CN110752358A - 一种稻壳基硅氧碳复合负极材料的制备方法及其应用 - Google Patents

一种稻壳基硅氧碳复合负极材料的制备方法及其应用 Download PDF

Info

Publication number
CN110752358A
CN110752358A CN201910986735.9A CN201910986735A CN110752358A CN 110752358 A CN110752358 A CN 110752358A CN 201910986735 A CN201910986735 A CN 201910986735A CN 110752358 A CN110752358 A CN 110752358A
Authority
CN
China
Prior art keywords
negative electrode
electrode material
product
carbon composite
composite negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910986735.9A
Other languages
English (en)
Inventor
杨宏训
徐明航
马娇娇
赵象晨
孙孟飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201910986735.9A priority Critical patent/CN110752358A/zh
Publication of CN110752358A publication Critical patent/CN110752358A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种稻壳基硅氧碳复合负极材料的制备方法,将稻壳清洗干净、浸泡于0.1~5mol/L的酸溶液中,在50~80℃下保持8~24h并搅拌,过滤并洗涤至中性干燥,得到产物A;再将产物A平铺于瓷舟中,置于管式炉内,以升温速率为2~5℃/min,温度为400~600℃,时间为0.5~2h进行预碳化处理,得到产物B;然后将产物B与碳材料按照1~6:1~6质量比混合均匀装在球磨罐中,球磨3~12h得到产物C;最后将产物C平铺于瓷舟中,置于管式炉内,以升温速率为2~5℃/min,升温温度为800~1300℃,进行煅烧2~7h,自然冷却后得到稻壳基硅氧碳复合负极材料。本发明工艺简单,原料来源广泛,便于大规模生产。

Description

一种稻壳基硅氧碳复合负极材料的制备方法及其应用
技术领域
本发明涉及新能源储能领域,特别涉及一种稻壳基硅氧碳复合负极材料的制备方法及其应用。
背景技术
锂离子电池(LIBs)具有能量密度高、功率密度大、工作电压高、循环寿命长、自放电率低、环境污染低等优点,作为目前最有效的储能设备之一,已经广泛的应用于各个领域,在现代社会中发挥着越来越重要的作用。随着电动汽车的大量生产以及可便携式电子设备的迭代更新对锂离子电池的容量和续航能力有了更高的需求。
然而当前锂离子电池商业化使用的主流负极材料为石墨,其理论容量仅为372mAh/g,在实际应用过程中,已接近理论容量,无法满足高性能电池的应用需求。因此开发具有高比容量的新兴负极材料已经是大势所趋,在提出的用于锂离子电池的新兴负极材料中,硅被认为是最有希望替代石墨的候选材料。它具有超高的理论容量(4200mA h/g),是石墨的11倍,并且在地壳中含量丰富,对环境友好。但是,硅材料在锂离子反复的嵌入和脱出过程中,伴随着严重的体积变化(约300%),导致充放电过程中硅颗粒的粉碎,电极脱落以及固体电解质界面(SEI)过度生长而影响其循环寿命。为了解决这个缺点,硅氧碳复合负极材料便是其研究中的一大热点。碳材料具有较高的电导率,结构相对稳固,在循环过程中体积膨胀很小,通常在10%以下,并且碳材料还具有良好的柔韧性和润滑性,能够在一定程度上抑制硅材料在循环过程中的体积膨胀。目前,大多数制备硅氧碳负极材料的工艺较为复杂,成本较高。因此,开发一种工艺简单、成本低、能有效抑制硅颗粒体积膨胀的制备方法仍是一个挑战。
已经证明,可以通过天然生物质来制造各种各样的功能纳米结构材料。在各种天然物质中,稻是最常见的农作物之一,在全球广泛种植,稻壳作为一种农业废料,常见的处理方式为露天焚烧,不仅造成资源浪费还污染环境。经过检测证实稻壳中包含有丰富的碳和硅元素(稻壳含有20%重量的二氧化硅),通过设计和制造可以作为锂离子电池负极材料,使稻壳成为开发新型硅氧碳复合电极材料的重要资源,对于解决当前的能源危机和环境污染问题具有重要意义。
发明内容
本发明的目的在于克服现有技术的不足,提供一种稻壳基硅氧碳复合负极材料的制备方法及其应用。
本发明采用天然的可再生的农作物废料稻壳为负极材料的前驱体,通过简单的机械化学方法,制备出高循环稳定性、低成本的锂离子电池负极材料。
为解决上述技术问题,本发明的技术方案为:
一种稻壳基硅氧碳复合负极材料的制备方法及其应用,包括如下步骤:
步骤1:将稻壳采用超纯水清洗干净、然后浸泡于0.1~5mol/L的酸溶液中,在50~80℃下保持8~24h并不断搅拌,然后过滤并用超纯水洗涤至中性干燥,得到产物A;
步骤2:将产物A平铺于瓷舟中,置于惰性气氛的管式炉内,以升温速率为2~5℃/min,预碳化温度为400~600℃,预碳化时间为0.5~2h进行预碳化处理,得到产物B;
步骤3:将产物B与碳材料按照1~6:1~6质量比混合均匀装在球磨罐中,球磨3~12h得到产物C;
步骤4:将产物C平铺于瓷舟中,置于惰性气氛的管式炉内,以升温速率为2~5℃/min,升温温度为800~1300℃,进行煅烧2~7h,自然冷却后得到产物稻壳基硅氧碳复合负极材料。
进一步的优选,步骤1中所述的酸溶液为盐酸、硫酸、硝酸、醋酸、草酸中的任意一种或几种任意比例的混合酸。
进一步的优选,步骤2中所述的惰性气氛为氮气或氩气或氮氩混合气。
进一步的优选,步骤3中所述的碳材料为石墨、沥青、石墨烯、还原氧化石墨烯中的任意一种或几种任意质量比的混合碳材料。
进一步的优选,步骤4中所述的惰性气氛为氮气、氩气、氢氩混合气中的任意一种或几种任意质量比的混合气。
由根据权利要求1~5任意一项所述制备方法制备得到的稻壳基硅氧碳复合负极材料。
一种稻壳基硅氧碳复合负极材料作为锂离子电池负极材料的应用。
本发明的优点在于:
1、本发明的稻壳基硅氧碳复合负极材料的制备方法,直接以稻的副产物稻壳为原料,实现了废弃农作物再利用,不仅有利于保护环境,还降低了生产成本,符合国家大力发展天然废弃物生物质新材料的要求,提高了稻的经济、社会和生态效益;
2、本发明的稻壳基硅氧碳复合负极材料的制备方法,基于稻壳中含有天然的二氧化硅成分,通过简单易操作的还原手段将二氧化硅还原成硅氧化合物,再通过与碳材料机械混合生成具有致密碳包覆层的SiOx@G复合负极材料,有效提升硅氧碳材料的导电性并同时抑制硅颗粒的体积膨胀,从而提升电池的循环性能。
附图说明
图1为本发明实施例1制备得到的稻壳基硅氧碳复合负极材料的扫描电镜图。
图2是本发明实施例1制备得到的稻壳基硅氧碳复合负极材料的X射线衍射(XRD)图谱。
图3是本发明实施例1制备得到的稻壳基硅氧碳复合负极材料BET图。
图4是本发明实施例1制备得到的稻壳基硅氧碳复合负极材料作为锂离子电池负极材料在500mA g-1下的循环性能图。
具体实施方式
下面的实施例可以使本专业的技术人员更全面地理解本发明,但并不因此将本发明限制在所述的实施例范围之中。
实施例1
1、一种稻壳基硅氧碳复合负极材料的制备方法,主要包括以下步骤:
(a)取1g的稻壳先用超纯水清洗干净、然后浸泡于50ml浓度为2mol/L的盐酸溶液中,在60℃下保持12h,浸泡完毕后用超纯水洗涤至中性,置于60℃下烘干,得到产物A;
(b)将产物A平铺于瓷舟中,置于惰性气氛的管式炉内,以2℃/min升温速率升温至450℃进行预碳化处理,得到产物B;
(c)将产物B与石墨按照1:1的质量比混合均匀装在球磨罐中,球磨10h得到产物C;
(d)将产物C平铺于瓷舟中,置于氩氢混合气(95%/5%,v/v)的管式炉内,以3℃/min升温速率升温至1100℃煅烧一段时间,自然冷却后得到产物稻壳基硅氧碳复合负极材料。
2、CR2032扣式锂离子电池的组装及性能测试,主要包括如下步骤:
(a)将稻壳基硅氧碳复合负极材料、导电剂Super P、粘结剂聚偏氟乙烯按照质量比7:2:1混合均匀,得到固体混合物;
(b)将步骤(a)得到的固体混合物与N-甲基吡咯烷酮按照质量比为25:75进行混合,搅拌均匀,制得浆料;
(c)将步骤(b)得到的浆料涂覆在铜箔上,经干燥、辊压后制得厚度为10~24μm的锂离子电池电极片;
(d)将步骤(c)得到的锂离子电池电极片作为电极负极片,锂片作为电极正极片,采用微孔聚丙烯膜为隔膜,采用1mol/L的LiPF6及溶剂为电解液,在充满氩气的手套箱中装配成CR2032扣式锂离子电池。
(e)将步骤(d)组装好的锂离子电池在0.01-3V电压范围内,以50mA g-1的电流密度进行首圈充放电活化。活化后,在0.01-3V电压范围内,以500mA g-1的电流密度进行充放电循环测试。
实施例2
1、一种稻壳基硅氧碳复合负极材料的制备方法,主要包括以下步骤:
(a)取1g的稻壳先用超纯水清洗干净、然后浸泡于50ml浓度为2mol/L的盐酸溶液中,在60℃下保持8h,浸泡完毕后用超纯水洗涤至中性,置于60℃下烘干,得到产物A;
(b)将产物A平铺于瓷舟中,置于惰性气氛的管式炉内,以2℃/min升温速率升温至450℃进行预碳化处理,得到产物B;
(c)将产物B与石墨按照1:1的质量比混合均匀装在球磨罐中,球磨10h得到产物C;
(d)将产物C平铺于瓷舟中,置于氩氢混合气(95%/5%,v/v)的管式炉内,以3℃/min升温速率升温至900℃煅烧一段时间,自然冷却后得到产物稻壳基硅氧碳复合负极材料。
2、CR2032扣式锂离子电池的组装及性能测试:将硅氧碳复合负极材料按照实施例1的方式组装电池并进行充放电性能测试。
实施例3
1、一种稻壳基硅氧碳复合负极材料的制备方法,主要包括以下步骤:
(a)取1g的稻壳先用超纯水清洗干净、然后浸泡于50ml浓度为2mol/L的盐酸溶液中,在60℃下保持24h,浸泡完毕后用超纯水洗涤至中性,置于60℃下烘干,得到产物A;
(b)将产物A平铺于瓷舟中,置于惰性气氛的管式炉内,以2℃/min升温速率升温至450℃进行预碳化处理,得到产物B;
(c)将产物B与石墨按照1:1的质量比混合均匀装在球磨罐中,球磨10h得到产物C;
(d)将产物C平铺于瓷舟中,置于氩氢混合气(95%/5%,v/v)的管式炉内,以3℃/min升温速率升温至1300℃煅烧一段时间,自然冷却后得到产物稻壳基硅氧碳复合负极材料。
2、CR2032扣式锂离子电池的组装及性能测试:将硅氧碳复合负极材料按照实施例1的方式组装电池并进行充放电性能测试。
实施例4
1、一种稻壳基硅氧碳复合负极材料的制备方法,主要包括以下步骤:
(a)取1g的稻壳先用超纯水清洗干净、然后浸泡于50ml浓度为2mol/L的盐酸溶液中,在60℃下保持16h,浸泡完毕后用超纯水洗涤至中性,置于60℃下烘干,得到产物A;
(b)将产物A平铺于瓷舟中,置于惰性气氛的管式炉内,以2℃/min升温速率升温至450℃进行预碳化处理,得到产物B;
(c)将产物B与石墨按照1:2的质量比混合均匀装在球磨罐中,球磨10h得到产物C;
(d)将产物C平铺于瓷舟中,置于氩氢混合气(95%/5%,v/v)的管式炉内,以3℃/min升温速率升温至1100℃煅烧一段时间,自然冷却后得到产物稻壳基硅氧碳复合负极材料。
2、CR2032扣式锂离子电池的组装及性能测试:将硅氧碳复合负极材料按照实施例1的方式组装电池并进行充放电性能测试。
以实施例1制备得到的稻壳基硅氧碳复合负极材料为例,进行电镜扫描,扫描结果如图1所示,整体呈块状结构,样品表面粗糙,出现形状不规则且尺寸不均匀的颗粒状结构,表面出现这种结构可归因于在碳化过程中,稻壳中的一些有机成分热解,释放出的气体从稻壳表面逸出,导致表面出现图中所示的现象,此外,其材料表面被层状石墨所包覆,不仅可以提升硅材料的导电性还可以抑制硅材料的体积膨胀;
进行拉曼扫描,结果如图2所示,在~1360和~1580cm-1处两个宽泛的特征峰分别D带和G带,证明碳化后的稻壳中的碳是无定形碳;
图3的显示了稻壳基硅氧碳复合负极材料的氮气吸附脱附等温曲线和孔径分布,表明材料中主要存在介孔,这与扫描电镜中观察结果的一致。
图4所示,制备的稻壳基硅氧碳复合负极材料作为锂离子电池负极材料在500mA/g下的循环性能图,在循环200圈后放电容量在681mA h/g,远高于目前商业化的石墨负极材料,表现出优异的循环性能。
实施例1-4的BET测试分析结果如表1所示。
表1
实施例 BET(m<sup>2</sup> g<sup>-1</sup>) 孔径分布(nm)
1 79.50 3.73
2 105.50 3.61
3 95.24 3.84
4 109.71 2.23
实施例1-4的锂电性能结果如表2所示。
表2为实施例1~4的锂离子电池在500mA g-1电流下进行充放电测试第2圈和第200圈所获得的容量。
表2
Figure BDA0002236929540000091
从表2可以看出,采用本发明的稻壳基硅氧碳复合负极材料作为电极材料,应用于锂离子电池,在500mA g-1下,循环200圈后充电容量在610mAh g-1以上,容量保持率在81%以上,具有很好的循环性能,远高于当前商业化的石墨负极材料。
以上显示和描述了本发明的基本原理和主要特征以及本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种稻壳基硅氧碳复合负极材料的制备方法,其特征在于,包括如下步骤:
步骤1:将稻壳采用超纯水清洗干净、然后浸泡于0.1~5mol/L的酸溶液中,在50~80℃下保持8~24h并不断搅拌,然后过滤并用超纯水洗涤至中性干燥,得到产物A;
步骤2:将产物A平铺于瓷舟中,置于惰性气氛的管式炉内,以升温速率为2~5℃/min,预碳化温度为400~600℃,预碳化时间为0.5~2h进行预碳化处理,得到产物B;
步骤3:将产物B与碳材料按照1~6:1~6质量比混合均匀装在球磨罐中,球磨3~12h得到产物C;
步骤4:将产物C平铺于瓷舟中,置于惰性气氛的管式炉内,以升温速率为2~5℃/min,升温温度为800~1300℃,进行煅烧2~7h,自然冷却后得到产物稻壳基硅氧碳复合负极材料。
2.根据权利要求1所述的稻壳基硅氧碳复合负极材料的制备方法,其特征在于:步骤1中所述的酸溶液为盐酸、硫酸、硝酸、醋酸、草酸中的任意一种或几种任意比例的混合酸。
3.根据权利要求1所述的稻壳基硅氧碳复合负极材料的制备方法,其特征在于:步骤2中所述的惰性气氛为氮气或氩气或氮氩混合气。
4.根据权利要求1所述的稻壳基硅氧碳复合负极材料的制备方法,其特征在于:步骤3中所述的碳材料为石墨、沥青、石墨烯、导电碳黑、还原氧化石墨烯中的任意一种或几种任意质量比的混合碳材料。
5.根据权利要求1所述的稻壳基硅氧碳复合负极材料的制备方法,其特征在于:步骤4中所述的惰性气氛为氮气、氩气、氢氩混合气中的任意一种或几种任意质量比的混合气。
6.一种根据权利要求1~5任意一项所述制备方法制备得到的稻壳基硅氧碳复合负极材料。
7.权利要求6所述的稻壳基硅氧碳复合负极材料作为锂离子电池负极材料的应用。
CN201910986735.9A 2019-10-17 2019-10-17 一种稻壳基硅氧碳复合负极材料的制备方法及其应用 Withdrawn CN110752358A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910986735.9A CN110752358A (zh) 2019-10-17 2019-10-17 一种稻壳基硅氧碳复合负极材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910986735.9A CN110752358A (zh) 2019-10-17 2019-10-17 一种稻壳基硅氧碳复合负极材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN110752358A true CN110752358A (zh) 2020-02-04

Family

ID=69278653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910986735.9A Withdrawn CN110752358A (zh) 2019-10-17 2019-10-17 一种稻壳基硅氧碳复合负极材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110752358A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397701A (zh) * 2020-11-20 2021-02-23 江苏科技大学 一种稻壳基硅氧化物/碳复合负极材料及其制备方法与应用
CN113178564A (zh) * 2021-04-25 2021-07-27 陈庆 一种二氧化硅-碳复合材料及其制备方法和应用
CN114023941A (zh) * 2021-11-09 2022-02-08 江苏科技大学 一种稻壳基硅氧化物/石墨烯气凝胶复合负极材料及其制备方法与应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112397701A (zh) * 2020-11-20 2021-02-23 江苏科技大学 一种稻壳基硅氧化物/碳复合负极材料及其制备方法与应用
CN113178564A (zh) * 2021-04-25 2021-07-27 陈庆 一种二氧化硅-碳复合材料及其制备方法和应用
CN114023941A (zh) * 2021-11-09 2022-02-08 江苏科技大学 一种稻壳基硅氧化物/石墨烯气凝胶复合负极材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
Liu et al. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries
CN107359338B (zh) 一种具有十二面体结构的氧化钴/碳复合中空纳米结构材料及其在锂电池负极中的应用
Salimi et al. Turning an environmental problem into an opportunity: potential use of biochar derived from a harmful marine biomass named Cladophora glomerata as anode electrode for Li-ion batteries
CN109742360B (zh) 一种具有高容量硒化钼-小球藻衍生碳少层复合物电池负极材料制备
Liu et al. Biomass-derived activated carbon for rechargeable lithium-sulfur batteries
CN110752358A (zh) 一种稻壳基硅氧碳复合负极材料的制备方法及其应用
CN108899530B (zh) 硅碳复合材料及其制备方法和应用
CN110429282B (zh) 一种锂离子电池用新型纳米碳球负极材料
Li et al. Formation mechanism and characterization of porous biomass carbon for excellent performance lithium-ion batteries
CN110880599A (zh) 一种高性能氟化花生壳硬碳电极材料的制备方法
US20210408542A1 (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, lithium ion battery, battery pack and battery powered vehicle
CN109360962B (zh) 一种锂电池用高稳定性硅碳负极材料及其制备方法
CN114188511B (zh) 一种氮掺杂碳包覆石墨复合材料及其制备方法和应用
CN104401974A (zh) 一种锂离子电池用高容量碳负极材料的制备方法
KR20210068497A (ko) 리튬 이온 배터리 음극 활성 재료, 리튬 이온 배터리 음극, 리튬 이온 배터리, 배터리 팩 및 배터리 동력차
CN110600682B (zh) 三明治形中空球形锂离子电池负极材料及其制备方法
Cao et al. Porous carbon particles derived from natural peanut shells as lithium ion battery anode and its electrochemical properties
CN115275189A (zh) 一种氮掺杂稻壳基硬碳负极材料及其制备方法与应用
CN110510595B (zh) 一种用于锂硫电池的n/s共掺杂多孔碳的制备方法
CN112086642A (zh) 一种石墨化碳包覆的高比表面积多孔碳球及其制备方法和应用
CN108682856B (zh) 香蒲碳负载的磷酸钒钠纳米复合材料及其制备方法和应用
CN114551871A (zh) 一种球形硬碳复合材料及其制备方法和应用
CN114373925A (zh) 一种氧化改性的无定型碳材料的制备方法和用途
CN110407204A (zh) 一种焦炭低温石墨化的制备方法及用途
Su et al. Preparation and electrochemical properties of bamboo-based carbon for lithium-ion-battery anode material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200204