半胱胺酸通过氢键作用和静电作用在金属纳米颗粒表面自组装为手性分子层,当电子流过组装在金属纳米颗粒表面的手性分子层时将被自旋极化,因此电极表面的电磁场发生变化,与电解液中的L和D氨基酸对映体之间的作用力差异将被放大,检测灵敏度得到提高。
(3)在紫外光照激发下,长余辉材料中产生的长寿命电子将通过长余辉材料与手性识别材料之间的异质结转移到手性识别材料表面,向手性识别材料表面注入大量长寿命电子,有效增强电极上的电流密度。
(4)金属纳米颗粒的还原与负载是通过紫外光照还原法实现的,手性分子在金属纳米颗粒上的组装是通过化学价键的形成来实现的,无需特殊设备和苛刻条件,制备方法简单、工艺快速易行,可控性强,容易实现大面积制备和规模化生产。
附图说明
此处所说明的附图是用来提供对本发明的进一步理解,构成本申请的一部分,但并不构成对本发明的不当限定,在附图中:
图1是本发明实施例1的手性识别材料的SEM图;
图2是本发明实施例1-4的手性识别材料利用长余辉材料的长寿命电子增益手性识别的机理图;
图3是本发明实施例1的手性识别材料对电解液中L-精氨酸和D-精氨酸的电化学识别信号图;
图4是本发明实施例1的手性识别材料在紫外光照激发下对电解液中L-精氨酸和D-精氨酸的电化学识别信号图;
图5是是本发明实施例2的手性识别材料对电解液中L-精氨酸和D-精氨酸的电化学识别信号图;
图6是本发明实施例4的手性识别材料对电解液中L-谷氨酸和D-谷氨酸的电化学识别信号图。
具体实施方式
下面将结合附图以及具体实施例来详细说明本发明,其中的示意性实施例以及说明仅用来解释本发明,但并不作为对本发明的限定。
<实施例1>
一种手性识别材料的制备方法,步骤如下:
S1,将0.01g粒径为1-10μm的CaTiO3:Pr3+长余辉发光材料浸泡在20mL 0.1mol/L的硝酸银溶液中,50W功率超声半小时使金属溶液与CaTiO3:Pr3+长余辉发光材料表面充分接触;将溶液置于微波消解仪中,800W微波功率下还原5min,使Ag纳米颗粒负载在CaTiO3:Pr3+长余辉发光材料表面,形成Ag纳米颗粒与CaTiO3:Pr3+长余辉发光材料的异质结,采用蒸馏水和无水乙醇分别洗涤2次,洗去材料表面残余的Ag+离子,得表面负载了Ag纳米颗粒的CaTiO3:Pr3+长余辉发光材料;
S2,将0.01g表面负载了Ag纳米颗粒的CaTiO3:Pr3+长余辉发光材料,浸没在50mL20mM的L-半胱胺酸水溶液中72小时,L-半胱胺酸分子的巯基(-SH) 与金属纳米颗粒的表面键合,形成化学键,并自组装为手性分子层,得手性识别材料(CaTiO3:Pr3+@ Ag@L-半胱氨酸)。
本实施例提供的手性识别材料(CaTiO3:Pr3+@ Ag@L-半胱氨酸)的形貌和尺寸如图1所示。
取10mg本实施例制得的手性识别材料(CaTiO3:Pr3+@ Ag@L-半胱氨酸),超声分散于100μL超纯水中,用移液枪移取该分散液滴加至玻碳电极表面,常温下静置24小时,得到CaTiO3:Pr3+@ Ag@L-半胱氨酸手性识别材料修饰的玻碳电极。
电解液为20mM的L-精氨酸水溶液(含50mM的氯化钾)或20mM的D-甘氨酸水溶液(含0.1mol/L的氯化钾)。
将CaTiO3:Pr3+@Ag@L-半胱氨酸手性识别材料修饰的玻碳电极置于电解液中,以饱和甘汞电极为参比电极,在-0.1~0.5V之间扫描循环伏安曲线。
图3是本发明实施例1的手性识别材料对电解液中L-精氨酸和D-精氨酸的电化学识别信号图。图4是本发明实施例1的手性识别材料在紫外光照激发下对电解液中L-精氨酸和D-精氨酸的电化学识别信号图。
如图3所示,电解液中的L-精氨酸具有较高的电化学信号,D-精氨酸的电化学信号较弱,说明CaTiO3:Pr3+@Ag@L-甘氨酸对L-精氨酸具有良好的识别性,这主要是源于手性分子自旋过滤效应。
如图4所示,用5W的365nm紫外光辐照后,电化学信号得到显著提高,这主要是由于紫外辐照激发除了CaTiO3:Pr3+中的长寿命电子,这些长寿命电子通过异质结转移到了手性识别材料的表面,向手性识别材料表面注入大量长寿命电子,有效增强了电极上的电流密度,放大了电化学识别信号。
<实施例2>
一种手性识别材料的制备方法,步骤如下:
S1,将0.01g尺寸为1-10μm的CaTiO3:Pr3+长余辉发光材料浸泡在20mL 0.1mol/L的四氯金酸水溶液中,50W功率超声半小时使四氯金酸水溶液与CaTiO3:Pr3+长余辉发光材料表面充分接触;将溶液置于微波消解仪中,800W微波功率下还原5min,使金纳米颗粒负载在CaTiO3:Pr3+长余辉发光材料表面,形成金纳米颗粒与CaTiO3:Pr3+长余辉发光材料的异质结;采用蒸馏水和无水乙醇分别洗涤2次,洗去材料表面残余的金离子,得表面负载了金纳米颗粒的CaTiO3:Pr3+长余辉发光材料;
S2,将0.01g表面负载了金纳米颗粒的CaTiO3:Pr3+长余辉发光材料,浸没在50mL20mM的D-半胱胺酸水溶液中72小时,D-半胱胺酸分子的巯基(-SH) 与金属纳米颗粒的表面键合,形成化学键,并自组装为手性分子层,得手性识别材料(CaTiO3:Pr3+@Au@D-半胱氨酸)。
取10mg本实施例制得的手性识别材料(CaTiO3:Pr3+@Au@D-半胱氨酸),超声分散于100μL超纯水中,用移液枪移取该分散液滴加至玻碳电极表面,常温下静置24小时,得到CaTiO3:Pr3+@ Au@D-半胱氨酸手性识别材料修饰的玻碳电极。
电解液为40mM的L-精氨酸(含0.1mol/L的氯化钾)或0.1mol/L的D-精氨酸水溶液(含0.1mol/L的氯化钾)。
将CaTiO3:Pr3+@Au@D-半胱氨酸手性识别材料修饰的玻碳电极置于电解液中,以饱和甘汞电极为参比电极,在-0.1~0.5V之间扫描循环伏安曲线。
图5是本发明实施例2的手性识别材料对电解液中L-精氨酸和D-精氨酸的电化学识别信号图。
从图5中可见,电解液中的D -精氨酸具有较高的电化学信号,L-精氨酸的电化学信号较弱,说明CaTiO3:Pr3+@Ag@D-半胱氨酸对D-半胱氨酸具有良好的识别性。
<实施例3>
一种手性识别材料的制备方法,步骤如下:
S1,将0.01g 粒径为1-10μm的CaTiO3:Pr3+长余辉发光材料浸泡在20mL 0.1mol/L的氯铂酸钾水溶液中,50W功率超声半小时使氯铂酸钾水溶液与CaTiO3:Pr3+长余辉发光材料表面充分接触;将溶液置于微波消解仪中,800W微波功率下还原5min,使铂纳米颗粒负载在CaTiO3:Pr3+长余辉发光材料表面,形成铂纳米颗粒与CaTiO3:Pr3+长余辉发光材料的异质结;采用蒸馏水和无水乙醇分别洗涤2次,洗去材料表面残余的铂离子,得表面负载了金纳米颗粒的CaTiO3:Pr3+长余辉发光材料;
S2,将0.01g表面负载了金纳米颗粒的CaTiO3:Pr3+长余辉发光材料,浸没在50mLD-半胱胺酸水溶液中72小时,D-半胱胺酸分子的巯基(-SH) 与金属纳米颗粒的表面键合,形成化学键,并自组装为手性分子层,得手性识别材料(CaTiO3:Pr3+@Pt@D-半胱氨酸)。
取10mg本实施例制得的手性识别材料(CaTiO3:Pr3+@Pt@D-半胱氨酸),超声分散于100μL超纯水中,用移液枪移取该分散液滴加至玻碳电极表面,常温下静置24小时,得到CaTiO3:Pr3+@ Pt@D-半胱氨酸手性识别材料修饰的玻碳电极。
电解液为50mM的L-谷氨酸水溶液(含0.1mol/L的氯化钾)或50mM的D-谷氨酸水溶液(含0.1mol/L的氯化钾)。
将CaTiO3:Pr3+@Pt@D-半胱氨酸手性识别材料修饰的玻碳电极置于电解液中,以饱和甘汞电极为参比电极,在-0.1~0.5V之间扫描循环伏安曲线。
电解液中的D -谷氨酸具有较高的电化学信号,L-谷氨酸的电化学信号较弱,说明CaTiO3:Pr3+@Pt@D-半胱氨酸对D-谷氨酸具有良好的识别性。
<实施例4>
一种手性识别材料的制备方法,步骤如下:
S1,将0.01g粒径为1-10μm的CaTiO3:Pr3+长余辉发光材料浸泡在20mL 0.1mol/L的硝酸银溶液中,50W功率超声半小时使硝酸银溶液与CaTiO3:Pr3+长余辉发光材料表面充分接触;将溶液置于微波消解仪中,800W微波功率下还原5min,使铂纳米颗粒负载在CaTiO3:Pr3+长余辉发光材料表面,形成铂纳米颗粒与CaTiO3:Pr3+长余辉发光材料的异质结;采用蒸馏水和无水乙醇分别洗涤2次,洗去材料表面残余的银离子,得表面负载了银纳米颗粒的CaTiO3:Pr3+长余辉发光材料。
S2,将0.01g表面负载了银纳米颗粒的CaTiO3:Pr3+长余辉发光材料,浸没在50mL20mM L-半胱胺酸水溶液中72小时,L-半胱胺酸分子的巯基(-SH) 与金属纳米颗粒的表面键合,形成化学键,并自组装为手性分子层,得手性识别材料(CaTiO3:Pr3+@Ag@L-半胱氨酸)。
取10mg本实施例制得的手性识别材料(CaTiO3:Pr3+@Ag@L-半胱氨酸),
超声分散于100μL超纯水中,用移液枪移取该分散液滴加至玻碳电极表面,常温下静置24小时,得到CaTiO3:Pr3+@Ag@L-半胱氨酸手性识别材料修饰的玻碳电极。
电解液为20mM的L-谷氨酸水溶液(含0.1mol/L的氯化钾)或谷氨酸的D-谷氨酸水溶液(含0.1mol/L的氯化钾)。
图6是本发明实施例4的手性识别材料对电解液中L-谷氨酸和D-谷氨酸的电化学识别信号图。
如图6所示,将CaTiO3:Pr3+@Ag@L-半胱氨酸手性识别材料修饰的玻碳电极置于电解液中,以饱和甘汞电极为参比电极,在-0.1~0.5V之间扫描循环伏安曲线。电解液中的L-谷氨酸具有较高的电化学信号,D-谷氨酸的电化学信号较弱,说明CaTiO3:Pr3+@Ag@ L-半胱氨酸对L-谷氨酸具有良好的识别性。
上述实施例的有益效果为:
(1)上述实施例利用长余辉材料与手性识别材料之间的异质结,将长寿命电子从长余辉材料中转移到手性识别材料表面,向手性识别材料表面注入大量长寿命电子,有效增强了电极上的电流密度,放大了电化学识别信号。
(2)上述实施例利用手性分子对电子的自旋过滤作用:L-半胱胺酸或D-半胱胺酸通过氢键作用和静电作用在金属纳米颗粒表面自组装为手性分子层,当电子流过组装在金属纳米颗粒表面的手性分子层时将被自旋极化,因此电极表面的电磁场发生变化,与电解液中的L和D氨基酸对映体之间的作用力差异将被放大,检测灵敏度得到提高。
(3)在紫外光照激发下,长余辉材料中产生的长寿命电子将通过长余辉材料与手性识别材料之间的异质结转移到手性识别材料表面,向手性识别材料表面注入大量长寿命电子,有效增强电极上的电流密度。
(4)金属纳米颗粒的还原与负载是通过紫外光照还原法实现的,手性分子在金属纳米颗粒上的组装是通过化学价键的形成来实现的,无需特殊设备和苛刻条件,制备方法简单、工艺快速易行,可控性强,容易实现大面积制备和规模化生产。
以上所述仅是本发明的较佳实施方式,故凡依本发明专利申请范围所述的构造、特征及原理所做的等效变化或修饰,均包括于本发明专利申请范围内。

Claims (1)

1.一种手性识别D-谷氨酸的方法,其特征在于:所述方法包括如下具体步骤:
(1)制备手性识别材料修饰的玻碳电极,其中所述手性识别材料包括表面负载有铂纳米颗粒的长余辉发光材料,以及手性半胱氨酸,在所述铂纳米颗粒表面自组装形成手性分子层,所述长余辉发光材料为CaTiO3:Pr3+
所述手性识别材料的制备方法包括如下步骤:
S1,将0.01g 粒径为1-10μm的CaTiO3:Pr3+长余辉发光材料浸泡在20mL 0.1mol/L的氯铂酸钾水溶液中,50W功率超声半小时使氯铂酸钾水溶液与CaTiO3:Pr3+长余辉发光材料表面充分接触;将溶液置于微波消解仪中,800W微波功率下还原5min,使铂纳米颗粒负载在CaTiO3:Pr3+长余辉发光材料表面,形成铂纳米颗粒与CaTiO3:Pr3+长余辉发光材料的异质结;采用蒸馏水和无水乙醇分别洗涤2次,洗去材料表面残余的铂离子,得表面负载了金纳米颗粒的CaTiO3:Pr3+长余辉发光材料;
S2,将0.01g表面负载了金纳米颗粒的CaTiO3:Pr3+长余辉发光材料,浸没在50mL D-半胱胺酸水溶液中72小时,D-半胱胺酸分子的巯基与金属纳米颗粒的表面键合,形成化学键,并自组装为手性分子层,得手性识别材料CaTiO3:Pr3+@Pt@D-半胱氨酸;
(2)将CaTiO3:Pr3+@Pt@D-半胱氨酸手性识别材料修饰的玻碳电极置于电解液中,以饱和甘汞电极为参比电极,在-0.1~0.5V之间扫描循环伏安曲线,电解液中的D -谷氨酸具有较高的电化学信号,L-谷氨酸的电化学信号较弱,说明CaTiO3:Pr3+@Pt@D-半胱氨酸对D-谷氨酸具有良好的识别性。
CN201911196788.7A 2019-11-29 2019-11-29 一种手性识别材料及其制备方法 Active CN110836919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911196788.7A CN110836919B (zh) 2019-11-29 2019-11-29 一种手性识别材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911196788.7A CN110836919B (zh) 2019-11-29 2019-11-29 一种手性识别材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110836919A CN110836919A (zh) 2020-02-25
CN110836919B true CN110836919B (zh) 2022-05-20

Family

ID=69577874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911196788.7A Active CN110836919B (zh) 2019-11-29 2019-11-29 一种手性识别材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110836919B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111956186B (zh) * 2020-08-19 2022-07-01 湖南大学 一种监测体内信号通路活跃程度的试剂盒

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE542860T1 (de) * 2007-10-26 2012-02-15 Basf Se Sicherheitselement
CN103586020B (zh) * 2013-11-22 2015-12-30 吉林大学 一种柔性纳米纤维基硼烷氨水解制氢催化剂及其制备方法
CN104119244B (zh) * 2014-06-27 2016-09-07 上海师范大学 基于功能性纳米通道阵列实现dl酪氨酸的手性拆分及在线检测的方法
CN107744821A (zh) * 2017-09-29 2018-03-02 天津大学 一种具有spr响应的磁性光催化剂及其制备方法
CN108492907B (zh) * 2018-03-26 2020-08-21 北京旭碳新材料科技有限公司 纳米金属修饰的石墨烯导电材料及其制备方法
CN108559495A (zh) * 2018-05-31 2018-09-21 陕西科技大学 一种高发光性能铝酸盐长余辉发光材料的制备方法

Also Published As

Publication number Publication date
CN110836919A (zh) 2020-02-25

Similar Documents

Publication Publication Date Title
Faridbod et al. Graphene quantum dots in electrochemical sensors/biosensors
Su et al. pH-guided self-assembly of copper nanoclusters with aggregation-induced emission
Zhai et al. Enhanced electrochemiluminescence behavior of gold–silver bimetallic nanoclusters and its sensing application for mercury (II)
Yang et al. Synthesis and application of CeO2/SnS2 heterostructures as a highly efficient coreaction accelerator in the luminol–dissolved O2 system for ultrasensitive biomarkers immunoassay
Ma et al. New signal amplification strategy using semicarbazide as co-reaction accelerator for highly sensitive electrochemiluminescent aptasensor construction
Yu et al. Near-infrared electrochemiluminescence immunoassay with biocompatible Au nanoclusters as tags
Zhang et al. Novel Ru (bpy) 2 (cpaphen) 2+/TPrA/TiO2 ternary ECL system: an efficient platform for the detection of glutathione with Mn2+ as substitute target
Zou et al. Graphitic carbon nitride-based nanocomposites electrochemiluminescence systems and their applications in biosensors
Peng et al. Valence states effect on electrogenerated chemiluminescence of gold nanocluster
Heli et al. Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles
CN102749317B (zh) 一种基于碳纳米管的表面增强拉曼散射探针的制备方法
US20080113448A1 (en) Fluorescent Carbon Nanoparticles
WO2011106963A1 (zh) 一种n-(4-氨基丁基)-n-乙基异鲁米诺发光功能化的纳米金及其制备方法和应用
S Lu et al. Quantum dot-based nanocomposites for biomedical applications
Fakhari et al. Fabrication of novel redox-active poly (4, 5-dihydro-1, 3-thiazol-2-ylsulfanyl-3-methyl-1, 2-benzenediol)-gold nanoparticles film on MWCNTs modified electrode: application as the electrochemical sensor for the determination of hydrazine
Barman et al. A highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for Interleukin-6 biomarker detection
Wu et al. A novel solid-state electrochemiluminescence sensor for the determination of hydrogen peroxide based on an Au nanocluster–silica nanoparticle nanocomposite
Khan et al. Label-free electrochemiluminescent immunosensor for prostate specific antigen ultrasensitive detection based on novel luminophore Ag3PO4 decorated GO
CN110836919B (zh) 一种手性识别材料及其制备方法
Saadati et al. A novel biosensor for the monitoring of ovarian cancer tumor protein CA 125 in untreated human plasma samples using a novel nano-ink: a new platform for efficient diagnosis of cancer using paper based microfluidic technology
Flavel et al. Electrochemical detection of copper using a Gly-Gly-His modified carbon nanotube biosensor
Li et al. Dual-emission ratiometric fluorescent probe based on lanthanide-functionalized carbon quantum dots for white light emission and chemical sensing
Shan et al. Electrochemiluminescent spin-polarized modulation by magnetic ions and surface plasmon coupling
Han et al. ZnO flower-rod/gC 3 N 4-gold nanoparticle-based photoelectrochemical aptasensor for detection of carcinoembryonic antigen
Chikhaliwala et al. Dendrimers: New tool for enhancement of electrochemiluminescent signal

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant