CN110787841B - 一种含氮MOFs的超强固体酸材料及其应用 - Google Patents

一种含氮MOFs的超强固体酸材料及其应用 Download PDF

Info

Publication number
CN110787841B
CN110787841B CN201911120479.1A CN201911120479A CN110787841B CN 110787841 B CN110787841 B CN 110787841B CN 201911120479 A CN201911120479 A CN 201911120479A CN 110787841 B CN110787841 B CN 110787841B
Authority
CN
China
Prior art keywords
mofs
solid acid
super
nitrogen
strong solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911120479.1A
Other languages
English (en)
Other versions
CN110787841A (zh
Inventor
郑安民
彭文丽
米金星
刘福建
肖瑶
陈伟
刘志强
易先锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Physics and Mathematics of CAS
Original Assignee
Wuhan Institute of Physics and Mathematics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Physics and Mathematics of CAS filed Critical Wuhan Institute of Physics and Mathematics of CAS
Priority to CN201911120479.1A priority Critical patent/CN110787841B/zh
Publication of CN110787841A publication Critical patent/CN110787841A/zh
Application granted granted Critical
Publication of CN110787841B publication Critical patent/CN110787841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • B01J35/615
    • B01J35/647
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
    • C11C3/10Ester interchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/49Esterification or transesterification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/30Non-coordinating groups comprising sulfur
    • B01J2540/32Sulfonic acid groups or their salts
    • B01J2540/325Sulfonic acid groups or their salts being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/40Non-coordinating groups comprising nitrogen

Abstract

本发明公开了一种含氮MOFs的超强固体酸材料及其应用,该超强固体酸材料由以下方法制备而成:1、将含氮MOFs材料和磺酸内脂类化合物与溶剂A混合均匀,再在回流的条件下进行反应,得到中间产物;2、将中间产物和三氟甲磺酸与溶剂B混合均匀,再进行离子交换反应,得到所述的含氮MOFs的超强固体酸材料。该超强固体酸材料热稳定性高,且制备方法简单,制备成本低,可用于催化酯交换反应和酯化反应,能提高酯交换反应和酯化反应的转化率、选择性。

Description

一种含氮MOFs的超强固体酸材料及其应用
技术领域
本发明涉及催化剂制备技术领域,具体涉及一种含氮MOFs的超强固体酸材料及其应用。
背景技术
近年来,随着地球上的石油和煤炭资源的相对紧缺,还面临着“碳排量”和“高污染”等多重制约,因此发展低碳经济日益成为世界各国关注的焦点。生物能源作为一种极具潜力的新型能源产业引起了人们广泛的研究兴趣。1983年美国科学家Graham Quicki首次用酯交换反应制备得到亚麻酸甲酯,并将其定义为生物柴油,之后围绕脂肪酸甲酯的合成方法展开了***研究,并逐渐形成以脂肪酸甲酯为代表的第一代生物柴油产品。而在酯交换的反应过程中,酸催化剂起到了至关重要的作用,传统的酸性催化剂分为液体酸性催化剂和固体酸性催化剂。其中液体酸性催化剂主要包括盐酸、硫酸、硝酸、磷酸等,而固体酸性催化剂主要有分子筛、金属氧化物及新型多功能MOFs固体酸材料等。在酯化反应过程中,液体酸性催化剂虽然具有优异的催化效果,但不利于产物与催化剂的分离,导致在后期处理过程中操作复杂且成本高,同时对环境造成了严重的污染。而固体酸性催化剂可以很好解决上述问题,然而对于一些特殊的酯化反应,分子筛和金属氧化物虽然成本不高,但是催化效果并不显著。
因此,有人针对性的设计出新型多功能的MOFs固体酸材料。MOFs是一种含有金属节点和有机连接体的多孔有机骨架晶体材料。这类材料的孔径形状以及大小都可以通过选择不同的金属以及有机配体来进行调节,同时具有高孔隙率、低密度、大比表面积、规则孔道、可调的孔径及拓扑结构多样性和可裁剪性等特点。所以MOFs材料在能源的储存、气体的吸附与分离以及催化等方面有着广泛的应用。我们通过后期修饰的策略制备合成具有酸性催化性质的MOFs材料,并用于催化转化各类植物油,但是MOFs材料存在酸量低,酸强度弱等问题,如何提高MOFs材料的酸含量和强度是一个比较大的挑战。在MOFs材料的前期修饰过程中引入B酸很难,所以我们选择在合成MOFs材料后引入B酸,这种修饰方法不仅成功率高,而且还能保持MOFs材料晶体结构的稳定及其大比表面积和规则孔道,这样能大大提高其催化效率。比如美国Yaghi课题组成功合成出MOF-808后,在MOF-808上进一步引入磺酸基团,从而提高了MOF-808的酸强度以及酸含量,但是MOF-808的酸强度还是偏低,31P的化学位移只有69ppm,且酸密度并不高。
发明内容
为了解决上述现有技术存在的问题,本发明提供了一种含氮MOFs的超强固体酸材料及其应用,该超强固体酸材料热稳定性高,且制备方法简单,制备成本低,可用于催化酯交换反应和酯化反应,可有效提高酯交换反应和酯化反应的转化率以及选择性。
实现本发明上述目的所采用的技术方案为:
一种含氮MOFs的超强固体酸材料,由以下方法制备而成:
1、将含氮MOFs材料、磺酸内酯类化合物和溶剂A混合均匀,再在回流的条件下进行反应,得到中间产物;
2、将中间产物和三氟甲磺酸与溶剂B混合均匀,再进行离子交换反应,得到所述的含氮MOFs的超强固体酸材料。
进一步,所述的磺酸内脂类化合物为1,3-丙烷磺酸内酯或1,4-丁磺酸内酯,中间产物与三氟甲磺酸的质量体积比为0.5g-1g:50μl-100μl。
进一步,所述的溶剂A为甲苯,溶剂B为二氯甲烷。
进一步,所述的含氮MOFs材料与1,3-丙烷磺内酯的质量比为1-10:1,回流温度为80-110℃,回流时间20-28h。
进一步,回流结束后,将所得的产物进行离心分离,将所得滤饼用N,N-二甲基甲酰胺洗涤干净,再在110-150℃真空干燥12-24h,得到中间产物。
进一步,在回流的同时进行搅拌,搅拌的转速为200-500rmp。
进一步,所述的离子交换反应是在冰浴条件下反应20-30h,反应结束后,将所得的产物进行离心分离,将所得的滤饼用二氯甲烷洗涤干净,再烘干,得到所述的含氮MOFs的超强固体酸材料。
一种含氮MOFs的超强固体酸材料在催化酯交换反应和酯化反应中的应用。
与现有技术相比,本发明的有益效果和优点在于:
1、本发明的超强固体酸材料的制备方法简单,工艺条件简单易控制,易于实现工业化生产,具有广阔的应用前景。
2、本发明的超强固体酸材料的合成表面积高达300-500m2/g,具有优异的催化活性,可用于催化酯交换反应和酯化反应,尤其是催化植物油与甲醇的反应,选择率和转化率大幅度提高。
3、本发明制备超强固体酸材料时,无需负载或添加其他活性组分,只需在含氮MOFs材料骨架上引入磺酸基团,增强MOFs的酸强度以及酸密度。
4、本发明的超强固体酸材料在反应结束后也有利于与产物进行分离,分离后的超强固体酸材料用甲醇洗涤干净后再用三氟甲磺酸进行酸化,可以进行循环使用。
附图说明
图1为实施例1-3制备的含氮MOFs的超强固体酸材料的吸附等温线图。
图2为实施例3制备的含氮MOFs材料的SEM图。
图3为实施例3制备的含氮MOFs的超强固体酸材料的SEM图。
图4为实施例1-5制备的含氮MOFs的超强固体酸材料的红外光谱图。
图5为实施例3制备的含氮MOFs的超强固体酸材料的31P-1H二维核磁谱图。
具体实施方式
实施例1
1、称取0.45g ZrCl4、0.45g 2-氨基对苯二甲酸加入反应釜中,再加入50ml DMF和10ml盐酸,超声10min直至固体全部溶剂,将反应釜加热至100℃并保温,在100℃下水热处理12h,水热处理完成后,自然冷却至室温,抽滤并用DMF洗涤干净,再用乙醇浸泡三天,过滤,将所得滤饼在150℃下真空干燥12h,得到含氮MOFs材料UiO-66-NH2
2、将1g UiO-66-NH2和0.1g 1,3-丙烷磺内酯加入30mL甲苯,搅拌均匀,接着在搅拌转速200rmp、回流温度130℃下回流24h,抽滤并用DMF洗涤干净,在120℃下真空干燥18h,得到中间产物;
3、将0.1g中间产物和100μl三氟甲磺酸加入二氯甲烷中,搅拌均匀,在冰浴条件下进行离子交换反应24h,用二氯甲烷洗涤干净,烘干,得到含氮MOFs的超强固体酸材料,标记为UiO-66-[C3NH2][CF3SO3]-Ⅰ。
实施例2
1、称取0.45g ZrCl4、0.45g 2-氨基对苯二甲酸加入反应釜中,再加入50ml DMF和10ml盐酸,超声10min直至固体全部溶剂,将反应釜加热至100℃并保温,在100℃下水热处理12h,水热处理完成后,自然冷却至室温,抽滤并用DMF洗涤干净,再用乙醇浸泡三天,过滤,将所得滤饼在150℃下真空干燥12h,得到含氮MOFs材料UiO-66-NH2
2、将1g UiO-66-NH2和0.2g 1,3-丙烷磺内酯加入30mL甲苯,搅拌均匀,接着在搅拌转速200rmp、回流温度130℃下回流24h,用DMF洗涤干净,在120℃下真空干燥18h,得到中间产物;
3、将0.1g中间产物和100μl三氟甲磺酸加入二氯甲烷中,搅拌均匀,在冰浴条件下进行离子交换反应24h,用二氯甲烷洗涤干净,烘干,得到含氮MOFs的超强固体酸材料,标记为UiO-66-[C3NH2][CF3SO3]-Ⅱ。
实施例3
1、称取0.45g ZrCl4、0.45g 2-氨基对苯二甲酸加入反应釜中,再加入50ml DMF和10ml盐酸,超声10min直至固体全部溶剂,将反应釜加热至100℃并保温,在100℃下水热处理12h,水热处理完成后,自然冷却至室温,抽滤并用DMF洗涤干净,再用乙醇浸泡三天,过滤,将所得滤饼在150℃下真空干燥12h,得到含氮MOFs材料UiO-66-NH2
2、将1g UiO-66-NH2和0.5g 1,3-丙烷磺内酯加入30mL甲苯,搅拌均匀,接着在搅拌转速200rmp、回流温度130℃下回流24h,用DMF洗涤干净,在120℃下真空干燥18h,得到中间产物;
3、将0.1g中间产物和100μl三氟甲磺酸加入二氯甲烷中,搅拌均匀,在冰浴条件下进行离子交换反应24h,用二氯甲烷洗涤干净,烘干,得到含氮MOFs的超强固体酸材料,标记为UiO-66-[C3NH2][CF3SO3]-Ⅲ。
实施例4
1、称取0.45g ZrCl4、0.45g 2-氨基对苯二甲酸加入反应釜中,再加入50ml DMF和10ml盐酸,超声10min直至固体全部溶剂,将反应釜加热至100℃并保温,在100℃下水热处理12h,水热处理完成后,自然冷却至室温,抽滤并用DMF洗涤干净,再用乙醇浸泡三天,过滤,将所得滤饼在150℃下真空干燥12h,得到含氮MOFs材料UiO-66-NH2
2、将1g UiO-66-NH2和0.1g 1,3-丙烷磺内酯加入30mL甲苯,搅拌均匀,接着在搅拌转速200rmp、回流温度130℃下回流24h,抽滤并用DMF洗涤干净,在120℃下真空干燥18h,得到中间产物;
3、将0.1g中间产物和50μl三氟甲磺酸加入二氯甲烷中,搅拌均匀,在冰浴条件下进行离子交换反应24h,用二氯甲烷洗涤干净,烘干,得到含氮MOFs的超强固体酸材料,标记为UiO-66-[C3NH2][CF3SO3]-Ⅳ。
实施例5
1、称取0.45g ZrCl4、0.45g 2-氨基对苯二甲酸加入反应釜中,再加入50ml DMF和10ml盐酸,超声10min直至固体全部溶剂,将反应釜加热至100℃并保温,在100℃下水热处理12h,水热处理完成后,自然冷却至室温,抽滤并用DMF洗涤干净,再用乙醇浸泡三天,过滤,将所得滤饼在150℃下真空干燥12h,得到含氮MOFs材料UiO-66-NH2
2、将1g UiO-66-NH2和0.5g 1,3-丙烷磺内酯加入30mL甲苯,搅拌均匀,接着在搅拌转速200rmp、回流温度130℃下回流24h,抽滤并用DMF洗涤干净,在120℃下真空干燥18h,得到中间产物;
3、将0.1g中间产物和50μl三氟甲磺酸加入二氯甲烷中,搅拌均匀,在冰浴条件下进行离子交换反应24h,用二氯甲烷洗涤干净,烘干,得到含氮MOFs的超强固体酸材料,标记为UiO-66-[C3NH2][CF3SO3]-Ⅴ。
将实施例1-3制备的含氮MOFs的超强固体酸材料用N2物理吸附进行测试分析,并BET法计算比表面积,所得的吸附等温线和孔径分布图如图1所示,从图1中可看出,实施例1-3的超强固体酸材料的吸脱附等温线为I型,说明实施例1-3的超强固体酸材料中均存在微孔结构。可见,本发明制备的实施例1-3制备的超强固体酸材料在引入酸性位点的同时,进一步保证了结构的完整性。
将实施例1-3制备的含氮MOFs的超强固体酸材料的比表面积以及平均孔径等物理性质如表1所示:
表1
Figure BDA0002275323510000051
Figure BDA0002275323510000061
将实施例3制备的UiO-66-NH2和UiO-66-[C3NH2][CF3SO3]-1.5用扫描电子显微镜进行扫描,所得的SEM图如图2和图3所示,其中图2为UiO-66-NH2的SEM图,图3为UiO-66-[C3NH2][CF3SO3]-1.5的SEM图,将图2和图3进行对比,可以看出,UiO-66-[C3NH2][CF3SO3]-1.5的形貌与UiO-66-NH2的形貌基本保持一致,由此进一步说明本发明制备的超强固体酸材料的形貌、结构依然规整。
将实施例1-5制备的含氮MOFs的超强固体酸材料进行红外光谱分析,所得的红外光谱图如图4所示,从图4可以看出,实施例1-5的超强固体酸材料的外红光谱中均在1190cm-1、1038cm-1处出现了伸缩振动峰,这正是磺酸基团的特征峰,可见,本发明的超强固体酸材料中成功接入了磺酸基团。
将实施例3制备的超强固体酸材料吸附TMPO后用400M固体核磁共振谱仪进行测试,所得的31P-1H二维核磁谱图如图5所示,由图5可以看出,实施例3的超强固体酸材料是超强酸,31P的化学位移可达88ppm。
试验一、本发明的含氮MOFs的超强固体酸材料催化酯交换反应的效果试验
试验方法:
取6份0.5mL葵花籽油分别加入到6个10mL西林瓶中,分别取25mg实施例1-5制备的超强固体酸材料和硫酸,将实施例1-5制备的超强固体酸材料和硫酸分别加入到6个西林瓶中,然后向6个西林瓶中分别加入2mL甲醇,再将6个西林瓶分别进行加热,加热至85℃并保温,在85℃下反应12h,反应完成后,离心分离,将所得的溶液使用配备质谱检测器的岛津GCMS-2010PLUS气质联用仪对各西林瓶中的产物进行测试分析,测试条件如下:进样口温度为270℃,柱温初温为140℃,然后以10℃/min的升温速率升到270℃,检测器温度为280℃。
试验结果:
该反应的主要产物如下:棕榈酸甲酯、硬脂酸甲酯、油酸甲酯、亚油酸甲酯和山嵛酸甲酯,根据检测结果计算棕榈酸甲酯、硬脂酸甲酯、油酸甲酯、亚油酸甲酯和山嵛酸甲酯的转化率(转化率的计算参照(A solvent-free,one-step synthesis of sulfonic acidgroup-functionalized mesoporous organosilica with ultra-high acidconcentrations and excellent catalytic activities));
主要产物的转化率如下表2所示:
表2不同催化剂葵花籽油进行酯交换反应的效果
Figure BDA0002275323510000071
由上表可知,实施例1-5制备的超强固体酸材料催化葵花籽油脂交换反应,具有较高的转化率,棕榈酸甲酯的转化率可达79.5-89.7%,硬脂酸甲酯的转化率可达81.8-86.6%,油酸甲酯的转化率可达71.9-89.1%,亚油酸甲酯的转化率可达75.4-86.0%,和山嵛酸甲酯的转化率可达69.1-81.4%。与传统H2SO4催化剂相比,在同样的反应条件下,UiO-66-[C3NH2][CF3SO3]-Ⅲ的催化效果更优于H2SO4,棕榈酸甲酯(89.7%),油酸甲酯(89.1%)和山嵛酸甲酯(77.9%)的转化率明显高于同等条件下硫酸的催化效果。
试验二、本发明的含氮MOFs的超强固体酸材料的催化稳定性试验
1、取0.5mL葵花籽油加入10mL西林瓶中,取25mg实施例3制备的超强固体酸材料加入到西林瓶中,然后向西林瓶中加入2mL甲醇,再将西林瓶分别进行加热,加热至85℃并保温,在85℃下反应12h,反应完成后,离心分离,将所得的滤饼使用配备质谱检测器的岛津GCMS-2010PLUS气质联用仪对各西林瓶中的产物进行测试分析,测试条件如下:进样口温度为270℃,柱温初温为140℃,然后以10℃/min的升温速率升到270℃,检测器温度为280℃;
2、将上述离心分离后所得的滤饼用甲醇洗涤,然后在60℃真空干燥12h,得到回收后的催化剂,再将催化剂体积分数为1%的三氟甲磺酸的二氯甲烷溶液活化12h,活化完成后,将催化剂进行干燥,备用;
3、将步骤2所得的催化剂重复步骤1进行催化葵花籽油试验;
4、重复步骤2-3三次;
试验结果:
每一次催化葵花籽油进行酯交换反应的主要产物如下:棕榈酸甲酯、硬脂酸甲酯、油酸甲酯、亚油酸甲酯和山嵛酸甲酯,根据每一次的检测结果计算棕榈酸甲酯、硬脂酸甲酯、油酸甲酯、亚油酸甲酯和山嵛酸甲酯的转化率;
每一次催化葵花籽油进行酯交换反应,主要产物的转化率如下表3所示:
表3循环使用实施例3的催化剂催化葵花籽油进行酯交换反应的效果
Figure BDA0002275323510000081
由表3可知,实施例3制备的超强固体酸材料经多次循环使用后,其催化效果几乎不减弱,和第一次使用的效果几乎差不多,可见,本发明的超强固体酸材料催化稳定性高。

Claims (2)

1.一种UiO-66-NH2型含氮MOFs的超强固体酸材料,其特征在于由以下方法制备而成:
1.1、将UiO-66-NH2型含氮MOFs材料、磺酸内酯类化合物和溶剂A混合均匀,再在回流的条件下进行反应,得到中间产物;
1.2、将中间产物和三氟甲磺酸与溶剂B混合均匀,再进行离子交换反应,得到所述的含氮MOFs的超强固体酸材料;
所述的磺酸内酯类化合物为1,3-丙烷磺酸内酯或1,4-丁磺酸内酯,中间产物与三氟甲磺酸的质量体积比为0.1g-1g:50μL-100μL;
所述的溶剂A为甲苯,溶剂B为二氯甲烷;
所述的含氮MOFs材料与1,3-丙烷磺内酯的质量比为1-10:1,回流温度为80-110℃,回流时间为20-28h;
回流结束后,将所得的产物进行离心分离,将所得滤饼用N,N-二甲基甲酰胺洗涤干净,再在110-150℃真空干燥12-24h,得到中间产物;
在回流的同时进行搅拌,搅拌的转速为200-500rmp;
所述的离子交换反应是在冰浴条件下反应20-30h,反应结束后,将所得的产物进行离心分离,将所得的滤饼用二氯甲烷洗涤干净,再烘干,得到所述的UiO-66-NH2型含氮MOFs的超强固体酸材料。
2.一种权利要求1所述的UiO-66-NH2型含氮MOFs的超强固体酸材料在催化酯交换反应和酯化反应中的应用。
CN201911120479.1A 2019-11-15 2019-11-15 一种含氮MOFs的超强固体酸材料及其应用 Active CN110787841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911120479.1A CN110787841B (zh) 2019-11-15 2019-11-15 一种含氮MOFs的超强固体酸材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911120479.1A CN110787841B (zh) 2019-11-15 2019-11-15 一种含氮MOFs的超强固体酸材料及其应用

Publications (2)

Publication Number Publication Date
CN110787841A CN110787841A (zh) 2020-02-14
CN110787841B true CN110787841B (zh) 2021-12-28

Family

ID=69444973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911120479.1A Active CN110787841B (zh) 2019-11-15 2019-11-15 一种含氮MOFs的超强固体酸材料及其应用

Country Status (1)

Country Link
CN (1) CN110787841B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112958129B (zh) * 2021-02-03 2022-06-17 中国科学院兰州化学物理研究所 一种固体酸催化剂及其制备方法与应用
CN116272896A (zh) * 2023-02-24 2023-06-23 中国人民解放军军事科学院防化研究院 一种多级孔mof-808宏观整体材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970719A (zh) * 2019-04-17 2019-07-05 北京工业大学 一种基于吡唑配体的碱稳定的金属有机骨架材料和制备方法及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698812B (zh) * 2012-06-04 2014-03-12 大连理工大学 一种固体超强酸-离子液体复合固载催化剂及其制备方法
CN103537321A (zh) * 2013-10-17 2014-01-29 南开大学 一种聚合物负载离子液体及其制法和在催化酯化中的用途
CN105688993B (zh) * 2016-03-04 2018-02-06 河北科技大学 一种负载型聚合酸性离子液体催化剂及其制备方法和应用
CN107213915A (zh) * 2017-05-22 2017-09-29 江苏大学 一种酸碱双功能金属有机骨架催化剂及其制备方法和用途
CN107297222B (zh) * 2017-06-14 2020-03-31 东南大学 一种聚离子液体固体酸催化剂的制备及其应用方法
CN108155409B (zh) * 2017-12-26 2020-10-27 深圳中科瑞能实业有限公司 钡基双离子电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970719A (zh) * 2019-04-17 2019-07-05 北京工业大学 一种基于吡唑配体的碱稳定的金属有机骨架材料和制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"In situ doping brushite on zinc manganese oxide toward enhanced water oxidation performance: Mimicry of an oxygen-evolving complex";Miao Jiang等;《Chinese Journal of Catalysis》;20180606;第39卷(第6期);第1017-1026页 *

Also Published As

Publication number Publication date
CN110787841A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
Gao et al. Efficient mesoporous carbon-based solid catalyst for the esterification of oleic acid
Liu et al. Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel
Zhou et al. Zirconium-containing UiO-66 as an efficient and reusable catalyst for transesterification of triglyceride with methanol
CN111205469B (zh) 一种超微孔锆基金属有机骨架材料及其制备方法和应用
CN112521263B (zh) 一种MOF担载的Ir配合物催化CO2加氢还原制备甲酸盐/甲酸的方法
CN110787841B (zh) 一种含氮MOFs的超强固体酸材料及其应用
Chen et al. Immobilization of a thiol-functionalized ionic liquid onto HKUST-1 through thiol compounds as the chemical bridge
Ma et al. Activity of microporous lignin-derived carbon-based solid catalysts used in biodiesel production
Dai et al. Zirconium-based MOFs-loaded ionic liquid-catalyzed preparation of biodiesel from Jatropha oil
CN101816925B (zh) 一种用于co2吸附的有机无机杂化材料及其制备方法
Cheng et al. Synergistic and efficient catalysis over Brønsted acidic ionic liquid [BSO3HMIm][HSO4]–modified metal–organic framework (IRMOF-3) for microalgal biodiesel production
CN114308094B (zh) 钴单原子/氮掺杂介孔碳纤维材料及其制备方法与应用
CN105921168A (zh) 一种加氢脱氧异构催化剂的制备方法、加氢脱氧异构催化剂及应用
Zhang et al. Acid-Base Bifunctional Metal-Organic Frameworks: Green Synthesis and Application in One-Pot Glucose to 5-HMF Conversion
Sahar et al. Biodiesel production from Mazari palm (Nannorrhops ritchiana) seeds oil using Tungstophosphoric acid decorated SnO2@ Mn-ZIF bifunctional heterogeneous catalyst
CN113385198B (zh) 有序介孔硫酸化锆—铝复合氧化物固体酸材料及其制备和应用
Mao et al. Zeolitic imidazolate framework (ZIF-8)-derived acid-base bifunctional single-atom catalysts with Zn-Nx coordination for microalgal lipids conversion
CN114433163A (zh) 一种原位改性和孔隙可调控的生物炭负载钌催化剂及其制备方法和在木质素中的应用
CN112480421B (zh) 一种溶剂诱导海胆状MOFs的合成方法
Shi et al. Preparation of heterogeneous interfacial catalyst benzimidazole-based acid ILs@ MIL-100 (Fe) and its application in esterification
Guo et al. Ultrafine metal–organic framework exposed coordinatively unsaturated cobalt-nitrogen active sites for catalytic conversion of microalgal lipids to biodiesel
CN111135857B (zh) 还原型催化剂的制备方法及其用途
CN113019352A (zh) 一种嵌入式碱土金属氧化物固体碱的制备方法及其在生物柴油生产中的应用
Jiang et al. Preparation of KF–La 2 O 2 CO 3 solid base catalysts and their excellent catalytic activities for transesterification of tributyrin with methanol
CN106513014A (zh) 一种多级孔碳支撑酸性固体催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant