CN109678497A - 一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法 - Google Patents

一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN109678497A
CN109678497A CN201910009103.7A CN201910009103A CN109678497A CN 109678497 A CN109678497 A CN 109678497A CN 201910009103 A CN201910009103 A CN 201910009103A CN 109678497 A CN109678497 A CN 109678497A
Authority
CN
China
Prior art keywords
powder
hours
temperature
ball milling
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910009103.7A
Other languages
English (en)
Inventor
郑鹏
李旭东
祝瑞
陈振宁
盛林生
白王峰
郑梁
张阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Hangzhou Electronic Science and Technology University
Original Assignee
Hangzhou Electronic Science and Technology University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Electronic Science and Technology University filed Critical Hangzhou Electronic Science and Technology University
Priority to CN201910009103.7A priority Critical patent/CN109678497A/zh
Publication of CN109678497A publication Critical patent/CN109678497A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8561Bismuth-based oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法,该压电陶瓷材料的通式为Bi4Ti3‑x(Cu1/3Sb2/3)xO12,其中0<x≤0.05。本发明还公开了该压电陶瓷材料的制备方法,采用Bi4Ti3O12体系压电材料为基础,在Ti位按照1:2的摩尔比掺入Cu、Sb,采用传统的固相合成方法,制备得到此类新型铋层状结构压电陶瓷材料。与现有技术相比,本发明获得的压电陶瓷材料,主要性能参数d33=24pC/N,TC=672℃,在500℃时,ρ=1.40×107Ω·cm,此外制备工艺稳定可靠,生产成本低,易于实现工业化生产,在高温领域具有良好的应用前景。利用这种材料制得的陶瓷元件,组装成各种压电传感器,能够运用在航天航空、石油化工等特殊高温环境下。

Description

一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备 方法
技术领域
本发明涉及一种铋层状结构钛酸铋高温压电陶瓷材料及其制备方法,具体涉及一种Cu/Sb共掺杂的铋层状结构钛酸铋(Bi4Ti3O12)压电陶瓷材料及其制备,属于压电陶瓷材料领域。
背景技术
目前,应用最广的压电材料主要是钙钛矿结构的PZT基压电陶瓷,但是这类压电陶瓷的居里温度一般在390℃以下,由于压电材料退极化现象的存在,压电材料在居里温度以下无法正常工作。随着航空航天、地质勘探等工业的飞速发展和人类社会可持续发展的需求,因此有必要寻求一种居里温度高,压电性能优异的环境友好型压电材料。
由于居里温度高、耐疲劳性能好,铋层状结构的陶瓷被认为是高温压电材料的理想选择。铋层状结构的陶瓷材料是由(Bi2O2)2+层和钙钛矿结构的晶格层相互交替叠加而成的,其化学通式为(Bi2O2)2+(Am-1BmO3m+1)2-,上式中A为适合十二面体配位的离子,如Na+,Ca2+,La3+等,B为适合八面体配位的离子,如Ti4+,Nb5+,Ta5+等,m为整数,取值为1到6。钛酸铋(Bi4Ti3O12)是m=3的铋层状结构材料,其居里温度高达675℃,压电常数d33约为8pC/N,与实际应用相比,虽然居里温度满足高温下的使用要求,但是其压电性能达不到应用要求,且高温下的电阻率与其他铋层状结构高温压电陶瓷相比较低。因此,如何在不降低居里温度的同时提高压电性能和电阻率以获得高温范围内稳定使用的铋层状压电陶瓷材料成为压电陶瓷材料领域研究的一个重要课题。
目前,尚未见以Cu/Sb共掺杂来提高铋层状结构钛酸铋(Bi4Ti3O12)压电陶瓷材料性能的相关报道。
发明内容
针对上述现有技术不足,本发明的目的是提供一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法,利用Cu、Sb元素对铋层状结构钛酸铋(Bi4Ti3O12)压电陶瓷材料进行共掺杂改性,在不降低居里温度温度的同时,提高其压电性能和电阻率,制备出一种新型的、环境友好型的压电陶瓷材料。
为了克服现有技术存在的缺陷,本发明提供以下技术方案:
一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料,该压电陶瓷材料的通式为Bi4Ti3-x(Cu1/3Sb2/3)xO12,其中0<x≤0.05;
通式中,下标数字代表元素的摩尔比;
优选的,x=0.01、0.02、0.03、0.035,0.04或0.05
进一步优选的,x=0.035;
本发明还提出一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料的制备方法,步骤如下:
配料:以Bi2O3粉体、TiO2粉体、CuO粉体和Sb2O3粉体为原料,按通式Bi4Ti3-x(Cu1/ 3Sb2/3)xO12中Bi、Ti、Cu和Sb的化学计量进行配料,其中0<x≤0.05
一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋高温压电陶瓷材料的综合性能;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为675~750℃,保温时间2~4小时;
二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
烧结:将瓷坯进行烧结,烧结温度为1000~1100℃,保温时间2~4小时,得到陶瓷片;
涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
优选地,在所述一次球磨和二次球磨过程中,所述球磨时间为12小时。
优选地,在所述预烧过程中,所述预烧温度为725℃,所述保温时间为4小时。
优选地,在所述烧结过程中,所述烧结温度为1000℃,所述保温时间为4小时。
与现有技术相比较,本发明的技术方案,通过Cu和Sb取代B位的Ti,并控制掺杂元素的加入量,有效提高了钛酸铋高温压电陶瓷材料的压电性能和电阻率。需要说明的是,现有技术中虽然有许多关于对压电陶瓷材料进行元素掺杂的报道,但是不同的掺杂元素,掺杂元素不同的加入量,都会对压电陶瓷材料的整体性能产生较大影响,则需要在试验过程中不断摸索,反复试验才能得到,发明人在前期研究中也尝试了多种不同元素对钛酸铋高温压电陶瓷材料的掺杂,但对于其他元素的掺杂,采用本发明的Cu和Sb元素共掺杂,制备得到的铋层状结构钛酸铋高温压电材料表现出更为优异的压电性能和电阻率。
实验数据表明,本发明具有优异的效果:
本发明Cu、Sb元素共掺杂改性的铋层状钛酸铋(Bi4Ti3O12)压电陶瓷材料,居里温度为671℃,压电常数d33高达24pC/N,并具有良好的高温稳定性,在500℃时,电阻率ρ=1.40×107Ω·cm,在高温领域具有良好的应用前景。
另外,该发明通过传统压电陶瓷工业制得,制备成本低,工业简单且适合于大批量工业化生产,掺杂改性后的陶瓷材料的压电性能较之前提高了三倍,推进了高温压电材料的进展。
附图说明
图1是实施例1中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.01陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图2是实施例2中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.02陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图3是实施例3中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.03陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图4是实施例4中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.035陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图5是实施例5中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.04陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图6是实施例6中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.05陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;
图7是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的居里温度变化图;
图8是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的室温压电系数变化图;
图9是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的500℃时电阻率变化图。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1
制备符合化学组成Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.01的Cu/Sb共掺杂改性的钛酸铋(Bi4Ti3O12)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以Bi2O3粉体、TiO2粉体、CuO粉体和Sb2O3粉体为原料,按通式中Bi、Ti、Cu和Sb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为725℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1000℃,保温时间4小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图1中所示为实施例1中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.01陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的居里温度变化图;图8是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的室温压电系数变化图;图9是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的500℃时电阻率变化图。
由图1可以看出,本实施例制备的Cu/Sb共掺杂改性的钛酸铋无铅压电陶瓷与纯相的钛酸铋压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=9pC/N,TC=675℃,500℃时电阻率ρ=3.04×104Ω·cm。
实施例2
制备符合化学组成Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.02的Cu/Sb共掺杂改性的钛酸铋(Bi4Ti3O12)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以Bi2O3粉体、TiO2粉体、CuO粉体和Sb2O3粉体为原料,按通式中Bi、Ti、Cu和Sb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为725℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1000℃,保温时间4小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图2中所示为实施例2中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.02陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的居里温度变化图;图8是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的室温压电系数变化图;图9是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的500℃时电阻率变化图。
由图2可以看出,本实施例制备的Cu/Sb共掺杂改性的钛酸铋无铅压电陶瓷与纯相的钛酸铋压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=11pC/N,TC=676℃,500℃时电阻率ρ=9.98×104Ω·cm。
实施例3
制备符合化学组成Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.03的Cu/Sb共掺杂改性的钛酸铋(Bi4Ti3O12)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以Bi2O3粉体、TiO2粉体、CuO粉体和Sb2O3粉体为原料,按通式中Bi、Ti、Cu和Sb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为725℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1000℃,保温时间4小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图3中所示为实施例3中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.03陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的居里温度变化图;图8是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的室温压电系数变化图;图9是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的500℃时电阻率变化图。
由图3可以看出,本实施例制备的Cu/Sb共掺杂改性的钛酸铋无铅压电陶瓷与纯相的钛酸铋压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=14pC/N,TC=676℃,500℃时电阻率ρ=2.02×105Ω·cm。
实施例4
制备符合化学组成Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.035的Cu/Sb共掺杂改性的钛酸铋(Bi4Ti3O12)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以Bi2O3粉体、TiO2粉体、CuO粉体和Sb2O3粉体为原料,按通式中Bi、Ti、Cu和Sb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为725℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1000℃,保温时间4小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图4中所示为实施例4中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.035陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的居里温度变化图;图8是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的室温压电系数变化图;图9是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的500℃时电阻率变化图。
由图4可以看出,本实施例制备的Cu/Sb共掺杂改性的钛酸铋无铅压电陶瓷与纯相的钛酸铋压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=24pC/N,TC=672℃,500℃时电阻率ρ=1.40×107Ω·cm。
实施例5
制备符合化学组成Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.04的Cu/Sb共掺杂改性的钛酸铋(Bi4Ti3O12)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以Bi2O3粉体、TiO2粉体、CuO粉体和Sb2O3粉体为原料,按通式中Bi、Ti、Cu和Sb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为725℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1000℃,保温时间4小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图5中所示为实施例5中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.04陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的居里温度变化图;图8是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的室温压电系数变化图;图9是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的500℃时电阻率变化图。
由图5可以看出,本实施例制备的Cu/Sb共掺杂改性的钛酸铋无铅压电陶瓷与纯相的钛酸铋压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=22pC/N,TC=670℃,500℃时电阻率ρ=1.28×107Ω·cm。
实施例6
制备符合化学组成Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.05的Cu/Sb共掺杂改性的钛酸铋(Bi4Ti3O12)无铅压电陶瓷,包括以下几个步骤:
(1)配料:以Bi2O3粉体、TiO2粉体、CuO粉体和Sb2O3粉体为原料,按通式中Bi、Ti、Cu和Sb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋高温压电陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为725℃,保温时间4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1000℃,保温时间4小时,得到陶瓷片;
(10)涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
(11)极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
如图6中所示为实施例6中制备的Bi4Ti3-x(Cu1/3Sb2/3)xO12,x=0.05陶瓷的XRD衍射图,以及介电常数随温度变化的曲线;图7是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的居里温度变化图;图8是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的室温压电系数变化图;图9是不同量的Cu/Sb掺杂Bi4Ti3-x(Cu1/3Sb2/3)xO12陶瓷的500℃时电阻率变化图。
由图6可以看出,本实施例制备的Cu/Sb共掺杂改性的钛酸铋无铅压电陶瓷与纯相的钛酸铋压电陶瓷的XRD图谱基本一致。
测试结果如下:d33=17pC/N,TC=670℃,500℃时电阻率ρ=3.99×106Ω·cm。

Claims (6)

1.一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料,其特征在于,该压电陶瓷材料的通式为Bi4Ti3-x(Cu1/3Sb2/3)xO12,其中0<x≤0.05。
2.根据权利要求1所述的Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料,其特征在于,x=0.01、0.02、0.03、0.035,0.04或0.05。
3.一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料的制备方法,其特征在于,包括如下步骤:配料、一次球磨、烘干、压片预烧、二次球磨、烘干、造粒成型、排胶、烧结、涂电极、极化;其中,
配料:以Bi2O3粉体、TiO2粉体、CuO粉体和Sb2O3粉体为原料,按通式Bi4Ti3-x(Cu1/3Sb2/3)xO12中Bi、Ti、Cu和Sb的化学计量进行配料,其中0<x≤0.05;
一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋高温压电陶瓷材料的综合性能;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为675~750℃,保温时间2~4小时;
二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
烧结:将瓷坯进行烧结,烧结温度为1000~1100℃,保温时间2~4小时,得到陶瓷片;
涂电极:将陶瓷片清洗、烘干、丝网印刷涂银电极、烧银,烧银温度500~600℃,保温时间1~2小时;
极化:将镀好银电极的陶瓷片置于120~160℃的硅油中,极化电压为12kV/mm~15kV/mm,极化时间为20min~40min。
4.根据权利要求3所述的Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料的制备方法,其特征在于,在所述一次球磨和二次球磨过程中,所述球磨时间为12小时。
5.根据权利要求3所述的Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料的制备方法,其特征在于,在所述预烧过程中,所述预烧温度为725℃,所述保温时间为4小时。
6.根据权利要求3所述的Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料的制备方法,其特征在于,在所述烧结过程中,所述烧结温度为1000℃,所述保温时间为4小时。
CN201910009103.7A 2019-01-04 2019-01-04 一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法 Pending CN109678497A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910009103.7A CN109678497A (zh) 2019-01-04 2019-01-04 一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910009103.7A CN109678497A (zh) 2019-01-04 2019-01-04 一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN109678497A true CN109678497A (zh) 2019-04-26

Family

ID=66192533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910009103.7A Pending CN109678497A (zh) 2019-01-04 2019-01-04 一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN109678497A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110482596A (zh) * 2019-07-23 2019-11-22 中国计量大学 一种双镧系离子共掺杂的钛酸铋纳米片制备方法
CN111362691A (zh) * 2020-03-14 2020-07-03 杭州电子科技大学 铋层状结构钛酸铋钙高温压电陶瓷材料及其制备方法
CN112592190A (zh) * 2020-12-10 2021-04-02 中国科学技术大学 一种压电陶瓷及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017829A (zh) * 2007-02-12 2007-08-15 清华大学 用于铁电存储器的掺钕钛酸铋铁电薄膜及其低温制备方法
CN101186497A (zh) * 2007-12-07 2008-05-28 华南理工大学 一种提高铋层结构压电铁电陶瓷材料高温电阻率的方法
CN102167585A (zh) * 2011-01-18 2011-08-31 北京科技大学 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
WO2015055034A1 (zh) * 2013-10-14 2015-04-23 中国科学院上海硅酸盐研究所 无铅高压电活性晶体材料及其制备方法
CN106554202A (zh) * 2016-11-14 2017-04-05 山东大学 一种铋层状结构钛酸铋钠高温压电陶瓷材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017829A (zh) * 2007-02-12 2007-08-15 清华大学 用于铁电存储器的掺钕钛酸铋铁电薄膜及其低温制备方法
CN101186497A (zh) * 2007-12-07 2008-05-28 华南理工大学 一种提高铋层结构压电铁电陶瓷材料高温电阻率的方法
CN102167585A (zh) * 2011-01-18 2011-08-31 北京科技大学 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
WO2015055034A1 (zh) * 2013-10-14 2015-04-23 中国科学院上海硅酸盐研究所 无铅高压电活性晶体材料及其制备方法
CN106554202A (zh) * 2016-11-14 2017-04-05 山东大学 一种铋层状结构钛酸铋钠高温压电陶瓷材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUWEIZHAO ET AL.: "Enhanced electromechanical properties and conduction behaviors of Aurivillius Bi4Ti2.95(B1/3Nb2/3)0.05O12 (B=Mg, Zn,Cu) ceramics", 《MATERIALS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110482596A (zh) * 2019-07-23 2019-11-22 中国计量大学 一种双镧系离子共掺杂的钛酸铋纳米片制备方法
CN111362691A (zh) * 2020-03-14 2020-07-03 杭州电子科技大学 铋层状结构钛酸铋钙高温压电陶瓷材料及其制备方法
CN112592190A (zh) * 2020-12-10 2021-04-02 中国科学技术大学 一种压电陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN109704761A (zh) 一种Nb位Cr/Mo共掺杂铌酸铋钙高温压电陶瓷材料及其制备方法
CN1116247C (zh) 可与银在降低的烧结温度下共烧结的低损耗pzt陶瓷组合物和其制备方法
CN106554202B (zh) 一种铋层状结构钛酸铋钠高温压电陶瓷材料及其制备方法
CN111362691A (zh) 铋层状结构钛酸铋钙高温压电陶瓷材料及其制备方法
CN109678497A (zh) 一种Ti位Cu/Sb共掺杂钛酸铋高温压电陶瓷材料及其制备方法
CN110698195B (zh) 一种高电阻率、高压电活性钛酸铋钙基高温压电陶瓷及其制备方法
KR101268487B1 (ko) 비스무스(Bi)계 복합 페로브스카이트 무연 압전 세라믹스 및 그 제조 방법
CN109626988B (zh) 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN102910902B (zh) 一种bnt-bt-bkt基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN105367053B (zh) 一种低损耗x9r型多层陶瓷电容器用介质材料及其制备方法
CN102924078A (zh) 一种bctz基钙钛矿体系多元无铅压电陶瓷及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN103172374A (zh) 压电陶瓷和压电元件
CN113387697A (zh) 高铁电稳定性兼具超快速充放电、高储能效率的钛酸铋钠基陶瓷材料及制备方法
CN113213918B (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN103119002A (zh) 压电陶瓷、压电陶瓷部件及使用该压电陶瓷部件的压电装置
CN109467428A (zh) 一种Ti位Cu/W共掺杂钛酸铋高温压电陶瓷材料及其制备方法
CN103373849A (zh) 一种氧化铌掺杂的锆钛酸钡钙无铅压电陶瓷粉体材料
CN102336567B (zh) 钛镁酸铋-铋锌基钙钛矿-钛酸铅三元系高温压电陶瓷及其制备方法
CN109437889A (zh) 一种Ti位Cu/Ta共掺杂钛酸铋高温压电陶瓷材料的制备方法
CN104402426A (zh) 一种新型铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
Feng et al. Effects of ZnO/Li2O codoping on microstructure and piezoelectric properties of low-temperature sintered PMN–PNN–PZT ceramics
CN101913860B (zh) 一种钛酸铋基高居里温度压电陶瓷及其制备方法
CN115385675B (zh) 一种高居里温度兼具储能特性的铁酸铋基无铅铁电陶瓷材料及其制备方法
CN109485414A (zh) 一种Ti位Cu/Mo共掺杂钛酸铋高温压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190426