CN110818428A - 一种共晶增强增韧氮化硅陶瓷的制备方法 - Google Patents

一种共晶增强增韧氮化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN110818428A
CN110818428A CN201911221429.2A CN201911221429A CN110818428A CN 110818428 A CN110818428 A CN 110818428A CN 201911221429 A CN201911221429 A CN 201911221429A CN 110818428 A CN110818428 A CN 110818428A
Authority
CN
China
Prior art keywords
silicon nitride
sintering
ceramic
mixture
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911221429.2A
Other languages
English (en)
Other versions
CN110818428B (zh
Inventor
陈克新
张�杰
刘光华
崔巍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201911221429.2A priority Critical patent/CN110818428B/zh
Publication of CN110818428A publication Critical patent/CN110818428A/zh
Application granted granted Critical
Publication of CN110818428B publication Critical patent/CN110818428B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/587Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3878Alpha silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • C04B2235/3882Beta silicon nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种共晶增强增韧氮化硅陶瓷的制备方法,属于陶瓷制备技术领域。本发明方法使氮化硅材料中形成α和β相的共晶组织,获得一种氮化硅增强增韧陶瓷,该陶瓷的相对密度>99%,断裂韧性>10MPa·m1/2,维氏硬度>18Gpa,抗弯强度>600MPa。所述方法包括以下步骤:1)将氮化硅原料及烧结助剂等按照比例混合,混合均匀后的粉末通过放电等离子体烧结(SPS),获得相对密度>99%,α相含量>90%的一次烧结体;然后进行气压烧结,从而生成α/β共晶组织。本发明制备的氮化硅陶瓷除具备传统氮化硅陶瓷(强度高、致密性好、耐高温、耐磨)的特点外,断裂韧性及塑性得到明显提高,可广泛应用于特种材料领域。

Description

一种共晶增强增韧氮化硅陶瓷的制备方法
技术领域
本发明属于陶瓷制备技术领域,涉及一种高性能氮化硅陶瓷制备方法,特别涉及一种制备具有α/β共晶组织的氮化硅陶瓷的工艺技术。
背景技术
氮化硅陶瓷具有低密度、高导热系数、高硬度、良好的热稳定性和化学稳定性等多种优异性能,是结构陶瓷家族中综合性能最为优良的一类材料,广泛应用于陶瓷发动机、切削刀具、导热基板等领域。然而,陶瓷材料固有的脆性却限制了氮化硅的进一步应用与推广。
发明内容
本发明的目的是提供一种制备具有α/β共晶组织的氮化硅陶瓷的工艺方法,使制得的氮化硅陶瓷相对密度>99%,断裂韧性>10MPa·m1/2,维氏硬度>18Gpa,抗弯强度>600MPa,且可以承受1-3%的应变不产生断裂。
本发明的技术方案如下。一种共晶增强增韧氮化硅陶瓷的制备方法,其包括以下步骤:
(1)准备原料:将以下组分混合均匀,得到混合物;
氮化硅粉;70-90wt%,
烧结助剂;5-20wt%,
相变抑制剂;1-10%;
(2)将步骤(1)所得混合物进行放电等离子体烧结(SPS),得到一次烧结体;
(3)将步骤(2)所得物进行气压烧结,得到具有α/β共晶组织的氮化硅陶瓷。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)中所述氮化硅粉原料的纯度>99wt%;所述氮化硅粉平均粒径在0.5-2μm,所述氮化硅粉末的α相含量为95wt%。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)中所述烧结助剂选自Al2O3、MgO、SiO2、Y2O3、ZrO2、R2O3(R代表稀土元素,如La、Lu、Yb等)、MgSiN2中的至少一种。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)中选用CaO作为相变抑制剂。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)所述的混合方式包括砂磨、球磨、搅拌磨。
根据本发明的一种实施方式,在所述方法中,例如,所述步骤(2)包括:将步骤(1)所得混合物干燥,过60-200目筛,布料于SPS模具内,然后将所述反应模具放置在放点等离子烧结装置内,抽真空后,对原料加压,同时通电加热进行烧结;反应结束后,同时通循环水进行冷却;最终得到一次烧结产物;优选的,所述烧结压力范围为10-100MPa,烧结温度为1500℃,保温时间为5min。
根据本发明的一种实施方式,在所述方法中,例如,所述方法还包括在步骤(2)之后的步骤(3):对步骤(2)得到的一次烧结体进行气压烧结,所述气压烧结的步骤按下述工艺进行:将一次烧结体至于氮化硼坩埚内,在烧结炉中以5-10℃/min的速度升温至1500-1700℃,保温0.5-1h,随后快速降温至900℃,然后以20℃/min的速度升温至1500-1700℃,然后停止加热随炉冷却至室温。
根据本发明的一种实施方式,在所述方法中,例如,步骤(4)的烧结工艺在快速降温过程中,需伴随炉内压力的震荡,压力震荡范围为1-8MPa。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)所述的烧结助剂平均粒度为300-500nm,纯度>99wt%。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)所述的混合方式的介质选自水、甲醇、乙醇中的一种;磨球选自氮化硅磨球、氧化锆磨球、玛瑙磨球中的一种。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)中所述砂磨混料,磨球优选为氮化硅磨球,磨球尺寸<1mm。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)中所述球磨混料,磨球优选为氮化硅磨球,磨球尺寸为3-10mm。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)中所述搅拌磨混料,磨球优选为氮化硅磨球,磨球尺寸为3-10mm。
根据本发明的一种实施方式,在所述方法中,例如,步骤(1)所述的混合方式的转速为300-3000r/min,混料时间为2-10h。
根据本发明的一种实施方式,在所述方法中,例如,步骤(2)所述的一次烧结体相对密度>99%,α相含量>90%。
根据本发明的一种实施方式,在所述方法中,例如,步骤(2)所述的SPS烧结模具为石墨材质,优选的,在模具与混合料间用碳纸进行隔离。
根据本发明的一种实施方式,在所述方法中,例如,步骤(2)所述的SPS烧结的升温速率为150-200℃/min。
本发明的实施例还提供根据上述方法制备得到的氮化硅陶瓷,其特征在于,所述氮化硅相对密度>99%,断裂韧性>10MPa·m1/2,维氏硬度>18Gpa,抗弯强度>600MPa。
根据本发明的一种实施方式,所述具有α/β共晶组织的氮化硅陶瓷断裂韧性相比于未具有共晶组织的陶瓷提高50%以上,且可以承受1-3%的应变不产生断裂。
本发明制备的氮化硅陶瓷具有α/β共晶组织,其突出优点为:
1.通过本发明所述方法制备得到的具有α/β共晶组织的氮化硅陶瓷,在承受载荷的条件下,可以通过α相向β相的相变吸收能量,同时,α相向β相转变后会产生体积变化,因此通过相变可以缓解在陶瓷内部的应力集中,使氮化硅陶瓷的性能得到提高;
2.由于氮化硅陶瓷为强共价键晶体,不能通过晶面滑移等位错机制进行变形,因此氮化硅固有的脆性限制了其广泛应用。本发明通过制备具有α/β共晶组织的氮化硅陶瓷,利用α相向β相转变后会产生体积变化这一特性,为解决陶瓷历来塑形差的问题提供了新思路,改善了氮化硅的脆性问题,使氮化硅可以承受1-3%的应变不产生断裂;
3.节约能源。本发明所述的氮化硅制备方法,制备温度为1500-1700℃,且最长保温时间仅1h。相比于传统制备氮化硅的工艺,本发明所述的烧结温度降低100-200℃,时间缩短5-10h。
4.生产效率高,适宜于大批量生产。
附图说明
图1是实施例1-4及对比例1中所用氮化硅粉末产物的XRD分析图谱;
图2是实施例1中一次烧结体的XRD分析图谱;
图3是实施例1中气压烧结工艺制度;
图4是实施例1中氮化硅陶瓷产物的XRD分析图谱;
图5是实施例1中氮化硅陶瓷产物的BSE分析图谱;
图6是实施例2中氮化硅陶瓷产物的XRD分析图谱;
图7实施例2中气压烧结工艺制度;
图8是实施例3中氮化硅陶瓷产物的XRD分析图谱;
图9实施例3中气压烧结工艺制度
图10实施例4中氮化硅陶瓷产物的XRD分析图谱;(80%a)
图11是对比例1中氮化硅陶瓷产物的XRD分析图谱。
具体实施方式
以下将结合附图和实施例对本发明进一步说明。应当理解,下面实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
在本文中,所述氮化硅陶瓷的抗弯强度测试根据标准GB/T 6569-2006测试,硬度测试根据标准GB/T 16534-2009测试,断裂韧性测试根据标准GB/T 23806-2009测试。
实施例1
(1)混料:将经过干燥后的陶瓷原料按比例混合均匀,过60目筛,所述陶瓷原料,由下述组分组成:
氮化硅粉:90%;
烧结助剂:9%;
相变抑制剂:1%;
所述烧结助剂,由下述组分组成:
Al2O3:60%;
Y2O3:40%;
(2)研磨:将需混料的粉料置于砂磨机中,按粉料:乙醇=1:2加入粉料和乙醇,砂磨转速设置为3000r/min,砂磨2h。
(3)烧结:将粉料装入SPS模具后将模具装入SPS装置内,抽真空后,以150℃/min的速度升温至1500℃,在10MPa压力下保温5min,停止加热后随炉冷却至室温。取出样品后,获得一次烧结体,所得一次烧结体的相对密度=99.1%,α相含量=90%。将其置于氮化硼坩埚中装入气压烧结炉中,以5℃/min的速度升温至1500℃,在4MPa的氮气压力下保温1h,随后迅速降温至900℃,与此同时,压力降至1MPa,然后以20℃/min的速度升温至1500℃,然后停止加热,随炉冷却至室温。
所得陶瓷的α相含量=70%,相对密度=99.3%,断裂韧性=10.5MPa·m1/2,维氏硬度=18.6Gpa,抗弯强度=642MPa,且最大可以承受2.5%的应变不产生断裂。
实施例2
(1)混料:将经过干燥后的陶瓷原料按比例混合均匀,过100目筛,所述陶瓷原料,由下述组分组成:
氮化硅粉:80%;
烧结助剂:15%;
相变抑制剂:5%;
所述烧结助剂,由下述组分组成:
MgO:40%;
Y2O3:40%;
SiO2:20%
(2)研磨:将需混料的粉料置于球磨机中,按粉料:乙醇=1:2加入粉料和乙醇,砂磨转速设置为300r/min,球磨10h。
(3)烧结:将粉料装入SPS模具中后将模具装入SPS装置内,抽真空后,以150℃/min的速度升温至1500℃,在50MPa压力下保温5min,停止加热后随炉冷却至室温。取出样品后,获得一次烧结体,所得一次烧结体的相对密度=99.3%,α相含量=90%。将其置于氮化硼坩埚后装入气压烧结炉中,以5℃/min的速度升温至1600℃,在6MPa的氮气压力下保温1h,随后迅速降温至900℃,与此同时,压力降至1MPa,然后以20℃/min的速度升温至1600℃,然后停止加热,随炉冷却至室温。
所得陶瓷的α相含量=50%,相对密度=99.4%,断裂韧性=10.5MPa·m1/2,维氏硬度=19.3Gpa,抗弯强度=745MPa,且最大可以承受2%的应变不产生断裂。
实施例3
(1)混料:将经过干燥后的陶瓷原料按比例混合均匀,过200目筛,所述陶瓷原料,由下述组分组成:
氮化硅粉:70%;
烧结助剂:20%;
相变抑制剂:10%;
所述烧结助剂,由下述组分组成:
La2O3:40%;
MgSiN2:40%;
ZrO2:20%
(2)研磨:将需混料的粉料置于搅拌磨中,按粉料:水=1:3加入粉料和乙醇,砂磨转速设置为500r/min,研磨5h。
(3)烧结:将粉料装入SPS模具中后将模具装入SPS装置内,抽真空后,以200℃/min的速度升温至1500℃,在100MPa压力下保温5min,停止加热后随炉冷却至室温。取出样品后,获得一次烧结体,所得一次烧结体的相对密度=99.4%,α相含量=90%。将其置于氮化硼坩埚后装入气压烧结炉中,以10℃/min的速度升温至1700℃,在8MPa的氮气压力下保温1h,随后迅速降温至900℃,与此同时,压力降至1MPa,然后以20℃/min的速度升温至1700℃,然后停止加热,随炉冷却至室温。
所得陶瓷的α相含量=20%,相对密度=99.5%,断裂韧性=10.5MPa·m1/2,维氏硬度=19.7Gpa,抗弯强度=874MPa,且最大可以承受1%的应变不产生断裂。
实施例4
(1)混料:将经过干燥后的陶瓷原料按比例混合均匀,过200目筛,所述陶瓷原料,由下述组分组成:
氮化硅粉:90%;
烧结助剂:9%;
相变抑制剂:1%;
所述烧结助剂,由下述组分组成:
Al2O3:60%;
Y2O3:40%;
(2)研磨:将需混料的粉料置于球磨机中,按粉料:甲醇=1:2加入粉料和乙醇,砂磨转速设置为300r/min,球磨10h。
(3)烧结:将粉料装入SPS模具中后将模具装入SPS装置内,抽真空后,以200℃/min的速度升温至1500℃,在20MPa压力下保温5min,停止加热后随炉冷却至室温。取出样品后,获得一次烧结体,所得一次烧结体的相对密度=99.1%,α相含量=90%。将其置于氮化硼坩埚后装入气压烧结炉中,以10℃/min的速度升温至1500℃,在4MPa的氮气压力下保温1h,随后迅速降温至900℃,与此同时,压力降至1MPa,然后以20℃/min的速度升温至1500℃,然后停止加热,随炉冷却至室温。
所得陶瓷的α相含量=80%,相对密度=99.3%,断裂韧性=10.5MPa·m1/2,维氏硬度=18.3Gpa,抗弯强度=657MPa,且最大可以承受3%的应变不产生断裂。
对比例1
(1)混料:将经过干燥后的陶瓷原料按比例混合均匀,过200目筛,所述陶瓷原料,由下述组分组成:
氮化硅粉:80%;
烧结助剂:20%;
所述烧结助剂,由下述组分组成:
La2O3:40%;
MgSiN2:40%;
ZrO2:20%
(2)研磨:将需混料的粉料置于球磨机中,按粉料:甲醇=1:2加入粉料和乙醇,砂磨转速设置为300r/min,球磨10h。
(3)烧结:将混合后的粉料用模具压制成素坯,然后将其置于氮化硼坩埚后装入气压烧结炉中,以10℃/min的速度升温至1700℃,在1MPa的氮气压力下保温1h,停止加热后随炉冷却至室温。
所得陶瓷的α相含量=0%,相对密度=99.5%,断裂韧性=6.5MPa·m1/2,维氏硬度=16.7Gpa,抗弯强度=863MPa,不具有承受应变的能力。
将实施例2的结果与对比例1的结果进行对比,实施例2与对比例2的试验条件基本相同,区别在于实施例2在混料过程中加入了10%的相变抑制剂,实施例2在烧结时采用本发明所述的烧结工艺,而对比例1使用传统氮化硅烧结工艺。从试验结果来看,最终烧结产品的断裂韧性由对比例1的6.5MPa·m1/2提高到实施例2的10.5MPa·m1/2,维氏硬度由对比例1的16.7Gpa提高到实施例2的19.7Gpa,特别的,对比例1并不具备承受应变能力,实施例2最大可以承受1%的应变不产生断裂。可见,使用本发明所述制备工艺所制备的具有α/β共晶组织的氮化硅陶瓷,能够大幅度提高氮化硅陶瓷的力学性能,基于该制备方法能够获得性能优异的氮化硅陶瓷。

Claims (10)

1.一种共晶增强增韧氮化硅陶瓷的制备方法,其特征在于,包括以下步骤:
(1)准备原料:将以下组分混合均匀,得到混合物;
氮化硅粉;70-90wt%,
烧结助剂;5-20wt%,
相变抑制剂;1-10%;
(2)将步骤(1)所得混合物进行放电等离子体烧结,得到一次烧结体;
(3)将步骤(2)所得物进行气压烧结,得到具有α/β共晶组织的氮化硅陶瓷。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中所述氮化硅粉的纯度>99wt%;平均粒径0.5-2μm,氮化硅粉的α相含量为95wt%;
所述烧结助剂选自Al2O3、MgO、SiO2、Y2O3、ZrO2、R2O3、MgSiN2中的至少一种;其中R代表稀土元素;所述的烧结助剂平均粒度为300-500nm,纯度>99wt%;
所述相变抑制剂选用CaO。
3.根据权利要求1所述的方法,其特征在于,步骤(1)所述的混合包括砂磨、球磨或搅拌磨;使用的介质选自水、甲醇、乙醇中的一种;所述砂磨的磨球选自氮化硅磨球、氧化锆磨球、玛瑙磨球中的一种;磨球尺寸<1mm;所述球磨的磨球为氮化硅磨球,磨球尺寸为3-10mm;所述搅拌磨的磨球为氮化硅磨球,磨球尺寸为3-10mm。
4.根据权利要求1所述的方法,其特征在于,步骤(1)所述的混合,其转速为300-3000r/min,混料时间为2-10h。
5.根据权利要求1所述的方法,其特征在于,步骤(2)包括:将步骤(1)所得混合物干燥,过60-200目筛,装料于SPS模具内,然后将所述反应模具放置在放电等离子体烧结装置内,抽真空后,对原料加压,同时通电加热进行烧结;反应结束后,样品随炉进行冷却;冷却后得到一次烧结产物;所述烧结压力范围为10-100MPa,烧结温度为1500℃,保温时间为5min。
6.根据权利要求1所述的方法,其特征在于,步骤(2)所述的烧结,升温速率为150-200℃/min;使用的模具为石墨材质,在模具与混合料间用碳纸进行隔离。
7.根据权利要求1所述的方法,其特征在于,步骤(2)所述的一次烧结体相对密度>99%,α相含量>90%。
8.根据权利要求1所述的方法,其特征在于,步骤(3)包括:将步骤(2)所得物置于氮化硼坩埚内,在烧结炉中以5-10℃/min的速度升温至1500-1700℃,保温0.5-1h,随后快速降温至900℃,然后以20℃/min的速度升温至1500-1700℃,然后停止加热随炉冷却至室温;在快速降温过程中,炉内压力的震荡范围为1-8MPa。
9.根据权利要求1-8任一项所述方法制备得到的氮化硅陶瓷,其特征在于,所述氮化硅相对密度>99%,断裂韧性>10MPa·m1/2,维氏硬度>18Gpa,抗弯强度>600MPa。
10.根据权利要求9所述的氮化硅陶瓷,其特征在于,所述氮化硅陶瓷具有α/β共晶组织,其断裂韧性比没有共晶组织的陶瓷提高50%以上,且可以承受1-3%的应变不产生断裂。
CN201911221429.2A 2019-12-03 2019-12-03 一种共晶增强增韧氮化硅陶瓷的制备方法 Active CN110818428B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911221429.2A CN110818428B (zh) 2019-12-03 2019-12-03 一种共晶增强增韧氮化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911221429.2A CN110818428B (zh) 2019-12-03 2019-12-03 一种共晶增强增韧氮化硅陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN110818428A true CN110818428A (zh) 2020-02-21
CN110818428B CN110818428B (zh) 2020-12-04

Family

ID=69542248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911221429.2A Active CN110818428B (zh) 2019-12-03 2019-12-03 一种共晶增强增韧氮化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN110818428B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811912A (zh) * 2021-01-20 2021-05-18 中国科学院上海硅酸盐研究所 一种高性能氮化硅陶瓷基片的批量化烧结方法
CN112898030A (zh) * 2021-02-04 2021-06-04 哈尔滨科友半导体产业装备与技术研究院有限公司 Pvt法高温生长设备用热电偶护套的制备方法
CN113307631A (zh) * 2021-05-13 2021-08-27 广东工业大学 一种无压烧结制备高综合性能氮化硅陶瓷的方法
CN115521152A (zh) * 2022-10-09 2022-12-27 苏州艾成科技技术有限公司 一种氮化硅烧结用辅助剂
CN116425555A (zh) * 2023-02-15 2023-07-14 衡阳凯新特种材料科技有限公司 一种氮化硅陶瓷刀具及制备方法
WO2024059987A1 (zh) * 2022-09-20 2024-03-28 清华大学 一种可变形氮化硅陶瓷的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597614A (zh) * 2004-05-17 2005-03-23 清华大学 高热导率、高强度氮化硅陶瓷制造方法
CN101100388A (zh) * 2007-07-17 2008-01-09 清华大学 高热导率氮化硅陶瓷材料及其制备方法
CN104609865A (zh) * 2015-02-09 2015-05-13 广东工业大学 一种氮化硅基导电陶瓷的制备方法及氮化硅基导电陶瓷刀具的成型方法
CN105016738A (zh) * 2014-04-30 2015-11-04 广东工业大学 氮化硅陶瓷及其制备方法
CN109970454A (zh) * 2019-03-20 2019-07-05 广东工业大学 一种过渡金属氧化物抑制氮化硅相变的方法及其制得的氮化硅陶瓷

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1597614A (zh) * 2004-05-17 2005-03-23 清华大学 高热导率、高强度氮化硅陶瓷制造方法
CN101100388A (zh) * 2007-07-17 2008-01-09 清华大学 高热导率氮化硅陶瓷材料及其制备方法
CN105016738A (zh) * 2014-04-30 2015-11-04 广东工业大学 氮化硅陶瓷及其制备方法
CN104609865A (zh) * 2015-02-09 2015-05-13 广东工业大学 一种氮化硅基导电陶瓷的制备方法及氮化硅基导电陶瓷刀具的成型方法
CN109970454A (zh) * 2019-03-20 2019-07-05 广东工业大学 一种过渡金属氧化物抑制氮化硅相变的方法及其制得的氮化硅陶瓷

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F.L. YU ET AL.: ""Spark Plasma Sintering of α/β Si3N4 Ceramics with MgO-Al2O3 and MgO-Y2O3 as Sintering Additives",F.L. Yu et al., 《Journal of Materials Engineering and Performance》,第25卷,第12期,第5220-5224页", 《JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE》 *
张朝晖: "《放电等离子烧结技术及其在钛基复合材料制备中的应用》", 31 March 2018, 北京:国防工业出版社 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112811912A (zh) * 2021-01-20 2021-05-18 中国科学院上海硅酸盐研究所 一种高性能氮化硅陶瓷基片的批量化烧结方法
CN112811912B (zh) * 2021-01-20 2021-11-02 中国科学院上海硅酸盐研究所 一种高性能氮化硅陶瓷基片的批量化烧结方法
CN112898030A (zh) * 2021-02-04 2021-06-04 哈尔滨科友半导体产业装备与技术研究院有限公司 Pvt法高温生长设备用热电偶护套的制备方法
CN113307631A (zh) * 2021-05-13 2021-08-27 广东工业大学 一种无压烧结制备高综合性能氮化硅陶瓷的方法
CN113307631B (zh) * 2021-05-13 2022-08-23 广东工业大学 一种无压烧结制备高综合性能氮化硅陶瓷的方法
WO2024059987A1 (zh) * 2022-09-20 2024-03-28 清华大学 一种可变形氮化硅陶瓷的制备方法
CN115521152A (zh) * 2022-10-09 2022-12-27 苏州艾成科技技术有限公司 一种氮化硅烧结用辅助剂
CN116425555A (zh) * 2023-02-15 2023-07-14 衡阳凯新特种材料科技有限公司 一种氮化硅陶瓷刀具及制备方法

Also Published As

Publication number Publication date
CN110818428B (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
CN110818428B (zh) 一种共晶增强增韧氮化硅陶瓷的制备方法
CN109053206B (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN104446495B (zh) 一种氮化硅陶瓷材料及其制备方法
CN105622107B (zh) 一种表硬心韧高性能Si3N4梯度陶瓷球材料的制备方法
CN111635234B (zh) 一种聚晶立方氮化硼复合片及其制备方法和应用
CN108624772A (zh) 超细晶碳化钨基硬质合金材料及其制备方法
CN100355695C (zh) 碳化铬与碳氮化钛颗粒弥散强韧化氧化铝基陶瓷复合材料及其制备方法
CN108751996A (zh) 一种石墨烯增韧的碳化硼陶瓷材料及其等离子烧结制备工艺
CN108675797B (zh) 氮化硅基复合陶瓷材料及其微波烧结制备方法
CN106904977A (zh) 一种两步烧结法制备表硬心韧Si3N4陶瓷材料的方法
CN102976760A (zh) 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法
CN113121237A (zh) 一种碳化硼基复合陶瓷及其制备工艺
CN104131208A (zh) 一种氧化铝-碳化钛微米复合陶瓷刀具材料及其微波烧结方法
CN102219519A (zh) 一种碳化硅防弹陶瓷材料及其制备方法
CN109354504B (zh) 一种碳化硼基复合陶瓷烧结助剂及烧结工艺
CN113429211B (zh) 一种氮化硅陶瓷材料及其制备方法
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺
CN113416077B (zh) 一种双复合结构的高温陶瓷刀具材料及其制备方法与应用
CN107963891A (zh) 一种单相氮化硅陶瓷材料及其微波烧结制备工艺
CN116217233B (zh) 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用
CN112062574B (zh) 一种高性能纳米碳化硅陶瓷及其制备方法和应用
CN111515404B (zh) 一种cBN/Al复合材料的制备方法
CN106747433B (zh) 氧化锆基纳米陶瓷工模具材料及其制备方法
CN101555141A (zh) 氮化硅陶瓷的制备方法
CN109400176A (zh) 一种高性能氮化硅陶瓷及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant