CN110578061A - 一种高纯稀土金属的电子束熔炼连续铸锭方法 - Google Patents

一种高纯稀土金属的电子束熔炼连续铸锭方法 Download PDF

Info

Publication number
CN110578061A
CN110578061A CN201810581117.1A CN201810581117A CN110578061A CN 110578061 A CN110578061 A CN 110578061A CN 201810581117 A CN201810581117 A CN 201810581117A CN 110578061 A CN110578061 A CN 110578061A
Authority
CN
China
Prior art keywords
ingot
rare earth
melt
earth metal
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810581117.1A
Other languages
English (en)
Inventor
邓月华
刘华
黄美松
马小波
黄培
樊玉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HUNAN RESEARCH INSTITUTE OF RARE EARTH METAL MATERIALS
Original Assignee
HUNAN RESEARCH INSTITUTE OF RARE EARTH METAL MATERIALS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HUNAN RESEARCH INSTITUTE OF RARE EARTH METAL MATERIALS filed Critical HUNAN RESEARCH INSTITUTE OF RARE EARTH METAL MATERIALS
Priority to CN201810581117.1A priority Critical patent/CN110578061A/zh
Publication of CN110578061A publication Critical patent/CN110578061A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/08Shaking, vibrating, or turning of moulds
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/04Refining by applying a vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/228Remelting metals with heating by wave energy or particle radiation by particle radiation, e.g. electron beams

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种高纯稀土金属的电子束熔炼连续铸锭方法,其具体工艺过程为:(1)将稀土金属原料进行备料、装炉、抽真空;(2)电子束对金属原料进行加热融化,得到金属熔体;(3)进料,经步骤(2)融化后得到的金属熔体进入冷床,在冷床的后部进行精炼;(4)经步骤(3)得到的熔体进入水冷坩埚,电子束枪对其扫描加热,保持熔体的温度均匀性,熔体通过水冷坩埚结晶,成型得到高纯稀土金属铸锭;(5)通过拉锭***连续下拉出锭,出锭***设有偏振器,使拉锭杆振动,达到振动促进晶核形成及在成长中枝晶破碎,改善铸锭晶粒结构,细化晶粒的目的。本发明可连续铸锭,所制备的稀土金属铸锭部分金属杂质及气体杂质大幅度降低,能够提高铸锭纯度。

Description

一种高纯稀土金属的电子束熔炼连续铸锭方法
技术领域
本发明涉及冶金技术领域,具体涉及一种高纯稀土金属的电子束熔炼连续铸锭方法。
背景技术
高纯稀土金属通常指纯度高于99.99%的稀土金属,是制备稀土功能材料的关键性原料,少量甚至极微量的杂质也会对金属的物理化学性质造成显著的影响,稀土材料的某些特殊性能通常在较高纯度下才会显现。高纯稀土金属可用于制备高纯试剂及标样配置的基体材料,同时还可应用于制备磁传感材料、光感材料、磁记录溅射靶材及离子镀膜、航空航天高级合金等高技术领域。高纯稀土金属在高科技领域中大都制备成纯稀土金属靶材或者合金靶材,通过镀膜的方式得到符合要求的功能薄膜。在大规模集成电路、平面显示器中,由于集成电路工艺尺寸的不断减小、对薄膜中夹杂物及缺陷的要求越来越高,因此对靶材制备的原料——高纯稀土金属铸锭的化学纯度、致密度等提出了极高的要求。
根据稀土金属性质的不同和原料中杂质的不同,已经发展起来五种稀土金属提纯的方法[张卫平,杨庆山,陈建军,高纯稀土金属制备方法与发展趋势,金属材料与冶金工程,2007,3(35):61-64]:真空重熔(VR),蒸馏/升华(DIS/SUB)、区域熔炼(ZR)、固态电迁移(SSE)和电解精炼(ER)。
真空重熔对于大多数稀土金属去除蒸气压高的杂质如C和F等均是有效的。蒸馏/升华法是利用各元素蒸气压的差异在高真空下对稀土金属提纯。区域熔炼过程是杂质的“再分布”过程,杂质富集到金属棒的两端,区域熔炼对于“移动”Fe、Al、Cu等金属杂质有效,对于“重新分布”间隙杂质C、N、O和H效果欠佳,固态电迁移可有效提纯嵌入晶格间的元素,如稀土金属中主要杂质间隙元素C、H、O、N等。电解精炼对于去除电活性较稀土金属弱的金属杂质和一些间隙杂质有效,但熔盐电解精炼对电解质纯度和坩埚要求很高。
在高纯稀土金属铸锭制备方面,常用的方法是真空感应熔炼铸锭、悬浮熔炼铸锭等,电子束熔炼稀土金属的文献鲜有报道,普遍是利用电子束熔炼进行难熔金属提纯和铸锭的报道,例如:
专利文献[杨志强,艾琳等,一种高纯金属铸锭的制造方法,申请号:201410732839.4]公开了一种高纯金属铸锭的制造方法,该方法采用电子束对纯度99.99%原料进行熔炼,熔体采用电磁感应加热方式在水冷坩埚中继续熔炼除杂、除气,后进入水冷结晶器,成型得到高纯金属铸锭,该铸锭较常规电子束熔铸法所得铸锭纯度高,物理性能好,成材率高,但未对铸锭尺寸进行具体描述;
专利文献[谭毅,郭校亮等,电子束熔炼与定向凝固技术耦合制备多晶硅的方法及装置,申请号:201310382641.3]公开了一种电子束熔炼与定向凝固技术耦合制备多晶硅的方法及装置,该方法打破传统的电子束熔炼模式,熔化池内只进行熔化和初步的电子束熔炼,而在导流区域内进行集中的电子束熔炼,经熔炼提纯后的硅液流入凝固坩埚内通过水冷拉锭旋转机构进行定向凝固。该方法降低了能耗,且得到的规定磷含量、总金属含量极低,但该方法存在凝固坩埚内熔体温度不均匀的问题;
专利文献[何荣贵,代英等,一种高纯铜真空电子束熔炼定向凝固连铸装置,申请号:201320559609.3]公开了一种高纯铜真空电子束熔炼定向凝固连铸装置,该装置可生产高纯度无间断铜箔,该方法生产的产品形状单一,不适宜连续生产高纯稀土铸锭;
专利文献[姜大川,王登科等,一种电子束熔炼装置及利用该装置制备铌基超高温合金的方法,申请号:201410315788.5]公开了一种电子束熔炼装置及利用该装置制备铌基超高温合金的方法,该装置包括熔炼室,熔炼室内设有定向凝固拉锭装置,利用该装置制备的的铌基超高温合金中杂质S 和P 含量能够降低至0.1ppmw 以下、氧含量可降至0.1ppmw 以下,碳含量可降至10ppmw 以下,合金元素收得率大于95%;
专利文献[艾琳,白延利等,一种用于连续制备高纯金属铸锭的装置,申请号:201420757269.X]公开了一种用于连续制备高纯金属铸锭的装置,该装置包括括坩埚,在坩埚外设有水冷套,在坩埚的上部设有感应加热装置;设置在坩埚的上方的连续进料装置。该装置通过水冷坩埚感应熔炼的方式对金属进行熔炼,通过连续加料装置,实现了熔炼及成型过程的连续;但该方法对于铸锭尺寸有局限;
专利文献[刘庆生,汤卫东,江小华,电解精炼及原位定向凝固制备高纯稀土金属的方法和装置,申请号:201510239832 .3]公开了一种电解精炼及原位定向凝固制备高纯稀土金属的方法和装置,装置包括安于机架上的电解炉和铸锭炉,能够连续、自动制备高纯稀土金属,平均每小时可生产出稀土金属La 2.8kg,纯度99.96%;该方法制备的稀土金属纯度达不到靶材原料要求且不能连续铸锭。
专利[高畑雅博 佐藤和幸等,高纯度镧的制造方法、高纯度镧、包含高纯度镧的溅射靶及以高纯度镧为主要成分的金属栅极膜,申请号:201280021193.8]描述了一种溅射靶材,该靶材所用高纯度镧,优选减少Al、Fe、Cu 的含量及碱金属和碱土金属、过渡金属元素、高熔点金属元素、放射性元素。镧中含有的稀土元素除镧(La) 以外有Sc、Y、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu,其特性相似,因此难以从La 中分离纯化。特别是Ce 与La 近似,因此,不容易使Ce减少,但是,由于这些稀土元素的性质近似,因此,如果以稀土元素总量计少于100 重量ppm,则在作为电子部件材料使用时,不会特别成为问题。
目前真空感应炉及悬浮熔炼是制备高纯稀土金属铸锭最常用的装置,采用真空感应炉制备高纯稀土金属铸锭,成本低、效率高,但过程中必须接触坩埚及铸模材质,易造成高纯稀土金属的污染,此外,有的高纯稀土金属在成型后必须打破铸模,造成熔铸成本的升高;水冷铜坩埚磁悬浮熔炼炉,是近些年来飞速发展的一种用于熔炼高熔点高纯金属的设备,通过高频或中频交变磁场,在金属熔炼中形成与重力相抵消的电磁力,使熔体悬浮,熔体与坩埚内壁脱离接触,从而使金属获得高纯度;但该方法也存在一定的缺陷,比如设备容量小,一般只用于实验和提纯研究,不涉及成型,或即使成型也不能连续铸锭。采用普通真空电子束制备高纯金属铸锭,由于其采用的是电子束扫描熔料,故比较适合高熔点及难容金属的熔炼,其成型采用水冷结晶器,因此不存在介质引入污染,但是由于熔炼过程中,物料的融化及熔池的形成是依靠电子束加热获得,给坩埚及金属带了较大的冲击和挥发,同时熔体在结晶器中形成的高度很小,且温度不均匀,造成其中的的杂质及气体含量由于精炼时间短而得不到充分的去除,所制备铸锭在纯度、尤其是包括内部缺陷、表面质量在内的物理性能上无法满足集成电路高端薄膜制备的性能要求。
发明内容
本发明目的是提供一种高纯稀土金属的电子束熔炼连续铸锭方法,该方法能够连续铸锭,充分控制铸锭中的杂质、气体含量、内部缺陷情况,所制备的铸锭具有纯度高、宏观凝固组织均匀、成材率高、产品规格多样化等特点,能够满足高纯稀土金属靶材制备的性能要求。
为了解决背景技术中所存在的问题,一种高纯稀土金属的电子束熔炼连续铸锭方法,其具体工艺过程为:
(1)将稀土金属原料(纯度:3N~3N5)进行备料、装炉、抽真空;
(2)电子束对金属原料进行加热融化,得到金属熔体;
(3)进料,经步骤(2)融化后得到的金属熔体进入冷床,在冷床的后部进行精炼,进行除杂、除气;高密度和低密度的夹杂物在此可重力分离;
(4)经步骤(3)得到的熔体进入水冷坩埚,水冷坩埚尺寸φ60-500mm可选,电子束枪对其扫描加热,保持熔体的温度均匀性,保持适当的精炼时间,充分去除杂质、气体,熔体通过水冷坩埚结晶,成型得到高纯稀土金属铸锭;
(5)通过拉锭***连续下拉出锭,出锭***设有偏振器,使拉锭杆振动,达到振动促进晶核形成及在成长中枝晶破碎,改善铸锭晶粒结构,细化晶粒。
步骤(3)中的进料为垂直进料和横向进料两种,稀土金属原料为块状或其他炉体中一次或二次熔炼的铸锭。
所述稀土金属原料为镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钆(Gd)、铽(Tb)、钬(Ho)、铒(Er)、镥(Lu)、钇(Y)或钪(Sc)中的至少一种。
所述高纯稀土金属纯度为除稀土元素和气体成分以外的纯度。
由于采用了以上技术方案,本发明具有以下有益效果:
1. 根据上述方法,可连续铸锭,所制备的稀土金属铸锭部分金属杂质及气体杂质大幅度降低,能够提高铸锭纯度;
2. 根据上述方法,高纯稀土金属铸锭内部缺陷少,宏观凝固组织均匀,平均晶粒尺寸<100μm;
3. 高纯稀土金属铸锭尺寸在φ60-500mm可调,成材率高,规格多样;满足集成电路等对于高端薄膜制备的性能要求。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面将结合本发明实施例中的表格,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
一种高纯稀土金属的电子束熔炼连续铸锭方法,其具体工艺过程为:
(1)将纯度为3N~3N5的块状或铸锭状稀土金属原料进行备料、装炉、抽真空至10-3Pa以上,所使用的稀土金属原料为镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钆(Gd)、铽(Tb)、钬(Ho)、铒(Er)、镥(Lu)、钇(Y)或钪(Sc)中的一种;
(2)采用电子束轰击对稀土金属原料进行加热融化,得到稀土金属熔体;
(3)融化后得到的金属熔体在冷床后部采用电子束加热继续熔炼,熔炼温度在900℃~1800℃,实现熔体充分除杂、除气;
(4)经步骤(3)得到的熔体进入水冷坩埚中,水冷坩埚尺寸φ60~500mm可选,电子束枪对其扫描加热,保持熔体温度均匀性,熔体通过水冷坩埚结晶,成型得到高纯稀土金属铸锭;
(5)通过拉锭***下拉出锭,启动偏振器,使拉锭杆振动,振动频率范围30~40kHz,拉锭***下拉速度0.5~3mm/min。
实施例2
一种高纯稀土金属的电子束熔炼连续铸锭方法,其具体工艺过程为:
(1)以纯度为3N2的金属镧为原料,将其备料、装炉、抽真空至10-3Pa以上(参看表1);
表1
元素 含量(ug/g) 元素 含量(ug/g) 元素 含量(ug/g)
Li 30 Fe 50 Th 0.005
Na 5 Cu 25 U 0.004
K 0.10 W 5 C 180
Mg 45 Mo 20 N <10
Ca 320 Ta 5 O 800
Al 61 Pb 0.05 S <10
Si 39 Bi <0.01 H 400
(2)以电子束轰击对金属镧进行加热融化,电子束照射功率在10kW~28kW,得到金属熔体;
(3)经步骤(2)融化后的金属镧熔体进入冷床,以电子束加热继续熔炼,控制熔炼温度在1000~1100℃,实现熔体充分除杂、除气;
(4)步骤(3)得到的熔体进入水冷坩埚中,水冷坩埚尺寸φ450mm,电子束枪对其扫描加热,功率在10kW~28kW,保持熔体温度均匀性,熔体通过水冷结晶器,成型得到高纯稀土金属镧铸锭;
(5)通过拉锭***连续下拉出锭,启动偏振器,使拉锭杆振动,振动频率范围30~35kHz,拉锭***下拉速度1~3mm/min。
高纯稀土金属镧铸锭直径为直径450mm,成分分析结果如表2所示,铸锭纯度达到3N5, Mg、Ca、O、H等杂质大幅度降低,其中Na+K+Li≤1ppm,U+Th≤10ppb,O含量为58.8ppm。
高纯稀土金属镧铸锭内部缺陷少,宏观凝固组织均匀,平均晶粒尺寸<80μm。
表2 为采用上述制备方法所得高纯金属镧的元素分析检测结果。
表2
元素 含量(ug/g) 元素 含量(ug/g) 元素 含量(ug/g)
Li 0.26 Fe 38 Th 0.004
Na 0.13 Cu 12 U 0.005
K 0.12 W 4 C 175
Mg 0.90 Mo 18 N <10
Ca 0.37 Ta 4 O 58.8
Al 49 Pb 0.04 S <10
Si 32 Bi <0.01 H 4.8
实施例3
一种高纯稀土金属的电子束熔炼连续铸锭方法,其具体工艺过程为:
(1)以纯度为3N5的金属钇为原料,将其备料、装炉、抽真空至10-3Pa以上(参看表3);
表3
元素 含量(ug/g) 元素 含量(ug/g) 元素 含量(ug/g)
Li 25 Fe 39 Th <0.001
Na 8 Cu 17 U <0.001
K 0.26 W 4 C 130
Mg 45 Mo 18 N <10
Ca 260 Ta 3 O 680
Al 48 Pb 0.04 S <10
Si 25 Bi <0.01 H 320
(2)以电子束轰击对金属钇进行加热融化,电子束照射功率在15kW~35kW,得到金属熔体;
(3)经步骤(2)融化后的金属钇熔体进入冷床,以电子束加热继续熔炼,控制熔炼温度在1600~1700℃,实现熔体充分除杂、除气;
(4)步骤(3)得到的熔体进入水冷坩埚中,水冷坩埚尺寸φ100mm,电子束枪对其扫描加热,功率在15kW~35kW,保持熔体温度均匀性,熔体通过水冷坩埚结晶,成型得到高纯稀土金属钇铸锭。
(5)通过拉锭***连续下拉出锭,启动偏振器,使拉锭杆振动,振动频率范围30~35kHz,拉锭***下拉速度0.5~1mm/min。
高纯稀土金属钇铸锭直径为φ100mm,成分分析结果如表4所示,铸锭纯度达到4N,Mg、Ca、O、H等杂质大幅度降低,其中Na+K+Li≤1ppm,U+Th≤10ppb,O含量为60.2ppm。
高纯稀土金属钇铸锭内部缺陷少,宏观凝固组织均匀,平均晶粒尺寸<95μm。
表4 为采用上述制备方法所得高纯金属钇的元素分析检测结果
表4
元素 含量(ug/g) 元素 含量(ug/g) 元素 含量(ug/g)
Li 0.12 Fe 8.6 Th <0.001
Na 0.24 Cu 9.8 U <0.001
K 0.087 W 3 C 132
Mg 4.71 Mo 15 N <10
Ca 8.5 Ta 4 O 60.2
Al 32 Pb 0.03 S <10
Si 12.3 Bi <0.01 H 3.2
实施例4
一种高纯稀土金属的电子束熔炼连续铸锭方法,其具体工艺过程为:
(1)以纯度为3N的金属钆为原料,将其备料、装炉、抽真空至10-3Pa以上(参看表5);
表5
元素 含量(ug/g) 元素 含量(ug/g) 元素 含量(ug/g)
Li 231 Fe 45 Th <0.001
Na 29 Cu 28 U <0.001
K 1.4 W 6 C 230
Mg 36 Mo 17 N <10
Ca 402 Ta 3 O 1996
Al 73 Pb 0.05 S <10
Si 41 Bi <0.01 H 450
(2)以电子束轰击对金属钆进行加热融化,电子束照射功率在15kW~30kW,得到金属熔体;
(3)经步骤(2)融化后的金属钆熔体进入冷床,以电子束加热继续熔炼,控制熔炼温度在1400~1500℃,实现熔体充分除杂、除气;
(4)步骤(3)得到的熔体进入水冷坩埚中,水冷坩埚尺寸φ200mm,电子束枪对其扫描加热,功率在15kW~30kW,保持熔体温度均匀性,熔体通过水冷坩埚结晶,成型得到高纯稀土金属钆铸锭。
(5)通过拉锭***连续下拉出锭,启动偏振器,使拉锭杆振动,振动频率范围30~35kHz,拉锭***下拉速度0.5~1mm/min。
高纯稀土金属钆铸锭直径为φ200mm,成分分析结果如表6所示,铸锭纯度达到3N5以上, Mg、Ca、O、H等杂质大幅度降低,其中Na+K+Li≤1ppm,U+Th≤10ppb,O含量为65.9ppm。
高纯稀土金属钆铸锭内部缺陷少,宏观凝固组织均匀,平均晶粒尺寸<90μm。
表6 为采用上述制备方法所得高纯金属钆的元素分析检测结果
表6
元素 含量(ug/g) 元素 含量(ug/g) 元素 含量(ug/g)
Li 0.35 Fe 39 Th <0.001
Na 0.18 Cu 22 U <0.001
K 0.093 W 5 C 189
Mg 5.68 Mo 15 N <10
Ca 7.8 Ta 3 O 65.9
Al 56.2 Pb 0.03 S <10
Si 35.8 Bi <0.01 H 4.8
实施例5
一种高纯稀土金属的电子束熔炼连续铸锭方法,其具体工艺过程为:
(1)以纯度为3N2的金属镥为原料,将其备料、装炉、抽真空至10-3Pa以上(如后述表7所示);
表7
元素 含量(ug/g) 元素 含量(ug/g) 元素 含量(ug/g)
Li 189 Fe 44 Th <0.001
Na 35 Cu 36 U <0.001
K 3.9 W 5 C 190
Mg 48 Mo 16 N <10
Ca 280 Ta 7 O 460
Al 69 Pb 0.05 S <10
Si 38 Bi <0.01 H 370
(2)以电子束轰击对金属镥进行加热融化,电子束照射功率在15kW~35kW,得到金属熔体;
(3)经步骤(2)融化后的金属镥熔体进入冷床,以电子束加热继续熔炼,控制熔炼温度在1720~1850℃,实现熔体充分除杂、除气;
(4)步骤(3)得到的熔体进入水冷坩埚中,水冷坩埚尺寸φ300mm,电子束枪对其扫描加热,功率在15kW~35kW,保持熔体温度均匀性,熔体通过水冷坩埚结晶,成型得到高纯稀土金属镥铸锭。
(5)通过拉锭***连续下拉出锭,启动偏振器,使拉锭杆振动,振动频率范围30~35kHz,拉锭***下拉速度0.5~1mm/min。
高纯稀土金属镥铸锭直径为φ300mm,成分分析结果如表8所示,铸锭纯度达到3N5以上, Mg、Ca、O、H等杂质大幅度降低,其中Na+K+Li≤1ppm,U+Th≤10ppb,O含量为59.3ppm。
高纯稀土金属镥铸锭内部缺陷少,宏观凝固组织均匀,平均晶粒尺寸<100μm。
表8 为采用上述制备方法所得高纯金属镥的元素分析检测结果
表8
元素 含量(ug/g) 元素 含量(ug/g) 元素 含量(ug/g)
Li 0.31 Fe 35 Th <0.001
Na 0.18 Cu 28 U <0.001
K 0.078 W 4 C 163
Mg 4.62 Mo 14 N <10
Ca 6.9 Ta 6 O 59.3
Al 58 Pb 0.04 S <10
Si 27 Bi <0.01 H 3.7
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (2)

1.一种高纯稀土金属的电子束熔炼连续铸锭方法,其具体工艺过程为:
将稀土金属原料(纯度:3N~3N5)进行备料、装炉、抽真空;
电子束对金属原料进行加热融化,得到金属熔体;
进料,经步骤(2)融化后得到的金属熔体进入冷床,在冷床的后部进行精炼,进行除杂、除气;高密度和低密度的夹杂物在此可重力分离;
经步骤(3)得到的熔体进入水冷坩埚,水冷坩埚尺寸φ60-500mm可选,电子束枪对其扫描加热,保持熔体的温度均匀性,保持适当的精炼时间,充分去除杂质、气体,熔体通过水冷坩埚结晶,成型得到高纯稀土金属铸锭;
通过拉锭***连续下拉出锭,出锭***设有偏振器,使拉锭杆振动,达到振动促进晶核形成及在成长中枝晶破碎,改善铸锭晶粒结构,细化晶粒的目的。
2.根据权利要求1所述的一种高纯稀土金属的电子束熔炼连续铸锭方法,其特征在于,所述稀土金属原料为镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钆(Gd)、铽(Tb)、钬(Ho)、铒(Er)、镥(Lu)、钇(Y)或钪(Sc)中的至少一种。
CN201810581117.1A 2018-06-07 2018-06-07 一种高纯稀土金属的电子束熔炼连续铸锭方法 Pending CN110578061A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810581117.1A CN110578061A (zh) 2018-06-07 2018-06-07 一种高纯稀土金属的电子束熔炼连续铸锭方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810581117.1A CN110578061A (zh) 2018-06-07 2018-06-07 一种高纯稀土金属的电子束熔炼连续铸锭方法

Publications (1)

Publication Number Publication Date
CN110578061A true CN110578061A (zh) 2019-12-17

Family

ID=68808687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810581117.1A Pending CN110578061A (zh) 2018-06-07 2018-06-07 一种高纯稀土金属的电子束熔炼连续铸锭方法

Country Status (1)

Country Link
CN (1) CN110578061A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961886A (zh) * 2020-08-25 2020-11-20 湖南稀土金属材料研究院 高纯稀土金属钪及钪溅射靶材的制备方法
CN112609087A (zh) * 2020-12-02 2021-04-06 宁波创润新材料有限公司 一种高纯镍锭的冷床电子束熔炼方法
CN114164368A (zh) * 2020-09-10 2022-03-11 厦门稀土材料研究所 一种稀土储氢合金及其制备方法和应用
CN116399125A (zh) * 2023-03-10 2023-07-07 华中科技大学 一种金属铸锭连续感应熔炼用装置及其应用
CN116607028A (zh) * 2023-07-11 2023-08-18 北京中辰至刚科技有限公司 难熔高熵合金的熔炼方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910431A (zh) * 2007-12-28 2010-12-08 日矿金属株式会社 高纯度镧、包含高纯度镧的溅射靶以及以高纯度镧为主成分的金属栅膜
CN103409637A (zh) * 2013-07-29 2013-11-27 云南钛业股份有限公司 一种电子束冷床炉全自动熔炼工业纯钛的方法
CN104190885A (zh) * 2014-08-28 2014-12-10 云南钛业股份有限公司 一种四枪电子束冷床炉生产巨型高纯镍锭方坯的方法
CN105087966A (zh) * 2011-01-21 2015-11-25 吉坤日矿日石金属株式会社 高纯度镧的制造方法、高纯度镧、包含高纯度镧的溅射靶和以高纯度镧为主要成分的金属栅膜
CN105274365A (zh) * 2014-07-16 2016-01-27 匡永刚 一种钛合金的制备工艺
CN105331833A (zh) * 2014-08-07 2016-02-17 有研稀土新材料股份有限公司 一种高纯稀土金属的提纯装置和方法
CN107586965A (zh) * 2016-07-06 2018-01-16 宁波江丰电子材料股份有限公司 熔炼设备以及熔炼方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910431A (zh) * 2007-12-28 2010-12-08 日矿金属株式会社 高纯度镧、包含高纯度镧的溅射靶以及以高纯度镧为主成分的金属栅膜
CN105087966A (zh) * 2011-01-21 2015-11-25 吉坤日矿日石金属株式会社 高纯度镧的制造方法、高纯度镧、包含高纯度镧的溅射靶和以高纯度镧为主要成分的金属栅膜
CN103409637A (zh) * 2013-07-29 2013-11-27 云南钛业股份有限公司 一种电子束冷床炉全自动熔炼工业纯钛的方法
CN105274365A (zh) * 2014-07-16 2016-01-27 匡永刚 一种钛合金的制备工艺
CN105331833A (zh) * 2014-08-07 2016-02-17 有研稀土新材料股份有限公司 一种高纯稀土金属的提纯装置和方法
CN104190885A (zh) * 2014-08-28 2014-12-10 云南钛业股份有限公司 一种四枪电子束冷床炉生产巨型高纯镍锭方坯的方法
CN107586965A (zh) * 2016-07-06 2018-01-16 宁波江丰电子材料股份有限公司 熔炼设备以及熔炼方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961886A (zh) * 2020-08-25 2020-11-20 湖南稀土金属材料研究院 高纯稀土金属钪及钪溅射靶材的制备方法
CN114164368A (zh) * 2020-09-10 2022-03-11 厦门稀土材料研究所 一种稀土储氢合金及其制备方法和应用
CN112609087A (zh) * 2020-12-02 2021-04-06 宁波创润新材料有限公司 一种高纯镍锭的冷床电子束熔炼方法
CN116399125A (zh) * 2023-03-10 2023-07-07 华中科技大学 一种金属铸锭连续感应熔炼用装置及其应用
CN116399125B (zh) * 2023-03-10 2023-12-05 华中科技大学 一种金属铸锭连续感应熔炼用装置及其应用
CN116607028A (zh) * 2023-07-11 2023-08-18 北京中辰至刚科技有限公司 难熔高熵合金的熔炼方法
CN116607028B (zh) * 2023-07-11 2023-09-29 北京中辰至刚科技有限公司 难熔高熵合金的熔炼方法

Similar Documents

Publication Publication Date Title
CN110578061A (zh) 一种高纯稀土金属的电子束熔炼连续铸锭方法
JP3309141B2 (ja) 電子ビーム溶解による結晶シリコンインゴットの鋳造方法および装置
EP0867405A1 (en) Method for producing silicon for use in solar cells
US8409319B2 (en) Silicon purification method
CN106637100B (zh) 稀土金属靶材及其制备方法
CN102031394A (zh) 一种制备高纯铜的装置与方法
TW201313910A (zh) 銦或銦合金之回收方法及裝置
CN110629180A (zh) 一种应用于靶材的大尺寸无氧铜锭的生产装置及方法
US10094001B2 (en) Method for producing eutectic copper-iron alloy
JP4638002B2 (ja) 太陽電池用シリコンの製造方法および装置
JP2001279340A (ja) インゴット製造方法およびその装置
JP2657240B2 (ja) シリコン鋳造装置
JP4263366B2 (ja) 希土類磁石スクラップの溶解方法及び溶解装置
CN215713259U (zh) 一种制备4n级高纯铁的***
CN109266863A (zh) 一种高纯钛锭提纯方法
JP2006122920A (ja) 活性高融点金属含有合金の長尺鋳塊製造法
JP3195156B2 (ja) チタンの製造方法
US20080178705A1 (en) Group IVB Metal Processing with Electric Induction Energy
CN109536744B (zh) 通过熔析定向凝固耦合提纯稀土金属的方法
WO2011099208A1 (ja) シリコン真空溶解法
CN218744742U (zh) 一种感应熔炼等离子体保温精炼钛及钛合金大型铸锭装置
CN113210576B (zh) 一种生产金属薄带的方法及其装置
CN117564238B (zh) 一种阳极镍球生产线及其工艺
CN112210673B (zh) 一种电子束表面热解去除高温合金中夹杂物的方法
JPH08166189A (ja) 気化性不純物を含む高融点金属原料の溶解方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination