CN110732677A - 一种形貌可控的油溶性钯纳米材料的制备方法 - Google Patents

一种形貌可控的油溶性钯纳米材料的制备方法 Download PDF

Info

Publication number
CN110732677A
CN110732677A CN201910987698.3A CN201910987698A CN110732677A CN 110732677 A CN110732677 A CN 110732677A CN 201910987698 A CN201910987698 A CN 201910987698A CN 110732677 A CN110732677 A CN 110732677A
Authority
CN
China
Prior art keywords
palladium
chloroform
nano
solution
mass ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910987698.3A
Other languages
English (en)
Inventor
唐华东
朱文仙
欧阳杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201910987698.3A priority Critical patent/CN110732677A/zh
Publication of CN110732677A publication Critical patent/CN110732677A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0553Complex form nanoparticles, e.g. prism, pyramid, octahedron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种形貌可控的油溶性钯纳米材料的制备方法,所述制备方法如下:(1)配置溶解在氯仿溶剂中的醋酸钯前驱体溶液,钯盐与氯仿质量比为1:1000~2500;(2)向步骤(1)得到的氯仿溶液中加入油胺和油酸作为保护剂,使醋酸钯、油胺、油酸的质量比为1:1.33~4.0:1.48~4.45;(3)向步骤(2)得到的氯仿溶液中进一步加入二乙基硅烷,使醋酸钯与二乙基硅烷的质量比为1:1,该溶液在室温下搅拌反应2~8小时,获得钯纳米颗粒氯仿溶液;(4)向钯纳米颗粒氯仿溶液中加入甲醇,离心得到黑色钯纳米颗粒沉淀。本发明反应条件温和,制备过程简单,易于规模化生产,生产周期短,获得的钯纳米颗粒粒径分布均匀,稳定性高,可溶于油相溶剂。

Description

一种形貌可控的油溶性钯纳米材料的制备方法
技术领域
本发明涉及纳米材料领域,主要提供一种油溶性钯纳米材料的制备方法。
背景技术
钯纳米材料作为良好的储氢材料、燃料电池催化电极、多相催化材料而备受瞩目。纳米钯的制备技术随其在不同领域的应用场景而显得十分重要。目前合成纳米钯颗粒的方法可以分为物理法和化学法。物理法主要包括蒸发冷凝法、等离子体沉积法、溅射法、物理粉碎法等。物理方法虽然能大批量地制备纳米钯颗粒,但是制备过程复杂,产物质量较差,颗粒粒径分布不均匀。化学法是从分子层次对物质进行操作,在均相溶液通过化学反应制备钯纳米颗粒有利于控制颗粒的尺寸大和均一性,所以目前科技工作者广泛采用热分解法、微波辐射法、超声辐射法、化学还原法等化学法来制备钯纳米材料。化学还原法一般通过在钯的金属盐中加入还原性胺类、氢气、醇类等来获得钯纳米颗粒的同时加入适当的保护剂防止纳米钯的团聚,该方法的研究起步较早,具有反应条件温和、制备操作简单的优势。但传统化学还原法多在水相环境中进行反应,制备所得的钯纳米颗粒易溶于水等强极性溶剂,而难溶于甲苯、己烷等非极性油相溶剂。同时传统化学还原法还存在难以控制钯纳米颗粒形貌的缺点。
发明内容
本发明的目的是提供一种简单的化学还原方法制备可溶于油相溶剂的钯纳米材料,该制备方法反应条件温和,制备过程简单,易于规模化生产,生产周期短,获得的钯纳米颗粒粒径分布均匀,稳定性高。
为实现上述,本发明采用如下技术方案:
一种油溶性钯纳米材料的制备方法,该方法通过在室温下向氯仿溶剂中加入醋酸钯、油胺、油酸以及二乙基硅烷还原剂来获得钯纳米颗粒,依靠油胺、油酸的比例来控制纳米颗粒的形貌,具体步骤如下:
(1)配置溶解在氯仿溶剂中的醋酸钯前驱体溶液,钯盐与氯仿质量比为1:1000~2500;
(2)向步骤(1)得到的氯仿溶液中加入油胺和油酸作为保护剂,使醋酸钯、油胺、油酸的质量比为1:1.33~4.0:1.48~4.45;
(3)向步骤(2)得到的氯仿溶液中进一步加入二乙基硅烷,使醋酸钯与二乙基硅烷的质量比为1:1,该溶液在室温下搅拌反应2~8小时,最终获得钯纳米颗粒氯仿溶液;
(4)向钯纳米颗粒氯仿溶液中加入甲醇,离心得到黑色钯纳米颗粒沉淀,将该沉淀分散于甲苯或正己烷得到钯纳米颗粒的油相溶液。
本发明的优势在于:
第一,三种形貌的钯纳米材料(包括球形钯纳米颗粒、蠕虫状钯纳米颗粒与菜花状钯纳米颗粒)均采用室温一步法合成,方法简单易行,实验重现性高。
第二,钯纳米颗粒的粒径分布均匀,钯纳米材料的形貌通过改变油胺与油酸的配比来进行控制。
第三,反应条件温和,制备过程简单,易于规模化生产。
附图说明
图1为本发明实施例1得到的球形钯纳米颗粒的透射电镜照片;
图2为本发明实施例2得到的球形钯纳米颗粒的透射电镜照片;
图3为本发明实施例3得到的菜花状钯纳米颗粒的透射电镜照片;
图4为本发明实施例4得到的菜花状钯纳米颗粒的透射电镜照片;
图5为本发明实施例5得到的蠕虫状钯纳米颗粒的透射电镜照片;
图6为本发明实施例5得到的蠕虫状钯纳米颗粒的EDX能谱图。
具体实施方式
下面通过具体实施例来进一步说明本发明的目的、优点和技术方案的实施细节。实施例中列举的具体物质和用量以及其它细节条件均不构成对本发明的限制。在具体实施实例过程中所用的试剂原料、仪器设备以及测试方法如下所示。
试剂材料
醋酸钯(AR,Pd:46.0-48.0%,Aladdin);三氯甲烷(CHCl3,AR,上海凌峰化学试剂有限公司);油胺(C18H37N,80.0%-90.0%,Aladdin);油酸(C18H32O2,AR,Aladdin);二乙基硅烷(Diethylsilane,98.0%,Aladdin)。
测试方法
用透射电子显微镜(TEM,荷兰FEITecnai G2 F30)观察钯纳米颗粒的形貌和粒径分布,得到纳米颗粒TEM图以及能量色散X射线(EDX)能谱图。
实施例1:
称取3.0mg醋酸钯于反应管中,加入3mL氯仿,搅拌直至完全溶解,溶液呈亮黄色,然后依次加入15μL的油胺和15μL的油酸作为保护剂,搅拌作用下再加入4.4μL的二乙基硅烷,室温下搅拌反应8h后得到黑色钯纳米颗粒氯仿溶液。向氯仿溶液加入过量甲醇,离心得到黑色沉淀,向沉淀中加入3mL甲苯,超声分散1分钟,得到钯纳米颗粒的甲苯溶液。取微量甲苯溶液滴加于电镜铜网上置于透射电镜下观察,所得钯纳米颗粒的形貌如图1所示。从图1可看出,所得钯纳米颗粒形貌为球形颗粒,粒径分布均匀,利用计算机软件统计得到球形钯纳米颗粒的平均粒径为8.1±0.7nm。
实施例2:
称取3.0mg醋酸钯于反应管中,加入5mL氯仿,搅拌直至完全溶解,溶液呈亮黄色,然后依次加入10μL的油胺和10μL的油酸作为保护剂,搅拌作用下再加入4.4μL的二乙基硅烷,室温下搅拌反应5h后得到黑色钯纳米颗粒氯仿溶液。向氯仿溶液加入过量甲醇,离心得到黑色沉淀,向沉淀中加入5mL甲苯,超声分散1分钟,得到钯纳米颗粒的甲苯溶液。取微量甲苯溶液滴加于电镜铜网上置于透射电镜下观察,所得钯纳米颗粒的形貌如图2所示。从图2可看出,所得钯纳米颗粒形貌为球形颗粒,粒径分布均匀,利用计算机软件统计得到球形钯纳米颗粒的平均粒径为9.3±0.6nm。
实施例3:
称取3.0mg醋酸钯于反应管中,加入3mL氯仿,搅拌直至完全溶解,溶液呈亮黄色,然后依次加入15μL的油胺和5μL的油酸作为保护剂,搅拌作用下再加入4.4μL的二乙基硅烷,室温下搅拌反应5h后得到黑色钯纳米颗粒氯仿溶液。向氯仿溶液加入过量甲醇,离心得到黑色沉淀,向沉淀中加入3mL正己烷,超声分散1分钟,得到钯纳米颗粒的正己烷溶液。取微量正己烷溶液滴加于电镜铜网上置于透射电镜下观察,所得钯纳米颗粒的形貌如图3所示。从图3可看出,所得钯纳米颗粒形貌为菜花状,粒径分布均匀,利用计算机软件统计得到菜花状纳米颗粒的平均粒径为24.3±1.9nm。
实施例4:
称取3.0mg醋酸钯于反应管中,加入2mL氯仿,搅拌直至完全溶解,溶液呈亮黄色,然后依次加入15μL的油胺和5μL的油酸作为保护剂,搅拌作用下再加入4.4μL的二乙基硅烷,室温下搅拌反应8h后得到黑色钯纳米颗粒氯仿溶液。向氯仿溶液加入过量甲醇,离心得到黑色沉淀,向沉淀中加入3mL正己烷,超声分散1分钟,得到钯纳米颗粒的正己烷溶液。取微量正己烷溶液滴加于电镜铜网上置于透射电镜下观察,所得钯纳米颗粒的形貌如图4所示。从图4可看出,所得钯纳米颗粒形貌为菜花状,粒径分布较均匀,利用计算机软件统计得到菜花状纳米颗粒的平均粒径为27.3±3.7nm。
实施例5:
称取3.0mg醋酸钯于试管中,加入3mL氯仿,搅拌直至完全溶解,溶液呈亮黄色,然后依次加入5μL的油胺和15μL的油酸作为保护剂,搅拌作用下再加入4.4μL的二乙基硅烷,室温下搅拌反应2h后得到黑色钯纳米颗粒氯仿溶液。向氯仿溶液加入过量甲醇,离心得到黑色沉淀,向沉淀中加入3mL甲苯,超声分散1分钟,得到钯纳米颗粒的甲苯溶液。取微量甲苯溶液滴加于电镜铜网上置于透射电镜下观察,所得钯纳米颗粒的形貌如图5所示。从图5可看出,所得钯纳米颗粒形貌为蠕虫状,蠕虫状钯纳米颗粒的长度约10~30nm,直径约2~4nm。
实施例6:
按照实施例5的反应条件制备蠕虫状钯纳米颗粒的甲苯溶液,取微量甲苯溶液滴加于电镜铜网上置于透射电镜下观察得到蠕虫状钯纳米颗粒图像,从图像中选取蠕虫状钯纳米颗粒密集的区域进行能量色散X射线能谱(EDX)分析,所得结果如图6所示。图6中,Pd的谱线来源于钯纳米颗粒,Cu的谱线来源于电镜铜网,C的谱线来源于电镜铜网的碳支持膜,而Si与O谱线来源于二乙基硅烷和醋酸钯的氧化还原反应。

Claims (1)

1.一种油溶性钯纳米材料的制备方法,其特征在于:所述制备方法的具体步骤如下:
(1)配置溶解在氯仿溶剂中的醋酸钯前驱体溶液,钯盐与氯仿质量比为1:1000~2500;
(2)向步骤(1)得到的氯仿溶液中加入油胺和油酸作为保护剂,使醋酸钯、油胺、油酸的质量比为1:1.33~4.0:1.48~4.45;
(3)向步骤(2)得到的氯仿溶液中进一步加入二乙基硅烷,使醋酸钯与二乙基硅烷的质量比为1:1,该溶液在室温下搅拌反应2~8小时,最终获得钯纳米颗粒氯仿溶液;
(4)向钯纳米颗粒氯仿溶液中加入甲醇,离心得到黑色钯纳米颗粒沉淀,将该沉淀分散于甲苯或正己烷得到钯纳米颗粒的油相溶液。
CN201910987698.3A 2019-10-17 2019-10-17 一种形貌可控的油溶性钯纳米材料的制备方法 Pending CN110732677A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910987698.3A CN110732677A (zh) 2019-10-17 2019-10-17 一种形貌可控的油溶性钯纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910987698.3A CN110732677A (zh) 2019-10-17 2019-10-17 一种形貌可控的油溶性钯纳米材料的制备方法

Publications (1)

Publication Number Publication Date
CN110732677A true CN110732677A (zh) 2020-01-31

Family

ID=69269163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910987698.3A Pending CN110732677A (zh) 2019-10-17 2019-10-17 一种形貌可控的油溶性钯纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN110732677A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112296348A (zh) * 2020-08-20 2021-02-02 成都理工大学 一种疏水性贵金属纳米示踪液、制备方法及应用
CN113426442A (zh) * 2021-07-15 2021-09-24 浙江博朗新材料有限公司 一种形貌尺寸可控的纳米钯催化剂的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108031861A (zh) * 2017-12-18 2018-05-15 中国科学院深圳先进技术研究院 金属纳米材料及其制备方法
CN110102776A (zh) * 2019-05-29 2019-08-09 浙江工业大学 一种在有机相中合成金纳米球、金纳米棒、金纳米线的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108031861A (zh) * 2017-12-18 2018-05-15 中国科学院深圳先进技术研究院 金属纳米材料及其制备方法
CN110102776A (zh) * 2019-05-29 2019-08-09 浙江工业大学 一种在有机相中合成金纳米球、金纳米棒、金纳米线的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马世昌: "《化学物质辞典》", 30 April 1999, 陕西科学技术出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112296348A (zh) * 2020-08-20 2021-02-02 成都理工大学 一种疏水性贵金属纳米示踪液、制备方法及应用
CN112296348B (zh) * 2020-08-20 2022-11-04 成都理工大学 一种疏水性贵金属纳米示踪液、制备方法及应用
CN113426442A (zh) * 2021-07-15 2021-09-24 浙江博朗新材料有限公司 一种形貌尺寸可控的纳米钯催化剂的制备方法

Similar Documents

Publication Publication Date Title
Brust et al. Synthesis and reactions of functionalised gold nanoparticles
CN101100002B (zh) 用于生产金属纳米颗粒的方法
CN110732677A (zh) 一种形貌可控的油溶性钯纳米材料的制备方法
CN101104204B (zh) 用于生产金属纳米颗粒的方法
Han et al. Ultrafast growth of dendritic gold nanostructures and their applications in methanol electro-oxidation and surface-enhanced Raman scattering
CN104646683A (zh) 一种粒度可控的球形银粉及其制备方法
CN103864137B (zh) 花状氧化锌纳米材料及其制备方法
CN109650360B (zh) 一种微通道连续制备磷化镍纳米颗粒的方法
CN104477857B (zh) 一种二维超薄二硒化铁纳米材料及其制备方法和应用
CN107282940B (zh) 一种利用三七提取液制备金纳米颗粒的方法
KR20110019224A (ko) 금속 씨앗을 이용한 금속 나노입자의 제조 방법 및 금속 씨앗을 함유하는 금속 나노입자
US20030010279A1 (en) Method for mass-producing carbon nanocoils
Zhu et al. Preparation and characterization of silica–silver core-shell structural submicrometer spheres
CN1060703C (zh) 纳米级金属粉的制备方法
CN113798503A (zh) 一种制备金属钴纳米片的方法
Pang et al. Solvents-dependent selective fabrication of face-centered cubic and hexagonal close-packed structured ruthenium nanoparticles during liquid-phase laser ablation
Chen et al. Fabrication and characterization of W-Ni nanocomposites via a facile chemical co-precipitation route
Zhao et al. Facile synthesis of metal and alloy nanoparticles by ultrasound-assisted dealloying of metallic glasses
WO2019177205A1 (ko) 이방성 2d 은 나노 플레이트 및 이의 제조방법
Song et al. Room-temperature controllable fabrication of silver nanoplates reduced by aniline
CN106430324A (zh) 一种花状α‑FeOOH多孔微纳米球及其制备方法
CN109607620B (zh) 一种Cu-Fe-Al-O纳米颗粒材料的制备方法
CN114105107A (zh) 具有不同形貌的高度单分散MoSe2纳米材料的制备方法
CN101269971A (zh) 纳米微粒的制造方法
CN1299862C (zh) 制备超微镍粉的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200131

RJ01 Rejection of invention patent application after publication