CN110660989B - 碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用 - Google Patents

碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用 Download PDF

Info

Publication number
CN110660989B
CN110660989B CN201910925675.XA CN201910925675A CN110660989B CN 110660989 B CN110660989 B CN 110660989B CN 201910925675 A CN201910925675 A CN 201910925675A CN 110660989 B CN110660989 B CN 110660989B
Authority
CN
China
Prior art keywords
calcium
boron
silicon
silicon oxide
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910925675.XA
Other languages
English (en)
Other versions
CN110660989A (zh
Inventor
谢宏伟
董函晴
王锦霞
尹华意
宋秋实
宁志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910925675.XA priority Critical patent/CN110660989B/zh
Publication of CN110660989A publication Critical patent/CN110660989A/zh
Application granted granted Critical
Publication of CN110660989B publication Critical patent/CN110660989B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si‑B‑C负极材料及其制法和应用,属于电池负极材料制备领域。该方法以碳化钙、硅氧化物和含硼氧化物作为原料,在氯化钙基熔盐中进行硅基Si‑B‑C负极材料合成。该方法能够通过调整反应参数控制反应速率,控制能量释放,促进反应有效进行。制备的硅基Si‑B‑C负极材料,颗粒尺寸适度,其制备的锂离子电池,具有良好的比容量和循环性能,合成方法成本低,且合成过程操作简单。

Description

碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极 材料及其制法和应用
技术领域
本发明涉及电池负极材料制备领域,具体涉及一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用。
背景技术
锂离子电池因具有能量密度高、循环寿命长、无记忆效应等优点得到广泛应用。随着新能源汽车、新能源发电技术的发展,汽车用锂离子动力电池和储能用锂离子电池成为迫切需求。目前商业化的锂离子电池负极材料是石墨,其理论比容量仅有372mAh/g,难以满足高性能、高容量的锂离子电池的需求。硅材料因大的理论比容量4200mAh/g成为研究的焦点。但其存在体积膨胀效应和较低的电导性问题,严重限制了其容量-循环性能。
目前,用来降低锂离子电池硅负极材料体积膨胀的方式有纳米化、纳米多孔化、纳米化掺杂改性。研究表明粒径在100-150纳米的硅颗粒具有良好的电化学性能,但目前纳米化成本高,且不易规模放大。此外,纳米化降低锂离子电池硅负极材料体积膨胀问题的同时需要采用包覆处理方法缓解纳米化带来的副作用。采用包覆处理方法能够缓冲因体积膨胀产生的应力,降低因纳米化造成的纳米硅容量损失,提高颗粒间导电性,提高循环性能。其中,碳包覆是有效的包覆处理手段之一。但是在目前已有的硅碳复合材料中,大多数是将硅颗粒与碳简单的机械混合,或者将硅纳米颗粒分散在酚醛树脂、PVA、柠檬酸、硬脂酸、葡萄糖、蔗糖、聚乙烯醇、聚氯乙烯、聚乙二醇等有机碳源中进行煅烧包覆。经煅烧后形成的无定形碳隔绝了硅与电解液的接触,提高了材料稳定性,但仍存在硅颗粒团聚不易分散,在导电性不足,容易导致欧姆极化等问题。同时,上述硅碳复合材料的制备过程,工艺复杂、生产成本高。
实际上,硼能够嵌入到硅晶格中使硅晶体面间距变宽,这有利于缓解硅嵌入锂后的膨胀问题。并且,硼嵌入硅晶格后,不仅能够解决膨胀问题,同时,硅的电导率会提高。这些都有利于解决锂离子电池硅负极材料循环性能差等问题。王娟等[典型文献为:Inorg.Chem.2019,58,4592-4599]等曾用金属镁,700℃还原由氧化硼与硅酸混匀后形成氧化硼-二氧化硅,制备了含硼的硅锂离子电池负极材料。镁是强还原剂,还原是放热反应,反应过程中释放出大量的热会使氧化物原料烧结成大颗粒,不利于反应有效进行,不利于生产的控制,且活泼昂贵的金属镁消耗量大。该方法存在成本高,操作复杂,Si和硼分布不均匀,硅产品颗粒尺寸大等问题。
曾经有人利用硅钙合金直接还原氯化铝(典型文献为:NanoResearch2018,11(12):6294–6303)、氯化镍(典型文献为:Chem.AsianJ.2014,9,3130-3135)、氯化钽(典型文献为:DaltonTrans.,2017,46,3655–3660)等氯化物盐,生成产物为硅、氯化钙或钙与金属的氯化物盐,产物再经盐酸洗涤除盐后得到硅纳米片,从而实现硅材料纳米化,降低其体积膨胀率。但是,这里硅钙合金同样是强还原剂,还原是放热反应,反应过程中释放出大量的热会使硅钙合金烧结成大颗粒,不利于反应有效进行和控制。
综上,若能构建起溶解了硼的硅嵌入在以碳分布构成的网格内的Si-B-C结构,不仅能够利用硅的大的理论比容量,还可以缓解硅嵌入锂后的膨胀问题,并且能够显著提高导电性,这将有利于锂离子电池整体性能的提高。
发明内容
本发明提供了一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用,该方法以碳化钙、硅氧化物和含硼氧化物作为原料,在氯化钙基熔盐中进行硅基Si-B-C负极材料合成。该方法能够通过调整反应参数控制反应速率,控制能量释放,促进反应有效进行。制备的硅基Si-B-C负极材料,颗粒尺寸适度,其制备的锂离子电池,具有良好的比容量和循环性能,合成方法成本低,且合成过程操作简单。
本发明是通过以下技术方案实现的:
本发明的一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,包括以下步骤:
步骤1:准备
(1)将硅氧化物、含硼氧化物、熔盐原料分别烘干,去除水分;其中,所述的熔盐为氯化钙基熔盐;所述的硅氧化物为氧化硅或硅酸钙中的一种或两种;所述的含硼氧化物为氧化硼、硼砂(Na2B4O7·10H2O)、硼酸钙(xCaO.yB2O3.nH2O)、硼酸镁(Mg2B2O5)、硼酸钾(K2B4O7·5H2O)中的一种或几种的混合物;
(2)在惰性气体保护下,按反应化学计量比,将碳化钙-硅氧化物、碳化钙-含硼氧化物、熔盐原料,分别研磨至物料均匀,再混匀,得到的混合物料密封;
(3)将混合物料,置于反应器的内嵌坩埚中,密封;
(4)向密封反应器中,通入惰性气体,并维持惰性气氛,保证反应器内正压,通入惰性气体的同时,将反应器升温;
步骤2:合成
当反应器升温至合成温度后,恒温1~5h,得到反应后的产物;其中,合成温度为530~900℃;
步骤3:
将反应后的产物,置于冷却容器中冷却,磨碎,盐酸清洗去除熔盐,过滤,水洗,烘干,得到碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料。
所述的步骤1(1)中,碳化钙的粒径为500μm~3mm。
所述的步骤1(1)中,所述的氯化钙基熔盐为氯化钙、氯化钙-氯化钠、氯化钙-氯化钾、氯化钙-氯化钠-氯化钾中的一种,其中,氯化钙基熔盐,氯化钙为主盐。
所述的步骤1(1)中,所述的烘干的工艺为:将原料置于高温真空干燥炉中,在300~400℃,压力为-0.1MPa以下,干燥10~15h,除去吸附水和结晶水,得到干燥的熔盐原料、干燥的硅氧化物、干燥的含硼氧化物。
所述的步骤1(2)中,惰性气体为氮气、氩气、或氮气-氩气混合气中的一种。
所述的步骤1(2)中,当硅氧化物含有氧化硅,含硼氧化物含有氧化硼时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)=(2~2.5):1,碳化钙(CaC2):氧化硼(B2O3)=(3~3.5):1,氧化硅(SiO2):氧化硼(B2O3)=(2~10):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+3倍氧化硼≥10:3。
所述的步骤1(2)中,当硅氧化物含有硅酸钙,含硼氧化物含有氧化硼时,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)=(2~2.5):1,碳化钙(CaC2):氧化硼(B2O3)=(3~3.5):1,硅酸钙(CaSiO3):氧化硼(B2O3)=(2~10):1,氯化钙基熔盐中的氯化钙:硅酸钙+氧化硼≥10:1。
所述的步骤1(2)中,当硅氧化物含有氧化硅,含硼氧化物含有硼酸钙时,以硼酸钙CaB2O4为例,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)=(2~2.5):1,碳化钙(CaC2):硼酸钙(CaB2O4)=(3~3.5):1,氧化硅(SiO2):硼酸钙(CaB2O4)=(2~10):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+4倍硼酸钙≥10:3。
所述的步骤1(2)中,当硅氧化物含有硅酸钙,含硼氧化物含有硼酸钙,以硼酸钙CaB2O4为例,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)=(2~2.5):1,碳化钙(CaC2):硼酸钙(CaB2O4)=(3~3.5):1,硅酸钙(CaSiO3):硼酸钙(CaB2O4)=(2~10):1,氯化钙基熔盐中的氯化钙:3倍硅酸钙+4倍氧化硼≥10:3。
所述的步骤1(2)中,当硅氧化物含有氧化硅,含硼氧化物含有硼砂时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)=(2~2.5):1,碳化钙(CaC2):硼砂(Na2B4O7)=(6~10):1,氧化硅(SiO2):硼砂(Na2B4O7)=(4~20):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+8倍硼砂≥10:3。
所述的步骤1(2)中,当硅氧化物含有硅酸钙,含硼氧化物含有硼砂时,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)=(2~2.5):1,碳化钙(CaC2):硼砂(Na2B4O7)=(6~10):1,硅酸钙(CaSiO3):硼砂(Na2B4O7)=(4~20):1,氯化钙基熔盐中的氯化钙:3倍硅酸钙+8倍硼砂≥10:3。
所述的步骤1(2)中,当硅氧化物含有氧化硅,含硼氧化物含有硼酸镁时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)=(2~2.5):1,碳化钙(CaC2):硼酸镁(Mg2B2O5)=(3~3.5):1,氧化硅(SiO2):硼酸镁(Mg2B2O5)=(2~10):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+4倍硼酸镁≥10:3。
所述的步骤1(2)中,当硅氧化物含有硅酸钙,含硼氧化物含有硼酸镁,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)=(2~2.5):1,碳化钙(CaC2):硼酸镁(Mg2B2O5)=(3~3.5):1,硅酸钙(CaSiO3):硼酸镁(Mg2B2O5)=(2~10):1,氯化钙基熔盐中的氯化钙:3倍硅酸钙+4倍硼酸镁≥10:3。
所述的步骤1(2)中,当硅氧化物含有氧化硅,含硼氧化物含有硼酸钾时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)=(2~2.5):1,碳化钙(CaC2):硼酸钾(K2B4O7)=(6~10):1,氧化硅(SiO2):硼酸钾(K2B4O7)=(4~20):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+8倍硼酸钾≥10:3。
所述的步骤1(2)中,当硅氧化物含有硅酸钙,含硼氧化物含有硼酸钾时,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)=(2~2.5):1,碳化钙(CaC2):硼酸钾(K2B4O7)=(6~10):1,硅酸钙(CaSiO3):硼酸钾(K2B4O7)=(4~20):1,氯化钙基熔盐中的氯化钙:3倍硅酸钙+8倍硼酸钾≥10:3。
所述的步骤1(3)中,内嵌坩埚为石墨坩埚或镍坩埚。
所述的步骤1(4)中,惰性气体为氩气、或氩气-氮气混合气体,当为氩气-氮气混合气体时,按体积比,氩气:氮气≥1:1。
所述的步骤2中,反应器采用电阻丝炉升温,升温至合成温度的升温速率为3~10℃/min。
所述的步骤2中,合成温度>熔盐原料的熔化温度+(10~20)℃。
所述的步骤2中,当反应器升温至合成温度后,恒温,可以将搅拌桨***熔盐中,在恒温过程中维持搅拌,搅拌浆转速v为0<v≤700r/min。
所述的步骤2中,搅拌桨为完全浸没在熔盐中,搅拌桨采用调频电动机带动转动。
所述的步骤3中,所述的冷却容器为不锈钢容器。
所述的步骤3中,反应后的产物排出反应器后,反应器密封,同时,电阻丝炉降至室温,停止通入惰性气体。
所述的步骤3中,所述的磨碎采用研钵。
所述的步骤3中,盐酸为0.1~0.2mol/L的盐酸。
所述的步骤3中,烘干为在50~80℃真空干燥。
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料,采用上述制备方法制得。
所述的一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料,其颗粒粒径为50nm~50μm;当静态合成Si-B-C时,产物颗粒粒径为5μm-50μm;当搅拌合成Si-B-C时,产物颗粒粒径为50nm-500nm。
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的应用,为用于作为锂离子电池负极材料。
一种负极材料,包括上述碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料。
一种电极片,包括上述负极材料,所述的负极材料还包括粘结剂、导电剂和溶剂。
一种锂离子电池,包括上述电极片,静态合成的硅基Si-B-C负极材料,其首次充放电库伦效率>80%,优选为82%~90%,首次放电达到2700mAh/g;以0.1A·g-1电流密度循环400圈,其可逆循环比容量为>1400mAh/g,优选为1450~1610mAh/g;搅拌合成的硅基Si-B-C负极材料,其首次充放电库伦效率>75%,优选为77%~85%,首次放电达到2500mAh/g;以0.1A·g-1电流密度循环500圈,其可逆循环比容量为>1400mAh/g,优选为1430~1600mAh/g。
本发明的碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用,其熔盐中涉及的化学反应方程式为:
热力学计算表明:化学反应2CaC2+SiO2=2CaO+Si+4C;2CaC2+CaSiO3=3CaO+Si+4C;3CaC2+B2O3=3CaO+2B+6C;3CaC2+Mg2B2O5=6C+2B+3CaO+2MgO,3CaC2+CaB2O4=4CaO+2B+6C;CaCl2+6CaC2+Na2B4O7=12C+4B+7CaO+2NaCl;CaCl2+6CaC2+K2B4O7=12C+4B+7CaO+2KCl,能够自发进行,但是其是放热反应,反应产物难以控制,特别是产物粒径和反应进行的彻底程度,而研究表明碳化钙在氯化钙中有一定的溶解度,因此,本发明以碳化钙、硅氧化物和含硼氧化物作为原料,在静止或搅动的氯化钙基熔盐中进行Si-B-C负极材料合成,其粒径可控,能够加快反应进行,因为制备后的氧化钙能够溶于熔盐中,能够促进反应的进行,并且将产物和熔盐有效分离,该方法能够控制反应速率,控制能量释放,促进反应有效进行。制备的硅基Si-B-C负极材料,颗粒尺寸适度,制备的锂离子电池具有良好的首次充放电库伦效率,首次放电比容量高,循环性能好。制备成本低,且合成过程操作简单。
本发明通过调控盐组成及比例、搅拌桨转速、合成温度和合成时间,调控碳化钙与硅氧化物和含硼氧化物反应,调控碳化钙与含硼氧化物反应和产物Si-B-C材料的生成过程。控制反应速率,促进Si-B-C产物中硅、硼和碳均匀分布和颗粒尺寸控制,有利于有效缓解和缓冲作为锂离子电池负极材料硅锂合金化过程的体积膨胀,提高硅材料的电导率,提高电化学性能。该方法利用低成本碳化钙、硅氧化物和含硼氧化物作原料,在氯化钙基熔盐中进行材料合成,实现了低成本、调控制备锂离子电池Si-B-C负极材料,操作过程简单。制备的硅基Si-B-C负极材料,硅颗粒尺寸适度,导电性好,具有良好的比容量和循环性能。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于本发明而不用于限制本发明的范围。对外应理解,在阅读了本发明的内容之后,本领域技术人员对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明实例中,除非特殊说明,采用的原料和设备均为市购,纯度为分析纯及以上;具体为采用的碳化钙、硅氧化物和含硼氧化物为市购产品,纯度为分析纯。采用的碳化钙为市购产品,纯度为工业级。采用的氯化钙基盐的各种氯盐纯度为分析纯。采用的陶瓷研钵、石墨或镍坩埚为市购产品。
本发明实施例中采用的氯化钙基盐的各种氯盐为熔盐,操作温度控制在530~900℃。
本发明实施例中,反应器的出气口通过管道延伸至反应器外部的水池内液面的下方,当氩气持续流通时,有气泡冒出。
本发明实施例中,将氯化钙基盐的各种氯盐、含有结晶水的含硼氧化物烘干,除去吸附水和结晶水是将氯化钙基盐的各种氯盐、含有结晶水的含硼氧化物置于高温真空干燥炉中,在温度300~400℃和压力-0.1MPa以下,干燥10~15h,除去吸附水和结晶水。
本发明实施例中对反应器内的物料进行加热是将反应器置于电阻丝炉中加热。
实施例1
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,按以下步骤进行:
(1)将氧化硅、氧化硼、氯化钙烘干,除去吸附水和结晶水;
(2)在惰性气体保护下,称取5.7g±0.1g碳化钙,称取1.5g±0.1g氧化硼,混合研磨均匀,得到碳化钙-氧化硼;
(3)在惰性气体保护下,称取4.3g±0.1g碳化钙,称取2.7g±0.1g氧化硅,混合研磨均匀,得到碳化钙-氧化硅;
(4)在惰性气体保护下,称取60.0g±0.1g氯化钙,研磨均匀;
(5)将碳化钙-氧化硅、碳化钙-氧化硼、氯化钙混匀,得到混好的盐,密封;
(6)将混好的盐装入内嵌在反应器内的石墨坩埚中,密封反应器盖。
(7)从反应器盖进气口通入惰性气体-氩气,从反应器盖出气口排出惰性气体,保证反应器内为正压;
(8)电阻丝炉升温;
(9)以升温速率为5℃/min,将反应器加热至800℃,氯化钙熔化形成熔盐,反应5h,得到反应后的产物;
(10)升温出盐管;
(11)出盐管中的盐熔化后,反应后的产物靠重力从出盐口流出,储存在不锈钢容器中冷却。
(12)出盐管中剩少量反应后的产物,停止加热出盐管,残留的反应后的产物冷却自动密封出盐口;
(13)从不锈钢容器中取出冷却的盐,磨碎;用0.1mol/L盐酸洗除盐、过滤;将过滤产物用去离子水清洗;在60℃真空干燥得到硅基Si-B-C负极材料,密封待用;
(14)将制得的硅基Si-B-C负极材料制成锂离子电池负极,进行电化学测试。
实施例2
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(9)中,熔盐反应过程中,反应时间为3h;其他方式相同。
实施例3
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(9)中,熔盐反应过程中,反应时间为1h;其他方式相同。
实施例4
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(1)中,将氧化硅、氧化硼、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硼、碳化钙-氧化硅、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应时间为4h;其他方式相同。
实施例5
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例4,不同点在于:
(1)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应时间为2h;其他方式相同。
实施例6
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(1)中,将氧化硅、氧化硼、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-氧化硼、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应时间为5h;其他方式相同。
实施例7
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例6,不同点在于:
(1)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应时间为3h;其他方式相同。
实施例8
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例6,不同点在于:
(1)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应时间为1h;其他方式相同。
实施例9
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(1)中,将氧化硅、氧化硼、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,称取40.0±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-氧化硼、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应时间为4h;其他方式相同。
实施例10
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例9,不同点在于:
(1)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应时间为2h;其他方式相同。
实施例11
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(1)中,将硅酸钙、氧化硼、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(3)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取5.2g±0.1g硅酸钙,混合研磨均匀,得到碳化钙-硅酸钙;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-氧化硼、氯化钙混匀,得到混好的盐,密封;其他方式相同。
实施例12
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例11,不同点在于:
(1)步骤(9)中,氯化钙熔化形成熔盐,反应时间为3h;其他方式相同。
实施例13
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例11,不同点在于:
(1)步骤(9)中,氯化钙熔化形成熔盐,反应时间为1h;其他方式相同。
实施例14
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例11,不同点在于:
(1)步骤(1)中,将硅酸钙、氧化硼、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-氧化硼、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应时间为4h;其他方式相同。
实施例15
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例14,不同点在于:
(1)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应时间为2h;其他方式相同。
实施例16
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例11,不同点在于:
(1)步骤(1)中,将硅酸钙、氧化硼、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-氧化硼、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应时间为5h;其他方式相同。
实施例17
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例16,不同点在于:
(1)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应时间为3h;其他方式相同。
实施例18
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例16,不同点在于:
(1)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应时间为1h;其他方式相同。
实施例19
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例11,不同点在于:
(1)步骤(1)中,将硅酸钙、氧化硼、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,称取40.0g±0.1g氯化钠,研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-氧化硼、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应时间为4h;其他方式相同。
实施例20
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例19,不同点在于:
(1)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应时间为2h;其他方式相同。
实施例21
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钙、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取4.3g±0.1g碳化钙,称取2.8g±0.1g硼酸钙,混合研磨均匀,得到碳化钙-硼酸钙;
(3)步骤(5)中,将碳化钙-硼酸钙、碳化钙-氧化硅、氯化钙混匀,得到混好的盐,密封;其他方式相同。
实施例22
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例21,不同点在于:
(1)步骤(9)中,反应时间为3h;其他方式相同。
实施例23
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例21,不同点在于:
(1)步骤(9)中,反应时间为1h;其他方式相同。
实施例24
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例21,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钙、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硼酸钙、碳化钙-氧化硅、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例25
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例24,不同点在于:
(1)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应2h;
其他方式相同。
实施例26
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例21,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钙、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硼酸钙、碳化钙-氧化硅、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应5h;
其他方式相同。
实施例27
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例26,不同点在于:(1)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应3h;其他方式相同。
实施例28
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例26,不同点在于:(1)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应1h;其他方式相同。
实施例29
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例21,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钙、氯化钙、氯化钠、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,称取7.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硼酸钙、碳化钙-氧化硅、氯化钙-氯化钠-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钠-氯化钾熔化形成熔盐,反应4h;
其他方式相同。
实施例30
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例29,不同点在于:
(1)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钠-氯化钾熔化形成熔盐,反应2h;其他方式相同。
实施例31
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钙、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取4.3g±0.1g碳化钙,称取2.8g±0.1g硼酸钙,混合研磨均匀,得到碳化钙-硼酸钙;
(3)步骤(3)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取5.2g±0.1g硅酸钙,混合研磨均匀,得到碳化钙-硅酸钙;
(4)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钙、氯化钙混匀,得到混好的盐,密封;其他方式相同。
实施例32
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例31,不同点在于:
(1)步骤(9)中,反应时间为3h;其他方式相同。
实施例33
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例31,不同点在于:
(1)步骤(9)中,反应时间为1h;其他方式相同。
实施例34
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例31,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钙、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钙、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例35
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例34,不同点在于:
(1)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应2h;
其他方式相同。
实施例36
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例31,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钙、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钙、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应5h;
其他方式相同。
实施例37
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例36,不同点在于:(1)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应3h;其他方式相同。
实施例38
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例36,不同点在于:(1)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应1h;其他方式相同。
实施例39
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例31,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钙、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,称取40.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钙、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例40
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例39,不同点在于:(1)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应2h;其他方式相同。
实施例41
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(1)中,将硅酸钙、硼砂、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取6.5g±0.1g碳化钙,称取2.3g±0.1g硼砂,混合研磨均匀,得到碳化钙-硼砂;
(3)步骤(3)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取5.2g±0.1g硅酸钙,混合研磨均匀,得到碳化钙-硅酸钙;
(4)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙;
(5)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼砂、氯化钙混匀,得到混好的盐,密封;
(6)步骤(9)中,将反应器加热至800℃,氯化钙熔化形成熔盐,反应4h;其他方式相同。
实施例42
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例41,不同点在于:
(1)步骤(1)中,将硅酸钙、硼砂、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙,称取90.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼砂、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例43
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例41,不同点在于:
(1)步骤(1)中,将硅酸钙、硼砂、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙,称取15.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼砂、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应4h;
其他方式相同。
实施例44
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例41,不同点在于:
(1)步骤(1)中,将硅酸钙、硼砂、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙,称取15.4g±0.1g氯化钾,称取90.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼砂、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例45
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例1,不同点在于:
(1)步骤(1)中,将氧化硅、硼砂、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取6.5g±0.1g碳化钙,称取2.3g±0.1g硼砂,混合研磨均匀,得到碳化钙-硼砂;
(3)步骤(3)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取2.7g±0.1g氧化硅,混合研磨均匀,得到碳化钙-氧化硅;
(4)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙;
(5)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼砂、氯化钙混匀,得到混好的盐,密封;
(6)步骤(9)中,将反应器加热至800℃,氯化钙熔化形成熔盐,反应4h;其他方式相同。
实施例46
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例41,不同点在于:
(1)步骤(1)中,将氧化硅、硼砂、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,称取120.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼砂、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例47
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例41,不同点在于:
(1)步骤(1)中,将氧化硅、硼砂、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,称取22.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼砂、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应4h;
其他方式相同。
实施例48
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例41,不同点在于:
(1)步骤(1)中,将氧化硅、硼砂、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,称取22.4g±0.1g氯化钾,称取120.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼砂、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例49
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例48,不同点在于:(1)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾熔化形成熔盐,反应3h;其他方式相同。
实施例50
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例48,不同点在于:(1)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应2h;其他方式相同。
实施例51
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,按以下步骤进行:
(1)将氧化硅、氧化硼、氯化钙烘干,去除吸附水和结晶水;
(2)在惰性气体保护下,称取5.7g±0.1g碳化钙,称取2.7g±0.1g氧化硅,研磨均匀,得到碳化钙-氧化硅;
(3)在惰性气体保护下,称取5.7g±0.1g碳化钙,称取1.6g±0.1g氧化硼,研磨均匀,得到碳化钙-氧化硼;
(4)在惰性气体保护下,称取50.0g±0.1g氯化钙,研磨均匀;
(5)将碳化钙-氧化硅、碳化钙-氧化硼、氯化钙混匀,装入自封袋密封;
(6)将混好的盐装入内嵌在反应器内的坩埚中,密封反应器盖。
(7)从反应器盖进气口通入惰性气体,从反应器盖出气口排出惰性气体,保证反应器内为正压;
(8)电阻丝炉升温;
(9)将反应器以升温速率为6℃/min,加热至800℃,氯化钙熔化形成熔盐,保温5小时,
(10)***搅拌桨;
(11)转动搅拌桨,搅动速度为700r/min,保温过程中持续搅拌,搅动时间与保温时间相同;
(12)停止搅拌,提离搅拌桨;
(13)升温反应器的出盐管;
(14)出盐管中的盐熔化后,盐靠重力从出盐口流出,储存在不锈钢容器中冷却。
(15)出盐管中剩少量盐,停止加热出盐管,残留的盐冷却自动密封出盐口;
(16)从不锈钢容器中取出冷却的盐,磨碎;用0.1mol/L盐酸洗除盐、过滤;将过滤产物用去离子水清洗;置于真空干燥箱50℃烘干,制得硅基Si-B-C负极材料,密封待用;
(17)将制得的硅基Si-B-C负极材料制成锂离子电池负极进行电化学测试。
实施例52
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:(1)步骤(11)中,熔盐搅动速度为500r/min;其他方式相同。
实施例53
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(11)中,熔盐搅动速度为200r/min;其他方式相同。
实施例54
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、氧化硼、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取50.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,研磨均匀;混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-氧化硼、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应时间为5h;
(5)步骤(11)中,熔盐搅动速度为600r/min;其他方式相同。
实施例55
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例54,不同点在于:(1)步骤(11)中,熔盐搅动速度为200r/min;其他方式相同。
实施例56
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、氧化硼、氯化钙、氯化钾烘干,,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-氧化硼、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应时间为5h;
(5)步骤(11)中,熔盐搅动速度为700r/min;其他方式相同。
实施例57
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例56,不同点在于:
(1)步骤(11)中,熔盐搅动速度为500r/min;其他方式相同。
实施例58
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例56,不同点在于:
(1)步骤(11)中,熔盐搅动速度为200r/min;其他方式相同。
实施例59
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、氧化硼、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,称取40.0±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-氧化硼、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应5h;
(5)步骤(11)中,熔盐搅动速度为600r/min;其他方式相同。
实施例60
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例59,不同点在于:
(1)步骤(11)中,熔盐搅动速度为400r/min;其他方式相同。
实施例61
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将硅酸钙、氧化硼、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取5.2g±0.1g硅酸钙,混合研磨均匀,得到碳化钙-硅酸钙;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-氧化硼、氯化钙混匀,得到混好的盐,密封;其他方式相同。
实施例62
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例61,不同点在于:
(1)步骤(11)中,熔盐搅动速度为500r/min;其他方式相同。
实施例63
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例61,不同点在于:
(1)步骤(11)中,熔盐搅动速度为200r/min;其他方式相同。
实施例64
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例61,不同点在于:
(1)步骤(1)中,将硅酸钙、氧化硼、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-氧化硼、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应时间为5h;
(5)步骤(11)中,熔盐搅动速度为600r/min;其他方式相同。
实施例65
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例64,不同点在于:
(1)步骤(11)中,熔盐搅动速度为400r/min;其他方式相同。
实施例66
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例61,不同点在于:
(1)步骤(1)中,将硅酸钙、氧化硼、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-氧化硼、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应时间为5h;
其他方式相同。
实施例67
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例66,不同点在于:
(1)步骤(11)中,熔盐搅动速度为500r/min;其他方式相同。
实施例68
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例66,不同点在于:
(1)步骤(11)中,熔盐搅动速度为200r/min;其他方式相同。
实施例69
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例61,不同点在于:
(1)步骤(1)中,将硅酸钙、氧化硼、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,称取40.0g±0.1g氯化钠,研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-氧化硼、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应5h;
(5)步骤(11)中,搅动速度为600r/min,其他方式相同。
实施例70
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例69,不同点在于:
(1)步骤(11)中,搅动速度为400r/min,其他方式相同。
实施例71
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钙、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(3)中,在惰性气体保护下,称取4.3g±0.1g碳化钙,称取2.8g±0.1g硼酸钙,混合研磨均匀,得到碳化钙-硼酸钙;
(3)步骤(5)中,将碳化钙-硼酸钙、碳化钙-氧化硅、氯化钙混匀,得到混好盐,密封;
其他方式相同。
实施例72
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例71,不同点在于:
(1)步骤(11)中,搅动速度500r/min;其他方式相同。
实施例73
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例71,不同点在于:
(1)步骤(11)中,搅动速度200r/min;其他方式相同。
实施例74
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例71,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钙、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硼酸钙、碳化钙-氧化硅、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应5h;
(5)步骤(11)中,搅动速度600r/min;
其他方式相同。
实施例75
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例74,不同点在于:
(1)步骤(11)中,搅动速度400r/min;其他方式相同。
实施例76
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例71,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钙、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硼酸钙、碳化钙-氧化硅、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应5h;
(5)步骤(11)中,搅动速度700r/min;其他方式相同。
实施例77
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例76,不同点在于:
(1)步骤(11)中,搅动速度500r/min;其他方式相同。
实施例78
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例76,不同点在于:
(1)步骤(11)中,搅动速度200r/min;其他方式相同。
实施例79
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例71,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钙、氯化钙、氯化钠、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,称取7.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硼酸钙、碳化钙-氧化硅、氯化钙-氯化钠-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钠-氯化钾熔化形成熔盐,反应5h;
(5)步骤(11)中,搅动速度600r/min;其他方式相同。
实施例80
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例79,不同点在于:
(1)步骤(11)中,搅动速度400r/min;其他方式相同。
实施例81
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钙、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取5.2g±0.1g硅酸钙,混合研磨均匀,得到碳化钙-硅酸钙;
(3)步骤(3)中,在惰性气体保护下,称取4.3g±0.1g碳化钙,称取2.8g±0.1g硼酸钙,混合研磨均匀,得到碳化钙-硼酸钙;
(4)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钙、氯化钙混匀,得到混好的盐,密封;其他方式相同。
实施例82
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例81,不同点在于:
(1)步骤(11)中,搅动速度为500r/min;其他方式相同。
实施例83
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例81,不同点在于:
(1)步骤(11)中,搅动速度为200r/min;其他方式相同。
实施例84
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例81,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钙、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钙、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应5h;
(5)步骤(11)中,搅动速度为600r/min;
其他方式相同。
实施例85
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例84,不同点在于:
(1)步骤(11)中,搅动速度为400r/min;其他方式相同。
实施例86
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例81,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钙、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钙、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应5h;
(5)步骤(11)中,搅动速度为700r/min;
其他方式相同。
实施例87
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例86,不同点在于:
(1)步骤(11)中,搅动速度为500r/min;其他方式相同。
实施例88
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例86,不同点在于:
(1)步骤(11)中,搅动速度为200r/min;其他方式相同。
实施例89
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例71,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钙、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取7.4g±0.1g氯化钾,称取40.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钙、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应5h;
(5)步骤(11)中,搅动速度为600r/min;其他方式相同。
实施例90
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例89,不同点在于:
(1)步骤(11)中,搅动速度为400r/min;其他方式相同。
实施例91
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将硅酸钙、硼砂、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取5.2g±0.1g硅酸钙,混合研磨均匀,得到碳化钙-硅酸钙;
(3)步骤(3)中,在惰性气体保护下,称取6.5g±0.1g碳化钙,称取2.3g±0.1g硼砂,混合研磨均匀,得到碳化钙-硼砂;
(4)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙;
(5)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼砂、氯化钙混匀,得到混好的盐,密封;
(6)步骤(9)中,将反应器加热至800℃,氯化钙熔化形成熔盐,反应4h;
其他方式相同。
实施例92
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例91,不同点在于:
(1)步骤(1)中,将硅酸钙、硼砂、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙,称取90.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼砂、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例93
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例91,不同点在于:
(1)步骤(1)中,将硅酸钙、硼砂、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙,称取15.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼砂、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应4h;
其他方式相同。
实施例94
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例91,不同点在于:
(1)步骤(1)中,将硅酸钙、硼砂、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙,称取15.4g±0.1g氯化钾,称取90.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼砂、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例95
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、硼砂、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取2.7g±0.1g氧化硅,混合研磨均匀,得到碳化钙-氧化硅;
(3)步骤(3)中,在惰性气体保护下,称取6.5g±0.1g碳化钙,称取2.3g±0.1g硼砂,混合研磨均匀,得到碳化钙-硼砂;
(4)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙;
(5)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼砂、氯化钙混匀,得到混好的盐,密封;
(6)步骤(9)中,将反应器加热至800℃,氯化钙熔化形成熔盐,反应4h;其他方式相同。
实施例96
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例95,不同点在于:
(1)步骤(1)中,将氧化硅、硼砂、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,称取120.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼砂、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例97
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例95,不同点在于:
(1)步骤(1)中,将氧化硅、硼砂、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,称取22.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼砂、氯化钙-氯化钾混匀,得到混好盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应4h;
其他方式相同。
实施例98
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例95,不同点在于:
(1)步骤(1)中,将氧化硅、硼砂、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,称取22.4g±0.1g氯化钾,称取120.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼砂、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例99
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例98,不同点在于:
(1)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾熔化形成熔盐,反应3h;其他方式相同。
实施例100
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钾、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取5.2g±0.1g硅酸钙,混合研磨均匀,得到碳化钙-硅酸钙;
(3)步骤(3)中,在惰性气体保护下,称取6.5g±0.1g碳化钙,称取2.6g±0.1g硼酸钾,混合研磨均匀,得到碳化钙-硼酸钾;
(4)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙;
(5)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钾、氯化钙混匀,得到混好盐,密封;
(6)步骤(9)中,将反应器加热至800℃,氯化钙熔化形成熔盐,反应4h;其他方式相同。
实施例101
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钾、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙,称取90.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钾、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例102
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钾、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g±0.1g氯化钙,称取15.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钾、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应4h;
其他方式相同。
实施例103
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸钾、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取140.0g氯化钙,15.4g±0.1g氯化钾,90.0g±0.1g氯化钠,研磨混匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-硅酸钙、碳化钙-硼酸钾、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例104
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钾、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(3)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取2.7g±0.1g氧化硅,混合研磨均匀,得到碳化钙-氧化硅;
(3)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙;
(4)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼酸钾、氯化钙混匀,得到混好的盐,密封;
(5)步骤(9)中,将反应器加热至800℃,氯化钙熔化形成熔盐,反应4h;其他方式相同。
实施例105
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钾、氯化钙、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,称取120.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼酸钾、氯化钙-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例106
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钾、氯化钙、氯化钾烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,称取22.4g±0.1g氯化钾,混合研磨均匀,得到氯化钙-氯化钾;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼酸钾、氯化钙-氯化钾混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至700℃,氯化钙-氯化钾熔化形成熔盐,反应4h;
其他方式相同。
实施例107
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将氧化硅、硼酸钾、氯化钙、氯化钾、氯化钠烘干,除去吸附水和结晶水;
(2)步骤(4)中,在惰性气体保护下,称取180.0g±0.1g氯化钙,22.4g±0.1g氯化钾,120.0g±0.1g氯化钠,研磨混匀,得到氯化钙-氯化钾-氯化钠;
(3)步骤(5)中,将碳化钙-氧化硅、碳化钙-硼酸钾、氯化钙-氯化钾-氯化钠混匀,得到混好的盐,密封;
(4)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾-氯化钠熔化形成熔盐,反应4h;
其他方式相同。
实施例108
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例98,不同点在于:
(1)步骤(9)中,将反应器加热至630℃,氯化钙-氯化钾熔化形成熔盐,反应3h;
其他方式相同。
实施例109
一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,同实施例51,不同点在于:
(1)步骤(1)中,将硅酸钙、硼酸镁、氯化钙烘干,除去吸附水和结晶水;
(2)步骤(2)中,在惰性气体保护下,称取5.7g±0.1g碳化钙,称取5.2g±0.1g硅酸钙,混合研磨均匀,得到碳化钙-硅酸钙;
(3)步骤(3)中,在惰性气体保护下,称取4.3g±0.1g碳化钙,称取3.8g±0.1g硼酸镁,混合研磨均匀,得到碳化钙-硼酸镁;
(4)步骤(4)中,在惰性气体保护下,称取60.0g±0.1g氯化钙,称取40.0g±0.1g氯化钠,混合研磨均匀,得到氯化钙-氯化钠;
(5)步骤(5)中将碳化钙-硅酸钙、碳化钙-硼酸镁、氯化钙-氯化钠混匀,得到混好盐,密封;
(6)步骤(9)中,将反应器加热至750℃,氯化钙-氯化钠熔化形成熔盐,反应5h;
(7)步骤(11)中,搅动速度为600r/min;其他方式相同。
应用例1
将实施例1制备的硅基Si-B-C负极材料与导电剂乙炔黑以及粘结剂PVDF按质量比,硅基Si-B-C负极材料:导电剂乙炔黑:粘结剂PVDF=6:2:2比例进行均匀混合,加入溶剂N-甲基吡咯烷酮制备成浆料,浆料涂于铜箔集流体上,得到电极片;
将电极片置于真空干燥中,以90℃干燥12h,待电极片完全干燥后,把电极片冲成直径为12mm的圆片电极片。
将得到的圆片电极片作为负极,金属锂片作为正极,Celgard2400作为隔膜,EC/DMC(1:1)-LiPF6(1M)为电解液,在手套箱中进行电池组装。
使用蓝CT2001A型电池测试***以0.01~1.5V电压范围内进行恒电流充放电测试。电化学测试结果表明,首次充放电库伦效率90%,以0.1A·g-1电流密度在400次循环后,电池的可逆循环比容量为1437.6mAh·g-1
应用例2
将实施例2制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率88%,以0.1A·g-1电流密度在400次循环后,电池的可逆循环比容量为1517.3mAh·g-1。其他方式相同。
应用例3
将实施例3制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率85%,以0.1A·g-1电流密度在400次循环后,电池的可逆循环比容量为1601.6mAh·g-1。其他方式相同。
应用例4
将实施例11制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率88%,以0.1A·g-1电流密度在400次循环后,电池的可逆循环比容量为1451.7mAh·g-1。其他方式相同。
应用例5
将实施例14制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率86%,以0.1A·g-1电流密度在400次循环后,电池的可逆循环比容量为1492.6mAh·g-1。其他方式相同。
应用例6
将实施例16制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率84%,以0.1A·g-1电流密度在400次循环后,电池的可逆循环比容量为1505.6mAh·g-1。其他方式相同。
应用例7
将实施例19制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率82%,以0.1A·g-1电流密度在400次循环后,电池的可逆循环比容量为1520.6mAh·g-1。其他方式相同。
应用例8
将实施例41制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率为85%,以0.1A·g-1电流密度在500次循环后,电池的可逆循环比容量为1437.6mAh·g-1
应用例9
将实施例42制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率为83%,以0.1A·g-1电流密度在500次循环后,电池的可逆循环比容量为1487.3mAh·g-1。其他方式相同。
应用例10
将实施例43制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率为82%,以0.1A·g-1电流密度在500次循环后,电池的可逆循环比容量为1501.6mAh·g-1。其他方式相同。
应用例11
将实施例51制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率为85%,以0.1A·g-1电流密度在500次循环后,电池的可逆循环比容量为1451.7mAh·g-1。其他方式相同。
应用例12
将实施例54制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率为82%,以0.1A·g-1电流密度在500次循环后,电池的可逆循环比容量为1492.6mAh·g-1。其他方式相同。
应用例13
将实施例56制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率为79%,以0.1A·g-1电流密度在500次循环后,电池的可逆循环比容量为1535.6mAh·g-1。其他方式相同。
应用例14
将实施例59制备的硅基Si-B-C负极材料的应用,同应用例1,不同点在于:
(1)首次充放电库伦效率为77%,以0.1A·g-1电流密度在500次循环后,电池的可逆循环比容量为1580.6mAh·g-1。其他方式相同。

Claims (11)

1. 一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,其特征在于,包括以下步骤:
步骤1:准备
(1)将硅氧化物、含硼氧化物、熔盐原料分别烘干,去除水分;其中,所述的熔盐为氯化钙基熔盐;所述的硅氧化物为氧化硅或硅酸钙中的一种或两种;
所述的含硼氧化物为氧化硼(B2O3.)、硼砂(Na2B4O7•10H2O)、硼酸钙、硼酸镁(Mg2B2O5)或硼酸钾(K2B4O7·5H2O)中的一种或几种的混合物;
(2)在惰性气体保护下,按反应化学计量比,将碳化钙-硅氧化物、碳化钙-含硼氧化物、熔盐原料,分别研磨至物料均匀,再混合均匀,得到的混合物料密封;
(3)将混合物料,置于反应器的内嵌坩埚中,密封;
(4)向密封反应器中,通入惰性气体,并维持惰性气氛,保证反应器内正压,通入惰性气体的同时,将反应器升温;
步骤2:合成
当反应器升温至合成温度后,恒温1~5h,得到反应后的产物;其中,合成温度为530~900℃;
步骤3:
将反应后的产物,置于冷却容器中冷却,磨碎,盐酸清洗去除熔盐,过滤,水洗,烘干,得到碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料。
2.根据权利要求1所述的碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,其特征在于,所述的步骤1(1)中,所述的氯化钙基熔盐为氯化钙、氯化钙-氯化钠、氯化钙-氯化钾、氯化钙-氯化钠-氯化钾中的一种,其中,氯化钙基熔盐,氯化钙为主盐。
3.根据权利要求1所述的碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,其特征在于,所述的步骤1(1)中,所述的烘干的工艺为:将原料置于高温真空干燥炉中,在300~400℃,压力为-0.1MPa以下,干燥10~15h,除去吸附水和结晶水,得到干燥的熔盐原料、干燥的硅氧化物、干燥的含硼氧化物。
4.根据权利要求1所述的碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,其特征在于,所述的步骤1(2)中,当硅氧化物含有氧化硅,含硼氧化物含有氧化硼时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)= (2~2.5):1,碳化钙(CaC2):氧化硼(B2O3)=(3~3.5):1,氧化硅(SiO2):氧化硼(B2O3)=(2~10):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+3倍氧化硼≥10:3;
当硅氧化物含有硅酸钙,含硼氧化物含有氧化硼时,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)= (2~2.5):1,碳化钙(CaC2):氧化硼(B2O3)=(3~3.5):1,硅酸钙(CaSiO3):氧化硼(B2O3)=(2~10):1,氯化钙基熔盐中的氯化钙:硅酸钙+氧化硼≥10:1;
当硅氧化物含有氧化硅,含硼氧化物含有CaB2O4时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)= (2~2.5):1,碳化钙(CaC2):硼酸钙(CaB2O4)=(3~3.5):1,氧化硅(SiO2):硼酸钙(CaB2O4)=(2~10):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+4倍硼酸钙≥10:3;
当硅氧化物含有硅酸钙,含硼氧化物含有CaB2O4时,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)= (2~2.5):1,碳化钙(CaC2):硼酸钙(CaB2O4)=(3~3.5):1,硅酸钙(CaSiO3):硼酸钙(CaB2O4)=(2~10):1,氯化钙基熔盐中的氯化钙:3倍硅酸钙+4倍氧化硼≥10:3;
当硅氧化物含有氧化硅,含硼氧化物含有硼砂时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)= (2~2.5):1,碳化钙(CaC2):硼砂(Na2B4O7)=(6~10):1,氧化硅(SiO2):硼砂(Na2B4O7)=(4~20):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+8倍硼砂≥10:3;
当硅氧化物含有硅酸钙,含硼氧化物含有硼砂时,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)= (2~2.5):1,碳化钙(CaC2):硼砂(Na2B4O7)=(6~10):1,硅酸钙(CaSiO3):硼砂(Na2B4O7)=(4~20):1,氯化钙基熔盐中的氯化钙:3倍硅酸钙+8倍硼砂≥10:3;
当硅氧化物含有氧化硅,含硼氧化物含有硼酸镁时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)= (2~2.5):1,碳化钙(CaC2):硼酸镁(Mg2B2O5)=(3~3.5):1,氧化硅(SiO2):硼酸镁(Mg2B2O5)=(2~10):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+4倍硼酸镁≥10:3;
当硅氧化物含有硅酸钙,含硼氧化物含有硼酸镁,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)= (2~2.5):1,碳化钙(CaC2):硼酸镁(Mg2B2O5)=(3~3.5):1,硅酸钙(CaSiO3):硼酸镁(Mg2B2O5)=(2~10):1,氯化钙基熔盐中的氯化钙:3倍硅酸钙+4倍硼酸镁≥10:3;
当硅氧化物含有氧化硅,含硼氧化物含有硼酸钾时,按摩尔比,碳化钙(CaC2):氧化硅(SiO2)= (2~2.5):1,碳化钙(CaC2):硼酸钾(K2B4O7)=(6~10):1,氧化硅(SiO2):硼酸钾(K2B4O7)=(4~20):1,氯化钙基熔盐中的氯化钙:2倍氧化硅+8倍硼酸钾≥10:3;
当硅氧化物含有硅酸钙,含硼氧化物含有硼酸钾时,按摩尔比,碳化钙(CaC2):硅酸钙(CaSiO3)= (2~2.5):1,碳化钙(CaC2):硼酸钾(K2B4O7)=(6~10):1,硅酸钙(CaSiO3):硼酸钾(K2B4O7)=(4~20):1,氯化钙基熔盐中的氯化钙:3倍硅酸钙+8倍硼酸钾≥10:3。
5.根据权利要求1所述的碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的制备方法,其特征在于,所述的步骤2中,当反应器升温至合成温度后,恒温,将搅拌桨***熔盐中,在恒温反应过程中维持搅拌,搅拌浆转速v为0<v≤700r/min。
6.一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料,其特征在于,采用权利要求1~5任意一项所述的制备方法制得。
7.根据权利要求6所述的碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料,其特征在于,该碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料,当静态合成时,硅基Si-B-C负极材料的颗粒粒径为5μm -50μm;当搅拌合成时,硅基Si-B-C负极材料的颗粒粒径为50 nm -500nm。
8.一种碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料的应用,其特征在于,将权利要求6所述的碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料用于作为锂离子电池负极材料。
9.一种负极材料,其特征在于,包括权利要求6所述的碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料。
10.一种电极片,其特征在于,包括权利要求9所述的负极材料,所述的负极材料还包括粘结剂、导电剂和溶剂。
11.一种锂离子电池,其特征在于,包括权利要求10所述的电极片,静态合成的硅基Si-B-C负极材料,其首次充放电库伦效率>80%,首次放电达到2700 mAh/g;以0.1A•g-1电流密度循环400圈,其可逆循环比容量为>1400mAh/g;搅拌合成的硅基Si-B-C负极材料,其首次充放电库伦效率>75%,首次放电达到2500 mAh/g;以0.1A•g-1电流密度循环500圈,其可逆循环比容量为>1400mAh/g。
CN201910925675.XA 2019-09-27 2019-09-27 碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用 Active CN110660989B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910925675.XA CN110660989B (zh) 2019-09-27 2019-09-27 碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910925675.XA CN110660989B (zh) 2019-09-27 2019-09-27 碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用

Publications (2)

Publication Number Publication Date
CN110660989A CN110660989A (zh) 2020-01-07
CN110660989B true CN110660989B (zh) 2020-09-22

Family

ID=69039653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910925675.XA Active CN110660989B (zh) 2019-09-27 2019-09-27 碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用

Country Status (1)

Country Link
CN (1) CN110660989B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236517A (zh) * 2013-04-26 2013-08-07 中国东方电气集团有限公司 一种锂离子电池硅基负极材料及其制备方法
CN106129411A (zh) * 2016-09-19 2016-11-16 深圳市贝特瑞新能源材料股份有限公司 一种空心硅基复合材料、制备方法及包含该复合材料的锂离子电池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5331300B2 (ja) * 2006-09-15 2013-10-30 株式会社東芝 ニッケル水素二次電池
CN107293700B (zh) * 2016-03-31 2020-08-07 比亚迪股份有限公司 一种锂离子电池负极活性材料及其制备方法、负极和电池
MX2018012885A (es) * 2016-04-20 2019-07-04 Univ West Virginia Metodos, aparatos y electrodos para la conversion de carburo a carbono con compuestos quimicos de carburo nanoestructurados.
CN110679013B (zh) * 2017-09-07 2023-04-25 华盛顿州立大学 具有碳涂覆宏观孔的硅的阳极的电池
CN109216685A (zh) * 2018-09-30 2019-01-15 东北大学 稻谷壳制备锂离子电池硅-碳负极材料的熔盐电化学方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103236517A (zh) * 2013-04-26 2013-08-07 中国东方电气集团有限公司 一种锂离子电池硅基负极材料及其制备方法
CN106129411A (zh) * 2016-09-19 2016-11-16 深圳市贝特瑞新能源材料股份有限公司 一种空心硅基复合材料、制备方法及包含该复合材料的锂离子电池

Also Published As

Publication number Publication date
CN110660989A (zh) 2020-01-07

Similar Documents

Publication Publication Date Title
WO2020098087A1 (zh) 一种锂离子电池氧化亚硅复合负极材料及制法
CN110289408B (zh) 基于切割硅废料的纳米硅和硅/碳复合材料及制法和应用
CN109755482B (zh) 硅/碳复合材料及其制备方法
CN104009210A (zh) 一种多孔硅/碳复合材料、制备方法及用途
CN113659141B (zh) 一种SiO@Mg/C复合材料及其制备方法和应用
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
CN108448114A (zh) 一种锂离子电池软碳负极材料及其制备方法
CN109273700A (zh) 一种硅基复合材料及其制备方法和应用
CN115504524A (zh) 一种单晶高镍材料及其制备方法和应用
CN110660989B (zh) 碳化钙共还原硅氧化物和含硼氧化物制备的硅基Si-B-C负极材料及其制法和应用
CN110649240B (zh) 基于碳酸钙制备的硅基Si-B-C负极材料及其制法和应用
CN110649239B (zh) Si-B-C负极材料和制备方法、应用以及包含其的负极材料、电极极片和锂离子电池
CN110660980B (zh) 一种硅基Si-B负极材料及其电化学合成方法和应用
WO2023155333A1 (zh) 一种基于压电效应制备高性能锂离子硅基负极材料的方法及其应用
CN110649241B (zh) 硅基Si-B-C负极材料及其电化学合成方法和应用
CN110600711B (zh) 基于碳酸钙制备的硅基Si-C负极材料及其制法和应用
CN110660988B (zh) 一种硅基Si-B负极材料及其合成方法和应用
CN110649225B (zh) 基于CO2制备的Si-C负极材料及其合成方法和应用
CN110518194B (zh) 一种原位碳包覆制备核壳型硅/碳复合材料的方法及其应用
CN110668445B (zh) 基于硅基氧化物制备的硅基Si-C负极材料及其制法和应用
CN110649238B (zh) 一种硅基Si-C负极材料及其电化学合成方法和应用
CN108987689B (zh) 一种硅碳负极材料的制备方法
CN110518195A (zh) 一种纳米硅/石墨烯复合材料的制备方法及应用
Li et al. GeO2 crystals embedded germanium phosphate glass with high electrochemical properties as an anode for lithium‐ion battery
CN112421041B (zh) 一种B-Mo-C载体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant