CN110698195A - 一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法 - Google Patents

一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN110698195A
CN110698195A CN201911096777.1A CN201911096777A CN110698195A CN 110698195 A CN110698195 A CN 110698195A CN 201911096777 A CN201911096777 A CN 201911096777A CN 110698195 A CN110698195 A CN 110698195A
Authority
CN
China
Prior art keywords
powder
temperature
ceramic
hours
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911096777.1A
Other languages
English (en)
Other versions
CN110698195B (zh
Inventor
郑鹏
刘洋
白王峰
郑辉
郑梁
张阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Electronic Science and Technology University
Original Assignee
Hangzhou Electronic Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Electronic Science and Technology University filed Critical Hangzhou Electronic Science and Technology University
Priority to CN201911096777.1A priority Critical patent/CN110698195B/zh
Publication of CN110698195A publication Critical patent/CN110698195A/zh
Application granted granted Critical
Publication of CN110698195B publication Critical patent/CN110698195B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法,采用CaBi4Ti4O15体系压电材料为基础,在Ti位按照一定的摩尔比掺入Mn、Ta,采用固相合成方法,制备得到此类新型铋层状结构压电陶瓷材料,该压电陶瓷材料的通式为CaBi4Ti4‑x(Mn1/3Ta2/3)xO12,其中0<x≤0.1。与现有技术相比,本发明获得的压电陶瓷材料,主要性能参数d33=24pC/N,TC=793℃,在400℃时,ρ=9.63×107Ω·cm,此外制备工艺稳定可靠,生产成本低,易于实现工业化生产,在高温领域具有良好的应用前景。利用这种材料制得的陶瓷元件,组装成各种压电传感器,能够运用在航天航空、石油化工等特殊高温环境下。

Description

一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制 备方法
技术领域
本发明涉及一种铋层状结构钛酸铋钙高温压电陶瓷材料的制备方法,具体涉及一种Mn/Ta共掺杂的铋层状结构钛酸铋钙(CaBi4Ti4O15)压电陶瓷材料的制备,属于压电陶瓷材料领域。
背景技术
目前,应用最广的压电材料主要是钙钛矿结构的PZT基压电陶瓷,但是这类压电陶瓷的居里温度一般在390℃以下,由于压电材退极化现象的存在,压电材料在居里温度以下无法正常工作。随着航空料航天、地质勘探等工业的飞速发展和人类社会可持续发展的需求,因此有必要寻求一种居里温度高,压电性能优异的环境友好型压电材料。
由于居里温度高、耐疲劳性能好,铋层状结构的陶瓷被认为是高温压电材料的理想选择。铋层状结构的陶瓷材料是由(Bi2O2)2+层和钙钛矿结构的晶格层相互交替叠加而成的,其化学通式为(Bi2O2)2+(Am-1BmO3m+1)2-,上式中A为适合十二面体配位的离子,如Na+,Ca2+,La3+等,B为适合八面体配位的离子,如Ti4+,Nb5+,Ta5+等,m为整数,取值为1到6。钛酸铋(CaBi4Ti4O12)是m=4的铋层状结构材料,其居里温度高达790℃,压电常数d33约为7pC/N,与实际应用相比,虽然居里温度满足高温下的使用要求,但是其压电性能达不到应用要求(d33>20pC/N)。因此,如何在不降低居里温度的同时提高压电性能以获得高温范围内稳定使用的铋层状压电陶瓷材料成为压电陶瓷材料领域研究的一个重要课题。
目前,尚未见以Mn/Ta共掺杂来提高铋层状结构钛酸铋钙(CaBi4Ti4O15)压电陶瓷材料性能的相关报道。
发明内容
针对上述现有技术不足,本发明的目的是提供一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法,利用Mn、Ta元素对铋层状结构钛酸铋钙(CaBi4Ti4O15)压电陶瓷材料进行共掺杂改性,在不降低居里温度温度的同时,提高其压电性能,制备出一种新型的、环境友好型的压电陶瓷材料。
为了克服现有技术存在的缺陷,本发明提供以下技术方案:
一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷,其特征在于,该压电陶瓷的化学通式为CaBi4Ti4-x(Mn1/3Ta2/3)xO12,其中0<x≤0.1。
本发明还提供一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷的制备方法,步骤如下:
配料:以CaCO3粉体、Bi2O3粉体、TiO2粉体、MnCO3粉体和Ta2O5粉体为原料,按通式CaBi4Ti4-x(Mn1/3Ta2/3)xO12中Ca、Bi、Ti、Mn和Ta的化学计量进行配料,其中0<x≤0.1;
一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钙高温压电陶瓷材料的综合性能;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为750~825℃,保温时间2~4小时;
二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
烧结:将瓷坯进行烧结,烧结温度为1000~1100℃,保温时间2~4小时,得到陶瓷片;
涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
优选地,在所述一次球磨和二次球磨过程中,所述球磨时间为12小时。
优选地,在所述预烧过程中,所述预烧温度为825℃,所述保温时间为4小时。
优选地,在所述烧结过程中,所述烧结温度为1025℃,所述保温时间为1小时。
优选的,x=0.02。
优选的,x=0.03。
优选的,x=0.04。
优选的,x=0.05。
优选的,x=0.06。
优选的,x=0.1。
与现有技术相比较,本发明的技术方案,通过Mn和Ta取代B位的Ti,并控制掺杂元素的加入量,有效提高了钛酸铋钙高温压电陶瓷材料的压电性能。需要说明的是,现有技术中虽然有许多关于对压电陶瓷材料进行元素掺杂的报道,但是不同的掺杂元素,掺杂元素不同的加入量,都会对压电陶瓷材料的整体性能产生较大影响,则需要在试验过程中不断摸索,反复试验才能得到,发明人在前期研究中也尝试了多种不同元素对钛酸铋高温压电陶瓷材料的掺杂,但对于其他元素的掺杂,采用本发明的Mn和Ta元素共掺杂,制备得到的铋层状结构钛酸铋钙高温压电材料表现出更为优异的压电性能。
实验数据表明,本发明具有优异的性能:
本发明Mn、Ta元素共掺杂改性的铋层状钛酸铋钙(CaBi4Ti4O15)压电陶瓷材料,居里温度为793℃,压电常数d33高达24pC/N,并具有良好的高温稳定性,在400℃时,电阻率ρ=9.63×107Ω·cm,在高温领域具有良好的应用前景。
另外,该发明通过传统压电陶瓷工业制得,制备成本低,工业简单且适合于大批量工业化生产,掺杂改性后的陶瓷材料的压电性能较之前提高了四倍以上,推进了高温压电材料的进展。
附图说明
图1是实施例1中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.02陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图2是实施例2中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.03陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图3是实施例3中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.04陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图4是实施例4中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.05陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图5是实施例5中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.06陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图6是实施例5中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.1陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图7是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的居里温度变化图;
图8是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的室温压电系数变化图;
图9是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的400℃时电阻率变化图。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1
制备符合化学组成CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.02的Mn/Ta共掺杂改性的钛酸铋钙(CaBi4Ti4O15)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以CaCO3粉体、Bi2O3粉体、TiO2粉体、MnCO3粉体和Ta2O5粉体为原料,按通式中Ca、Bi、Ti、Mn和Ta的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钙高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为825℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1025℃,保温时间1小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图1中所示为实施例1中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.02陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的居里温度变化图;图8是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的室温压电系数变化图;图9是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的400℃时电阻率变化图。
由图1可以看出,本实施例制备的Mn/Ta共掺杂改性的钛酸铋钙无铅压电陶瓷与纯相的钛酸铋钙压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=18pC/N,TC=794℃,400℃时电阻率ρ=1.12×108Ω·cm。
实施例2
制备符合化学组成CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.03的Mn/Ta共掺杂改性的钛酸铋钙(CaBi4Ti4O15)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以CaCO3粉体、Bi2O3粉体、TiO2粉体、MnCO3粉体和Ta2O5粉体为原料,按通式中Ca、Bi、Ti、Mn和Ta的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钙高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为825℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1025℃,保温时间4小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图2中所示为实施例2中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.03陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的居里温度变化图;图8是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的室温压电系数变化图;图9是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的400℃时电阻率变化图。
由图2可以看出,本实施例制备的Mn/Ta共掺杂改性的钛酸铋钙无铅压电陶瓷与纯相的钛酸铋压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=21pC/N,TC=793℃,400℃时电阻率ρ=4.11×108Ω·cm。
实施例3
制备符合化学组成CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.04的Mn/Ta共掺杂改性的钛酸铋钙(CaBi4Ti4O15)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以CaCO3粉体、Bi2O3粉体、TiO2粉体、MnCO3粉体和Ta2O5粉体为原料,按通式中Ca、Bi、Ti、Mn和Ta的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钙高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为825℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1025℃,保温时间1小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图3中所示为实施例3中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.04陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的居里温度变化图;图8是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的室温压电系数变化图;图9是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的400℃时电阻率变化图。
由图3可以看出,本实施例制备的Mn/Ta共掺杂改性的钛酸铋钙无铅压电陶瓷与纯相的钛酸铋钙压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=24pC/N,TC=793℃,400℃时电阻率ρ=4.96×108Ω·cm。
实施例4
制备符合化学组成CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.05的Mn/Ta共掺杂改性的钛酸铋(Bi4Ti3O12)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以CaCO3粉体、Bi2O3粉体、TiO2粉体、MnCO3粉体和Ta2O5粉体为原料,按通式中Ca、Bi、Ti、Mn和Ta的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钙高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为825℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1025℃,保温时间1小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图4中所示为实施例4中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.05陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的居里温度变化图;图8是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的室温压电系数变化图;图9是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的400℃时电阻率变化图。
由图4可以看出,本实施例制备的Mn/Ta共掺杂改性的钛酸铋钙无铅压电陶瓷与纯相的钛酸铋钙压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=23pC/N,TC=793℃,400℃时电阻率ρ=2.33×108Ω·cm。
实施例5
制备符合化学组成CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.06的Mn/Ta共掺杂改性的钛酸铋钙(CaBi4Ti4O15)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以CaCO3粉体、Bi2O3粉体、TiO2粉体、MnCO3粉体和Ta2O5粉体为原料,按通式中Ca、Bi、Ti、Mn和Ta的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钙高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为825℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1025℃,保温时间1小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图5中所示为实施例5中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.06陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的居里温度变化图;图8是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的室温压电系数变化图;图9是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的400℃时电阻率变化图。
由图5可以看出,本实施例制备的Mn/Ta共掺杂改性的钛酸铋钙无铅压电陶瓷与纯相的钛酸铋钙压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=22pC/N,TC=792℃,400℃时电阻率ρ=6.19×107Ω·cm。
实施例6
制备符合化学组成CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.1的Mn/Ta共掺杂改性的钛酸铋钙(CaBi4Ti4O15)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以CaCO3粉体、Bi2O3粉体、TiO2粉体、MnCO3粉体和Ta2O5粉体为原料,按通式中Ca、Bi、Ti、Mn和Ta的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钙高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为825℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1025℃,保温时间1小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图6中所示为实施例6中制备的CaBi4Ti4-x(Mn1/3Ta2/3)xO15,x=0.1陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的居里温度变化图;图8是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的室温压电系数变化图;图9是不同量的Mn/Ta掺杂CaBi4Ti4-x(Mn1/3Ta2/3)xO15陶瓷的400℃时电阻率变化图。
由图6可以看出,本实施例制备的Mn/Ta共掺杂改性的钛酸铋钙无铅压电陶瓷与纯相的钛酸铋钙压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=21pC/N,TC=791℃,400℃时电阻率ρ=3.39×107Ω·cm。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

1.一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷,其特征在于,该压电陶瓷的化学通式为CaBi4Ti4-x(Mn1/3Ta2/3)xO12,其中0<x≤0.1。
2.一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷的制备方法,包括配料、一次球磨、烘干、压片预烧、二次球磨、烘干、造粒成型、排胶、烧结、涂电极、极化,其特征在于,步骤如下:
配料:以CaCO3粉体、Bi2O3粉体、TiO2粉体、MnCO3粉体和Ta2O5粉体为原料,按通式CaBi4Ti4-x(Mn1/3Ta2/3)xO12中Ca、Bi、Ti、Mn和Ta的化学计量进行配料,其中0<x≤0.1;
一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为750~825℃,保温时间2~4小时;
二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
烧结:将瓷坯进行烧结,烧结温度为1000~1100℃,保温时间2~4小时,得到陶瓷片;
涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
3.根据权利要求2所述的高电阻率、高压电活性钛酸铋钙基高温压电陶瓷的制备方法,其特征在于,在所述一次球磨和二次球磨过程中,所述球磨时间为12小时。
4.根据权利要求2所述的高电阻率、高压电活性钛酸铋钙基高温压电陶瓷的制备方法,其特征在于,在所述预烧过程中,所述预烧温度为825℃,所述保温时间为4小时。
5.根据权利要求2所述的高电阻率、高压电活性钛酸铋钙基高温压电陶瓷的制备方法,其特征在于,在所述烧结过程中,所述烧结温度为1025℃,所述保温时间为1小时。
6.根据权利要求2所述的高电阻率、高压电活性钛酸铋钙基高温压电陶瓷的制备方法,其特征在于,x为0.02、0.03、0.04、0.05、0.06或0.1中任一数值。
CN201911096777.1A 2019-11-12 2019-11-12 一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法 Active CN110698195B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911096777.1A CN110698195B (zh) 2019-11-12 2019-11-12 一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911096777.1A CN110698195B (zh) 2019-11-12 2019-11-12 一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN110698195A true CN110698195A (zh) 2020-01-17
CN110698195B CN110698195B (zh) 2022-05-17

Family

ID=69205706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911096777.1A Active CN110698195B (zh) 2019-11-12 2019-11-12 一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN110698195B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362691A (zh) * 2020-03-14 2020-07-03 杭州电子科技大学 铋层状结构钛酸铋钙高温压电陶瓷材料及其制备方法
CN113896526A (zh) * 2021-10-22 2022-01-07 厦门乃尔电子有限公司 一种压电性高、高温绝缘性好的压电材料及其制备方法
CN114409397A (zh) * 2022-01-25 2022-04-29 广东爱晟电子科技有限公司 一种低tcr陶瓷芯片电阻及其材料和制备
CN116120054A (zh) * 2023-02-10 2023-05-16 厦门乃尔电子有限公司 一种钛酸铋钙基压电陶瓷材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034550A2 (en) * 1998-12-09 2000-06-15 Infineon Technologies Ag Cvd processes using bi aryl
CN104529435A (zh) * 2014-12-26 2015-04-22 中国科学院声学研究所 铋层状结构压电陶瓷材料及其制备方法
CN105837200A (zh) * 2016-04-05 2016-08-10 四川大学 一种锰掺杂钛铌酸铋钙锂铈基陶瓷材料及其制备方法
CN106064942A (zh) * 2016-05-31 2016-11-02 天津大学 高居里温度无铅snkbt压电陶瓷及其制备方法
CN109437889A (zh) * 2018-11-23 2019-03-08 杭州电子科技大学 一种Ti位Cu/Ta共掺杂钛酸铋高温压电陶瓷材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034550A2 (en) * 1998-12-09 2000-06-15 Infineon Technologies Ag Cvd processes using bi aryl
CN104529435A (zh) * 2014-12-26 2015-04-22 中国科学院声学研究所 铋层状结构压电陶瓷材料及其制备方法
CN105837200A (zh) * 2016-04-05 2016-08-10 四川大学 一种锰掺杂钛铌酸铋钙锂铈基陶瓷材料及其制备方法
CN106064942A (zh) * 2016-05-31 2016-11-02 天津大学 高居里温度无铅snkbt压电陶瓷及其制备方法
CN109437889A (zh) * 2018-11-23 2019-03-08 杭州电子科技大学 一种Ti位Cu/Ta共掺杂钛酸铋高温压电陶瓷材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Z-Y SHEN ET AL: "Enhanced piezoelectric properties of Nb and Mn co-doped CaBi4Ti4O15 high temperature piezoceramics", 《MATERIALS RESEARCH BULLETIN》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362691A (zh) * 2020-03-14 2020-07-03 杭州电子科技大学 铋层状结构钛酸铋钙高温压电陶瓷材料及其制备方法
CN113896526A (zh) * 2021-10-22 2022-01-07 厦门乃尔电子有限公司 一种压电性高、高温绝缘性好的压电材料及其制备方法
CN113896526B (zh) * 2021-10-22 2022-07-05 厦门乃尔电子有限公司 一种压电性高、高温绝缘性好的压电材料及其制备方法
CN114409397A (zh) * 2022-01-25 2022-04-29 广东爱晟电子科技有限公司 一种低tcr陶瓷芯片电阻及其材料和制备
CN114409397B (zh) * 2022-01-25 2022-10-21 广东爱晟电子科技有限公司 一种低tcr陶瓷芯片电阻及其材料和制备
CN116120054A (zh) * 2023-02-10 2023-05-16 厦门乃尔电子有限公司 一种钛酸铋钙基压电陶瓷材料及其制备方法
CN116120054B (zh) * 2023-02-10 2024-03-12 厦门乃尔电子有限公司 一种钛酸铋钙基压电陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN110698195B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN111362691A (zh) 铋层状结构钛酸铋钙高温压电陶瓷材料及其制备方法
CN110698195B (zh) 一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法
CN109704761B (zh) 一种Nb位Cr/Mo共掺杂铌酸铋钙高温压电陶瓷材料及其制备方法
CN109650876B (zh) 一种a位高熵钙钛矿氧化物及其制备方法
CN113929450B (zh) 一种高压电性能的CaBi4Ti4O15陶瓷的制备方法
CN102503413B (zh) 一种织构化的(1-x-y)BNT-xBKT-yKNN陶瓷材料及其制备方法
KR101268487B1 (ko) 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
CN111393161B (zh) 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法
CN109704762B (zh) 一种铌酸锶基类反铁电陶瓷及其制备方法和应用
JPS6320790B2 (zh)
CN109678497A (zh) 一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN113213918A (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN105036736A (zh) 一种钛酸铋钠基无铅电致伸缩陶瓷材料及其制备方法
CN102285794B (zh) B位复合钙钛矿结构化合物组成的无铅压电陶瓷
CN105016723A (zh) 一种制备纯相Na1/2Bi1/2TiO3陶瓷粉体的方法
CN109467428A (zh) 一种Ti位Cu/W共掺杂钛酸铋高温压电陶瓷材料及其制备方法
CN107417267A (zh) 铁酸铋多铁性陶瓷及其制备方法
KR101671672B1 (ko) 무연 압전 세라믹 조성물 및 이의 제조방법
CN109437889A (zh) 一种Ti位Cu/Ta共掺杂钛酸铋高温压电陶瓷材料的制备方法
JP2012056810A (ja) ペロブスカイト型導電性酸化物材料及びそれを用いた電極
CN104692794A (zh) 一种无铅ptcr压电陶瓷材料及其制备方法
CN109503161A (zh) 一种钪钽共掺杂型铌酸铋铷压电陶瓷材料及其制备方法
CN114716241B (zh) 一种高电压陶瓷介质材料及其制备方法与应用
CN117263677A (zh) 一种镧系元素与Cr、Mo共掺杂型CaBi4Ti4O15高温压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant