CN110707205A - 一种提升Te基热电接头性能的方法 - Google Patents

一种提升Te基热电接头性能的方法 Download PDF

Info

Publication number
CN110707205A
CN110707205A CN201910922138.XA CN201910922138A CN110707205A CN 110707205 A CN110707205 A CN 110707205A CN 201910922138 A CN201910922138 A CN 201910922138A CN 110707205 A CN110707205 A CN 110707205A
Authority
CN
China
Prior art keywords
powder
thermoelectric
joint
performance
barrier layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910922138.XA
Other languages
English (en)
Other versions
CN110707205B (zh
Inventor
陈少平
郭敬云
樊文浩
王文先
吴玉程
孟庆森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201910922138.XA priority Critical patent/CN110707205B/zh
Publication of CN110707205A publication Critical patent/CN110707205A/zh
Application granted granted Critical
Publication of CN110707205B publication Critical patent/CN110707205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/82Connection of interconnections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

本发明一种提升Te基热电接头性能的方法,属热电器件制备和连接件技术领域,其特征在于在热电材料和电极材料之间引入合适的化合物作为阻隔层,构建热电接头浓度梯度结构,解决二者连接过程中元素的严重扩散导致的热电接头性能削弱的问题,实现热电接头性能提升和服役寿命提高的目的。通过在Fe和Te之间引入FexTey(0<x/y<1.5)化合物作为阻隔层,采用放电等离子烧结方法(SPS)制备了Te\FexTey\Fe梯度连接结构,在外加电场和压力场的耦合作用下,在实现材料致密化的同时,同步实现阻隔层与二者之间的扩散反应而形成连接。通过引入阻隔层控制热电材料和电极材料中的元素平衡,解决热电接头界面两侧原子的过度扩散问题,提升接头性能,提高界面稳定性。

Description

一种提升Te基热电接头性能的方法
技术领域
本发明一种提升Te基热电接头性能的方法属于热电器件制备和连接件技术领域,具体涉及一种提升Te基热电接头性能的方法。通过在Te基热电材料和电极之间引入合适的化合物作为阻隔层,构成梯度连接结构,这种方法有效抑制了热电材料和电极材料之间过度的元素扩散,从而实现Te基热电接头的性能大大提升。
背景技术
Te基热电材料以其优异的热电性能得到科研工作者的广泛关注,但该领域关于器件制备和连接界面的研究尚属空白。在Te基热电材料和电极的连接过程中,温度和化学势梯度的共同作用促使原子沿垂直于界面方向进行定向输运,严重影响了热电材料和电极材料的热电输运性能,导致接头热电转换效率降低。
发明内容
本发明一种提升Te基热电接头性能的方法,目的在于通过引入符合性能要求的化合物作为阻隔层,减小热电材料和电极材料两侧元素的浓度梯度,进而抑制在材料合成和同步扩散连接过程中元素的过度扩散对热电材料以及电极材料性能的影响,从而达到提升热电接头的性能的目的。
本发明由如下技术方案实现的:一种提升Te基热电接头性能的方法,其特征在于是一种以本征Te作为热电材料,Fe和FexTey(0<x/y<1.5)化合物分别为电极和阻隔层,采用放电等离子烧结方法(SPS)制备了Te\FexTey\Fe梯度连接结构,在外加电场和压力场的耦合作用下,在实现材料致密化的同时,同步实现三者之间的扩散反应而形成连接的方法;具体步骤如下:
(1)原料准备:将纯度≥99.99%的块体Te手工研磨作为粉体1;将颗粒度小于50μm,纯度≥99.9%的Fe粉作为粉体2;将粉体1和粉体2按照化学计量比称量并充分混合后得到成分为FexTey(0<x/y<1.5)的粉体3;
(2)粉体装入模具:将粉体1装入石墨模具中,冷压至50-60%致密度;再将粉体3置于粉体1上方,同样冷压至50-60%致密度;最后将粉体2置于粉体3上方,再次冷压至50-60%致密度备用;
(3)烧结连接:将装有粉体的石墨模具放入热压炉中进行烧结连接,首先预压2.5-5MPa,待炉中真空度抽到高于20Pa后,充入99.999%的氩气至0.05MPa,再通入脉冲电流以50-100℃/min的加热速率匀速升温,粉体升温至350℃保温2-5min,同时将压力提升至40-60MPa;保温结束后,将烧结温度升至400-420℃,保温15-20min;然后以10-15℃/min的速率均匀降温至300℃,随后卸压冷却,形成热电接头。
本发明一种提升Te基热电接头性能的方法,其优点在于:在Te基热电材料和电极材料Fe之间引入FexTey(0<x/y<1.5)作为阻隔层,制备了Te\FexTey\Fe梯度连接结构,解决了热电材料和电极材料在扩散连接过程中元素的过度扩散,大幅度提升了热电接头的性能和服役寿命。
附图说明
图1为热电接头Te\FexTey\Fe连接界面处微观形貌
①区域表示Te;②区域表示化合物相β;③区域表示Fe。
具体实施方式
实施方式1:一种提升Te基热电接头性能的方法。将纯度≥99.99%的块体Te手工研磨作为粉体1;将颗粒度小于50μm,纯度≥99.9%的Fe粉作为粉体2;将粉体1和粉体2按照化学计量比称量并充分混合后得到成分为Fe53Te47的粉体3。将粉体1装入石墨模具中,冷压至50-60%致密度;再将粉体3置于粉体1上方,同样冷压至50-60%致密度;最后将粉体2置于粉体3上方,再次冷压至50-60%致密度备用。将上述模具放入热压炉中进行烧结连接,首先预压2.5MPa,待炉中真空度抽到高于20Pa后,充入高纯氩气(99.999%)至0.05MPa,再通入脉冲电流以100℃/min的加热速率匀速升温,将粉体升温至350℃保温2min,同时将压力提升至40MPa,保温结束后,将烧结温度升至420℃,保温15min后,以12℃/min的速率均匀降温至300℃,随后卸压冷却,形成梯度结构热电接头Te\Fe53Te47\Fe。对实验得到的梯度结构热电接头截面进行了X射线能谱扫描(EDS),结果如图1所示,其中①区域表示Te,②区域表示化合物相β,③区域表示Fe。可以发现②在①和③之间能够起到很好的阻隔作用,引入②有效解决了①和③连接过程中存在的严重的元素扩散问题,扩散反应层厚度由500+μm减小到10μm左右。且在扫描电子显微镜(SEM)下可以观察到其与二者的连接质量较Te\Fe好,②与①和③的接触电阻分别为50.75μΩ·cm2和14.43μΩ·cm2,与Te\Fe接头中近100μΩ·cm2的接触电阻相比有了明显改善,所以引入β相是一种提升Te基热电接头性能的有效方法。
实施方式2:一种提升Te基热电接头性能的方法。将纯度≥99.99%的块体Te手工研磨作为粉体1;将颗粒度小于50μm,纯度≥99.9%的Fe粉作为粉体2;将粉体1和粉体2按照化学计量比称量并充分混合后得到成分为Fe53Te47的粉体3。将粉体1装入石墨模具中,冷压至50-60%致密度;再将粉体3置于粉体1上方,同样冷压至50-60%致密度;最后将粉体2置于粉体3上方,再次冷压至50-60%致密度备用。将上述模具放入热压炉中进行烧结连接,首先预压2.5MPa,待炉中真空度抽到高于20Pa后,充入高纯氩气(99.999%)至0.05MPa,再通入脉冲电流以100℃/min的加热速率匀速升温,将粉体升温至350℃保温2min,同时将压力提升至50MPa,保温结束后,将烧结温度升至415℃,保温20min后,以12℃/min的速率均匀降温至300℃,随后卸压冷却,形成梯度结构热电接头Te\Fe53Te47\Fe。对实验得到的梯度结构热电接头截面进行了X射线能谱扫描(EDS),结果与实施例1相似,可以发现②在改变温度和保温时间等实验条件后仍够起到很好的阻隔作用,有效解决①和③连接过程中存在的严重的元素扩散问题。②与①和③的接触电阻分别为41.38μΩ·cm2和9.22μΩ·cm2。与Te\Fe接头中近100μΩ·cm2的接触电阻相比有了更明显改善,所以引入β相是一种提升Te基热电接头性能的有效方法。
实施方式3:一种提升Te基热电接头性能的方法。将纯度≥99.99%的块体Te手工研磨作为粉体1;将颗粒度小于50μm,纯度≥99.9%的Fe粉作为粉体2;将粉体1和粉体2按照化学计量比称量并充分混合后得到成分为Fe33Te67的粉体3。将粉体1装入石墨模具中,冷压至50-60%致密度;再将粉体3置于粉体1上方,同样冷压至50-60%致密度;最后将粉体2置于粉体3上方,再次冷压至50-60%致密度备用。将上述模具放入热压炉中进行烧结连接,首先预压2.5MPa,待炉中真空度抽到高于20Pa后,充入高纯氩气(99.999%)至0.05MPa,再通入脉冲电流以100℃/min的加热速率匀速升温,将粉体升温至350℃保温2min,同时将压力提升至40MPa,保温结束后,将烧结温度升至420℃,保温15min后,以12℃/min的速率均匀降温至300℃,随后卸压冷却,形成梯度结构热电接头Te\Fe33Te67\Fe。对实验得到的梯度结构热电接头截面进行了X射线能谱扫描(EDS),结果与实施例1相似,扩散反应层厚度也仅有10μm左右,可以发现改变化学计量比后的②仍够起到很好的阻隔作用,有效解决①和③连接过程中存在的严重的元素扩散问题。且在扫描电子显微镜(SEM)下可以观察到其与二者的连接质量较Te\Fe好,②与①和③的接触电阻分别为43.23μΩ·cm2和17.52μΩ·cm2,与Te\Fe接头中近100μΩ·cm2的接触电阻相比有了更明显改善,引入β相也是一种提升Te基热电接头性能的有效方法。

Claims (1)

1.一种提升Te基热电接头性能的方法,其特征在于是一种采用FexTey(0<x/y<1.5)作为Te基热电材料和Fe电极的阻隔层,采用放电等离子烧结方法制备了Te\FexTey\Fe梯度连接结构,在外加电场和压力场的耦合作用下,在实现材料致密化的同时,同步实现三者之间的扩散反应而形成连接的方法;具体步骤如下:
1)原料准备:将纯度≥99.99%的块体Te手工研磨作为粉体1;将颗粒度小于50μm,纯度≥99.9%的Fe粉作为粉体2;将粉体1和粉体2按照化学计量比称量并充分混合后得到成分为FexTey的粉体3;
2)粉体装入模具:将粉体1装入石墨模具中,冷压至50-60%致密度;再将粉体3置于粉体1上方,同样冷压至50-60%致密度;最后将粉体2置于粉体3上方,再次冷压至50-60%致密度备用;
3)烧结连接:将装有粉体的石墨模具放入热压炉中进行烧结连接,首先预压2.5-5MPa,待炉中真空度抽到高于20Pa后,充入99.999%的氩气至0.05MPa,再通入脉冲电流以50-100℃/min的加热速率匀速升温,粉体升温至350℃保温2-5min,同时将压力提升至40-60MPa;保温结束后,将烧结温度升至400-420℃,保温15-20min;然后以10-15℃/min的速率均匀降温至300℃,随后卸压冷却,形成热电接头。
CN201910922138.XA 2019-09-27 2019-09-27 一种提升Te基热电接头性能的方法 Active CN110707205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910922138.XA CN110707205B (zh) 2019-09-27 2019-09-27 一种提升Te基热电接头性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910922138.XA CN110707205B (zh) 2019-09-27 2019-09-27 一种提升Te基热电接头性能的方法

Publications (2)

Publication Number Publication Date
CN110707205A true CN110707205A (zh) 2020-01-17
CN110707205B CN110707205B (zh) 2023-09-29

Family

ID=69197699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910922138.XA Active CN110707205B (zh) 2019-09-27 2019-09-27 一种提升Te基热电接头性能的方法

Country Status (1)

Country Link
CN (1) CN110707205B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208835A (en) * 1961-04-27 1965-09-28 Westinghouse Electric Corp Thermoelectric members
CN1173742A (zh) * 1996-07-26 1998-02-18 株式会社泰库诺瓦 热电半导体及其制造工艺
CN109219893A (zh) * 2016-06-01 2019-01-15 Lg伊诺特有限公司 热电臂及包括该热电臂的热电元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3208835A (en) * 1961-04-27 1965-09-28 Westinghouse Electric Corp Thermoelectric members
CN1173742A (zh) * 1996-07-26 1998-02-18 株式会社泰库诺瓦 热电半导体及其制造工艺
CN109219893A (zh) * 2016-06-01 2019-01-15 Lg伊诺特有限公司 热电臂及包括该热电臂的热电元件

Also Published As

Publication number Publication date
CN110707205B (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
CN102424918B (zh) 一种钼铜梯度复合材料的制备方法
CN114956826B (zh) 一种(TiNbCrWTa)Cx高熵陶瓷及其制备方法
CN112981164B (zh) 一种高可靠性高导热金刚石增强金属基复合材料的制备方法
CN105254306A (zh) 一种高导热氮化硅陶瓷的制备方法
CN102584205B (zh) 一种钇钡铜氧靶材的制造方法
CN110788144B (zh) 一种金属铜-石墨烯层状复合材料及其制备方法与装置
CN101624662B (zh) 一种微波熔渗制备W-Cu合金的方法
CN113354418B (zh) 一种真空热压烧结法制备的高性能氮化铝陶瓷基板及制备方法
CN107841669B (zh) 一种高导热活性复合封装材料及其制备方法
CN110106419A (zh) 一种制备钼铜复合材料的装置及方法
CN116550975B (zh) 一种金刚石/铜复合材料制备方法
CN110707205B (zh) 一种提升Te基热电接头性能的方法
KR101212111B1 (ko) 이붕소마그네슘 초전도 선재의 제조방법 및 이에 의하여 제조되는 이붕소마그네슘 초전도 선재
CN101845567B (zh) 一种强化熔渗Cu用注射成形金刚石粉末脱脂坯体的方法
CN114773069B (zh) 大功率集成电路用高热导率氮化硅陶瓷基板的制备方法
CN101450381B (zh) 一种制备钨铜热沉和电子封装材料的工艺
CN114262834A (zh) 一种高温自润滑复合材料及其制备方法和应用
CN103589883A (zh) 一种钨铜合金制备方法
CN102554235B (zh) 一种钼铜梯度材料的制备方法
CN110690340B (zh) 一种优化碲化铅基热电材料/电极接头性能的方法
CN109830593B (zh) 一种降低Mg2Si基热电材料与电极连接界面接触电阻的方法
CN115745620B (zh) 一种高致密度氮化钛陶瓷材料及其制备方法
CN115287753B (zh) 一种基于免模具叠镦的p型多晶碲化铋基热电材料的制备方法
CN115287754B (zh) 一种基于免模具叠镦的n型多晶碲化铋基热电材料的制备方法
CN112427644B (zh) 一种自生陶瓷颗粒增强铜基梯度点焊电极帽的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant