CN110649213B - 一种用于锂硫二次电池的涂覆隔膜材料及其应用 - Google Patents

一种用于锂硫二次电池的涂覆隔膜材料及其应用 Download PDF

Info

Publication number
CN110649213B
CN110649213B CN201910837680.5A CN201910837680A CN110649213B CN 110649213 B CN110649213 B CN 110649213B CN 201910837680 A CN201910837680 A CN 201910837680A CN 110649213 B CN110649213 B CN 110649213B
Authority
CN
China
Prior art keywords
diaphragm
parts
coating material
lithium
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910837680.5A
Other languages
English (en)
Other versions
CN110649213A (zh
Inventor
段晓波
赵致远
王昆
蔡欣
张蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Science and Technology
Original Assignee
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Science and Technology filed Critical Xian University of Science and Technology
Priority to CN201910837680.5A priority Critical patent/CN110649213B/zh
Publication of CN110649213A publication Critical patent/CN110649213A/zh
Application granted granted Critical
Publication of CN110649213B publication Critical patent/CN110649213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种用于锂硫二次电池的隔膜涂覆材料及其应用,属于锂硫二次电池领域。所述隔膜涂覆材料包括一种或多种金属氢化物,所述金属氢化物中金属元素包括稀土元素、Mg、Ca、Ti、V、Cr、Ni、Fe、Co、Zr中的一种或多种。所述隔膜涂覆的辅助材料还包括高分子粘结剂和添加剂,按重量份数所述隔膜涂覆材料包括金属氢化物20‑98份,高分子粘结剂1‑50份,炭黑0‑30份。本发明隔膜涂覆材料中的金属氢化物对锂硫二次电池中多硫化物具有较强的化学吸附能力,可有效阻碍多硫化物的扩散,改善锂硫二次电池的综合电化学性能。

Description

一种用于锂硫二次电池的涂覆隔膜材料及其应用
技术领域
本发明涉及一种用于锂硫二次电池的隔膜涂覆材料及其应用,属于锂硫二次电池领域。
背景技术
锂硫二次电池以含硫物质为正极,金属锂为负极,其具有理论能量密度高、成本低、绿色环保等优点,被认为是继锂离子电池之后下一代高比能化学电源的首选,受到世界各国的广泛重视。
尽管锂硫二次电池具有能量密度高等一系列优点,但到目前为止,其自放电性能、库伦效率、循环性能等指标仍然不能与锂离子电池相比。主要原因是硫正极的放电中间产物多硫化锂可大量溶于电解液中并在正极和负极之间来回穿梭,导致较差的自放电、循环性能和库伦效率。因此,提升锂硫二次电池性能的关键就是抑制锂硫二次电池的穿梭效应。目前学术界采用的一种有效方法就是在隔膜表面涂覆极性化合物,利用化合物对多硫化物的吸附效果,阻挡多硫化物从正极向负极的扩散。其中,涂覆用的化合物多采用氧化物和硫化物等材料,但这些材料普遍比重大,导电性弱,会影响硫正极的电子迁移能力。
发明内容
鉴于以上问题,本发明提供一种具有高导电性、阻硫效果好的隔膜涂覆材料及隔膜,目的是阻挡多硫化锂穿梭并提升锂硫二次电池的动力学性质。
一种用于锂硫二次电池的隔膜涂覆材料,包括一种或多种金属氢化物,所述金属氢化物中金属元素包括稀土元素、Mg、Ca、Ti、V、Cr、Ni、Fe、Co、Zr中的一种或多种。
进一步,所述金属氢化物包括含一种金属元素的金属氢化物或含多种金属元素的金属氢化物。
进一步的,所述隔膜涂覆材料还包括高分子粘结剂和添加剂,按重量份数所述隔膜涂覆材料包括金属氢化物20-98份,高分子粘结剂1-50份,炭黑0-30份。
进一步的,所述金属氢化物的粒度低于100μm。
进一步的,所述金属氢化物的纯度在90%以上。
进一步的,出于氢化物稳定性及成本考虑,金属氢化物优选金属元素为Mg、Ti、V、Cr、Ni、Fe中的一种或多种的金属氢化物。
优选的,综合考虑对电池性能的改善效果、成本、操作简便性以及目前是否具备工业级别供应能力等指标,TiH2与MgH2混合物是相对较好的选择。
优选的,按重量份数隔膜涂覆材料包括TiH2 45份、MgH2 45份、高分子粘结剂5份、炭黑5份。
一种用于锂硫二次电池的隔膜涂覆材料的制备方法,步骤如下:在惰性气体保护下,将所述金属氢化物球磨至粒度低于100μm,将1-50份所述高分子粘结剂溶于15-20倍重量的溶剂中并与20-98份细化后的金属氢化物和0-30份炭黑混合均匀,得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
进一步的,所述惰性气体包括氩气或氮气。
一种包括以上所述的隔膜涂覆材料的隔膜。
所述隔膜的制备方法为:将所述隔膜涂覆浆料涂覆于高分子多孔隔膜上,涂覆层厚度30-150μm,干燥后按需裁切成形。
一种包括以上所述的隔膜的锂硫二次电池。
本发明的隔膜涂覆材料的有效成分为金属氢化物,金属氢化物中含有金属键,存在自由电子,具有金属级别的高电导率。现有技术中金属氢化物在化学电源中的应用,主要是在碱性电解液中用作电源负极材料,如CN109037666A公布的一类金属氢化物石墨烯电池中就使用金属氢化物作为电池负极材料。在锂离子电池中,也有学者提出少数几种氢化物在0~0.5V(金属锂为标准电位)有一定嵌锂容量,有用作锂离子电池负极材料的潜力,但目前技术条件下很难脱锂,循环性能很差,尚无实用性。
本发明前期研究过程中发现,金属氢化物容易化学吸附多硫离子,适宜用作锂硫二次电池隔膜的涂覆材料。虽然氢化物吸附多硫离子的机理目前尚不明确,推测可能与氢化物的表面极性或还原性有关,但带来的技术效果十分显著。
本发明的有益效果包括:
(1)金属氢化物对处于氧化态的多硫化物具有较强的化学吸附能力,可有效阻碍多硫化物的扩散,改善电池综合电化学性能。
(2)金属氢化物电导率较高,不会降低硫正极的电子迁移能力。
(3)金属氢化物合成相对容易、具有类似无机陶瓷的脆性,通过球磨等机械手段很容易实现颗粒尺寸的调控。
附图说明
为了更清楚的说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
图1为实施例1中电池首次充放电曲线。
图2为实施例2中电池首次充放电曲线。
图3为实施例3中电池首次充放电曲线。
图4为实施例4中电池首次充放电曲线。
图5为实施例5中电池首次充放电曲线。
图6为实施例6中电池首次充放电曲线。
图7为实施例7中电池首次充放电曲线。
图8为实施例8中电池首次充放电曲线。
图9为实施例9中电池首次充放电曲线。
图10为实施例10中电池首次充放电曲线。
图11为实施例11中电池首次充放电曲线。
图12为实施例12中电池首次充放电曲线。
图13为实施例13中电池首次充放电曲线。
图14为实施例14中电池首次充放电曲线。
图15为实施例15中电池首次充放电曲线。
图16为实施例16中电池首次充放电曲线。
图17为实施例17中电池首次充放电曲线。
图18为对照例中电池首次充放电曲线。
图19为实施例17中氢化物粉末电子扫描电子显微镜(SEM)照片。
图20为实施例17中氢化物粉末在1-3V工作电压范围内的充放电曲线。
具体实施方式
下面将结合具体实施例,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通的技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明的保护范围。
实施例1
在Ar气保护下将TiH2粉末球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与90份细化后的TiH2粉末混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例2
在Ar气保护下将MgH2粉末球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与90份细化后的MgH2粉末混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例3
在Ar气保护下将LaNi5H6粉末球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于15倍重量的N-甲基吡咯烷酮(NMP)中并与90份细化后的LaNi5H6粉末混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度30μm,干燥后按需裁切成形,即得本发明隔膜。
实施例4
在Ar气保护下将TiCoH1.4粉末球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于15倍重量的N-甲基吡咯烷酮(NMP)中并与90份细化后的TiCoH1.4粉末混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度50μm,干燥后按需裁切成形,即得本发明隔膜。
实施例5
在Ar气保护下将VH2粉末球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与90份细化后的VH2粉末混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度150μm,干燥后按需裁切成形,即得本发明隔膜。
实施例6
在Ar气保护下将ZrNi5H4粉末球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与90份细化后的ZrNi5H4粉末混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例7
在Ar气保护下将TiFeH1.9粉末球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与90份细化后的TiFeH1.9粉末混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例8
在Ar气保护下将TiH2和MgH2粉末按照重量比5:1混合后球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与80份细化后的TiH2和MgH2混合粉末、10份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例9
在Ar气保护下将TiH2和MgH2粉末按照重量比4:1混合后球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与80份细化后的TiH2和MgH2混合粉末、10份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例10
在Ar气保护下将TiH2和MgH2粉末按照重量比3:1混合后球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与80份细化后的TiH2和MgH2混合粉末、10份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例11
在Ar气保护下将TiH2和MgH2粉末按照重量比2:1混合后球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与80份细化后的TiH2和MgH2混合粉末、10份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例12
在Ar气保护下将TiH2和MgH2粉末按照重量比1:1混合后球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与80份细化后的TiH2和MgH2混合粉末、10份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例13
在Ar气保护下将TiH2和MgH2粉末按照重量比0.5:1混合后球磨至粒度低于100μm,将10份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与80份细化后的TiH2和MgH2混合粉末、10份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例14
在Ar气保护下将TiH2和MgH2粉末按照重量比1:1混合后球磨至粒度低于100μm,将1份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与98份细化后的TiH2和MgH2混合粉末、1份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例15
在Ar气保护下将TiH2和MgH2粉末按照重量比1:1混合后球磨至粒度低于100μm,将50份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与20份细化后的TiH2和MgH2混合粉末、30份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例16
在Ar气保护下将TiH2和MgH2粉末按照重量比1:1混合后球磨至粒度低于100μm,将30份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与40份细化后的TiH2和MgH2混合粉末、30份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
实施例17
在Ar气保护下将TiH2和MgH2粉末按照重量比1:1混合后球磨至粒度低于100μm,将5份聚偏氟乙烯(PVDF)溶于20倍重量的N-甲基吡咯烷酮(NMP)中并与90份细化后的TiH2和MgH2混合粉末、5份高纯炭黑混合均匀得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
将所述隔膜涂覆浆料涂覆于Celgard 2325隔膜上,涂覆厚度100μm,干燥后按需裁切成形,即得本发明隔膜。
将以上实施例制备的涂覆有金属氢化物的隔膜切成直径19mm的圆片,并应用于CR2025扣式电池进行锂硫二次电池电化学性能测试,同时以无处理的Celgard2325商业隔膜为对照例,测试结果中,百次循环保持率和库伦效率见表1,首次充放电曲线见附图1-17。在电化学性能测试中,正极片为自制硫电极,对电极为金属锂,电解液为1mol/L双三氟磺酸亚胺锂溶液,溶剂为体积比为1:1的乙二醇二甲醚(DME)溶液与1,3二氧戊环(DOL)的混合溶液。
其中,正极片的制备方法为:将70份单质硫与20份多壁碳纳米管混合后在150℃下加热5h,随后加入10份聚偏氟乙烯(PVDF)混匀,再加入适量N-甲基吡咯烷酮(NMP)制成粘稠浆料。将浆料均匀涂覆在铝箔上并在60摄氏度干燥24小时,裁切成直径14mm的圆片。硫负载量在5-6mg/cm2之间。
表1
实例 百次循环保持率(%) 库伦效率(%)
实施例1 73.6 91.2
实施例2 73.1 90.6
实施例3 65.3 86.4
实施例4 64.5 89.3
实施例5 66.4 89.9
实施例6 63.5 90.3
实施例7 70.4 90.1
实施例8 71.5 91.0
实施例9 75.4 91.0
实施例10 76.7 91.8
实施例11 77.9 91.9
实施例12 79.7 93.1
实施例13 75.6 90.4
实施例14 77.5 90.6
实施例15 68.7 83.3
实施例16 74.0 90.3
实施例17 82.6 95.9
对照例 54.2 46.1
由表1和附图1-17可以看出,与对照例相比,实施例在百次循环保持率、库伦效率等指标上均有明显改善,大部分实施例在比容量上效果也显著优于对照例。通过对混合氢化物种类、组成比例以及隔膜配方中氢化物、导电添加剂以及粘接剂比例优化,提高了氢化物隔膜的技术效果。
综合考虑成本、操作简便性以及实际效果等指标,TiH2与MgH2混合物是相对较好的选择。比较实施例8-13可知,TiH2与MgH2重量比为1:1时,金属氢化物改善电池电化学性能效果最好,可能与TiH2稳定性好但密度大,MgH2稳定性差但密度低有关。TiH2与MgH2混合粉末与高分子粘接剂、炭黑比例分别为95:5:5时,从电池的百次循环保持率和库伦效率上可以看出隔膜阻挡多硫化物性能此时最好。由附图19可以看出,金属氢化物颗粒较大,对多硫化物吸附性强;炭黑颗粒对多硫化物吸附性弱,但颗粒细小、孔隙发达导且电性好;粘接剂虽无吸附性、导电性差但可以起到不可或缺的粘接作用,因此三者应当存在合理的比例,保证形成粘接牢固、吸液性好的导电隔膜同时,尽量增加隔膜中氢化物的含量。附图20显示所用氢化物在1-3V(金属锂标准电位)范围内几乎没有嵌脱锂容量,仅有十分微小的双电层容量,因此所用金属氢化物隔膜对锂硫二次电池的容量贡献可以忽略,基本依靠其对多硫离子的吸附能力和导电性来改善电池性能。

Claims (8)

1.一种用于锂硫二次电池的隔膜涂覆材料,其特征在于,所述隔膜涂覆材料包括一种或多种金属氢化物,所述金属氢化物中金属元素包括稀土元素、Mg、Ca、Ti、V、Cr、Ni、Fe、Co、Zr中的一种或多种;
所述隔膜涂覆材料还包括高分子粘结剂和添加剂,按重量份数所述隔膜涂覆材料包括金属氢化物20-98份,高分子粘结剂1-50份,炭黑0-30份。
2.根据权利要求1所述的隔膜涂覆材料,其特征在于,所述金属氢化物包括含一种金属元素的金属氢化物或含多种金属元素的金属氢化物。
3.根据权利要求1所述的隔膜涂覆材料,其特征在于,所述金属氢化物的粒度低于100μm。
4.根据权利要求3所述的隔膜涂覆材料,其特征在于,所述金属氢化物的纯度在90%以上。
5.一种权利要求1-4任一项所述的隔膜涂覆材料的制备方法,其特征在于,步骤如下:在惰性气体保护下,将所述金属氢化物球磨至粒度低于100μm,将1-50份所述高分子粘结剂溶于15-20倍重量的溶剂中并与20-98份细化后的金属氢化物和0-30份炭黑混合均匀,得隔膜涂覆浆料,干燥后即得所述隔膜涂覆材料。
6.一种涂覆权利要求5所述的隔膜涂覆材料的隔膜。
7.一种权利要求6所述隔膜的制备方法,其特征在于,将所述隔膜涂覆浆料涂覆于高分子多孔隔膜上,厚度30-150μm,干燥后按需裁切成形。
8.一种包括权利要求6所述隔膜的锂硫二次电池。
CN201910837680.5A 2019-09-05 2019-09-05 一种用于锂硫二次电池的涂覆隔膜材料及其应用 Active CN110649213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910837680.5A CN110649213B (zh) 2019-09-05 2019-09-05 一种用于锂硫二次电池的涂覆隔膜材料及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910837680.5A CN110649213B (zh) 2019-09-05 2019-09-05 一种用于锂硫二次电池的涂覆隔膜材料及其应用

Publications (2)

Publication Number Publication Date
CN110649213A CN110649213A (zh) 2020-01-03
CN110649213B true CN110649213B (zh) 2022-09-16

Family

ID=69010088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910837680.5A Active CN110649213B (zh) 2019-09-05 2019-09-05 一种用于锂硫二次电池的涂覆隔膜材料及其应用

Country Status (1)

Country Link
CN (1) CN110649213B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113506953B (zh) * 2021-06-02 2022-11-22 郑州轻工业大学 磷酸钒锂在锂硫电池隔膜涂覆中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203386832U (zh) * 2013-06-20 2014-01-08 深圳中兴创新材料技术有限公司 用于锂离子电池的三层隔膜
CN105140447A (zh) * 2015-07-23 2015-12-09 中国科学院上海硅酸盐研究所 一种锂硫电池用功能性复合隔膜及其制备方法
CN105990552A (zh) * 2015-02-04 2016-10-05 中国科学院苏州纳米技术与纳米仿生研究所 锂硫电池用复合隔膜、其制备方法及应用
CN106356488A (zh) * 2015-07-13 2017-01-25 中国科学院金属研究所 一种锂离子电池或锂硫电池用复合隔膜及其制备方法和应用
CN106848156A (zh) * 2017-03-07 2017-06-13 南京航空航天大学 锂硫电池隔膜材料及其应用
CN107437630A (zh) * 2016-05-26 2017-12-05 上海恩捷新材料科技股份有限公司 一种锂电池隔离膜及其制备方法和用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203386832U (zh) * 2013-06-20 2014-01-08 深圳中兴创新材料技术有限公司 用于锂离子电池的三层隔膜
CN105990552A (zh) * 2015-02-04 2016-10-05 中国科学院苏州纳米技术与纳米仿生研究所 锂硫电池用复合隔膜、其制备方法及应用
CN106356488A (zh) * 2015-07-13 2017-01-25 中国科学院金属研究所 一种锂离子电池或锂硫电池用复合隔膜及其制备方法和应用
CN105140447A (zh) * 2015-07-23 2015-12-09 中国科学院上海硅酸盐研究所 一种锂硫电池用功能性复合隔膜及其制备方法
CN107437630A (zh) * 2016-05-26 2017-12-05 上海恩捷新材料科技股份有限公司 一种锂电池隔离膜及其制备方法和用途
CN106848156A (zh) * 2017-03-07 2017-06-13 南京航空航天大学 锂硫电池隔膜材料及其应用

Also Published As

Publication number Publication date
CN110649213A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
Wang et al. A lightweight multifunctional interlayer of sulfur–nitrogen dual-doped graphene for ultrafast, long-life lithium–sulfur batteries
Wu et al. Nanoporous Li 2 S and MWCNT-linked Li 2 S powder cathodes for lithium-sulfur and lithium-ion battery chemistries
Wu et al. Solution-Based Processing of Graphene-Li 2 S Composite Cathodes for Lithium-Ion and Lithium-Sulfur Batteries.
CN109742359B (zh) 锂硫电池正极材料、其制备方法、正极片及锂硫电池
CN110911621B (zh) 一种多功能锂硫电池隔膜、制备方法及应用
CN111384381A (zh) 一种锂离子电池用硅@碳/MXene三元复合材料及其制备方法
Liao et al. Novel flower-like hierarchical carbon sphere with multi-scale pores coated on PP separator for high-performance lithium-sulfur batteries
KR20150139154A (ko) 리튬 이차 전지용 음극 활물질, 및 이를 포함하는 리튬 이차 전지
Chen et al. Chelation-assisted formation of multi-yolk–shell Co 4 N@ carbon nanoboxes for self-discharge-suppressed high-performance Li–SeS 2 batteries
CN107623143B (zh) 一种含功能性添加剂的锂硫电池电解液及其应用
Song et al. 3D nitrogen-doped hierarchical porous carbon framework for protecting sulfur cathode in lithium–sulfur batteries
CN111211273A (zh) 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
Ponnada et al. Improved performance of lithium–sulfur batteries by employing a sulfonated carbon nanoparticle-modified glass fiber separator
CN113764644A (zh) 一种快充复合石墨材料及其制备方法
CN111082054B (zh) 一种锂硫电池正极材料、正极及其制备和应用
CN107369565B (zh) 镁离子混合超级电容器及其制备方法
KR101981242B1 (ko) 구리 도핑된 탄소-실리콘 산화물(C-SiOx) 복합체 및 이의 제조 방법
CN110649213B (zh) 一种用于锂硫二次电池的涂覆隔膜材料及其应用
CN110858641A (zh) 锂离子电池的正极材料及其制备方法、锂离子电池
CN111092209A (zh) 一种复合材料及其制备方法和应用
Li et al. Effects of electrolyte concentration and synthesis methods of sulfur/carbon composites on the electrochemical performance in lithium–sulfur batteries
CN115882162A (zh) 一种锂硫电池用碳化MOF@rGO复合膜隔层的制备方法
Wei et al. The Metal–Organic Frameworks Derived Co3O4/TiO2 Heterojunction as a High‐Efficiency Sulfur Carrier for Lithium–Sulfur Batteries
CN113161603A (zh) 一种新型钾离子电池及其制备方法
Parekh et al. Polysulfide shuttle mitigation through a tailored separator for critical temperature energy-dense lithium–sulfur batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant