CN110560703A - 基于飞秒激光的高催化活性金纳米棒的制备方法及其*** - Google Patents

基于飞秒激光的高催化活性金纳米棒的制备方法及其*** Download PDF

Info

Publication number
CN110560703A
CN110560703A CN201910881199.6A CN201910881199A CN110560703A CN 110560703 A CN110560703 A CN 110560703A CN 201910881199 A CN201910881199 A CN 201910881199A CN 110560703 A CN110560703 A CN 110560703A
Authority
CN
China
Prior art keywords
solution
femtosecond laser
gold
gold nanorod
catalytic activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910881199.6A
Other languages
English (en)
Other versions
CN110560703B (zh
Inventor
闫剑锋
朱德志
赵玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201910881199.6A priority Critical patent/CN110560703B/zh
Publication of CN110560703A publication Critical patent/CN110560703A/zh
Priority to PCT/CN2020/110434 priority patent/WO2021052105A1/zh
Application granted granted Critical
Publication of CN110560703B publication Critical patent/CN110560703B/zh
Priority to US17/318,036 priority patent/US11110448B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/349Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of flames, plasmas or lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/122Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in a liquid, e.g. underwater
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种基于飞秒激光的高催化活性金纳米棒的制备方法及其***,属于飞秒激光应用技术领域。本方法首先通过种子液生长法合成金纳米棒溶液;然后将金纳米棒溶液离心,滴在硅基底上;然后将飞秒激光引入到硅基底,通过控制入射到硅基底的脉冲波长和辐照时间,从而实现金纳米棒的选择性烧蚀,制备出具有高指数晶面的金纳米棒,从而提高金纳米棒的催化活性。本发明方法,相比于已有的化学法等,利用飞秒激光脉冲辐照金纳米棒,合理设计激光偏振和波长,即可制备出高催化活性金纳米棒,制备过程相对简单。本发明的基于飞秒激光的高催化活性金纳米棒制备***,可以任意调整飞秒激光偏振方向和波长,而且操作方便。

Description

基于飞秒激光的高催化活性金纳米棒的制备方法及其***
技术领域
本发明涉及一种基于飞秒激光的高催化活性金纳米棒制备方法及其***,属于飞秒激光应用技术领域。
背景技术
相比于球形金纳米粒子,金纳米棒具有可调的等离激元特性,在众多的各向异性金纳米颗粒中赢得了广泛的关注。目前,金纳米棒在纳米电子学、光学、生物医药、催化等研究领域均具有良好的应用前景。在催化应用中,金纳米棒的晶面结构直接决定了其催化性能的高低,如何高效的调控金纳米棒的晶面结构是一项亟需解决的难题。目前主要通过化学刻蚀的方法修饰金纳米棒的表面,从而得到一些高指数晶面,但是,金纳米棒的形貌受到各种物理、化学因素的影响,制备条件复杂,刻蚀过程可控性差。
激光可以有效地用于金纳米粒子的整形,由于飞秒激光具有极短脉宽、极高强度的特点,近年来受到越来越多的关注。飞秒激光整形金纳米粒子,往往是在溶液体系里面进行,然而,由于水分子布朗运动的影响,纳米粒子相对于光场的位置不确定,从而无法实现选择性烧蚀,更多的是整体粒子的形变,无法得到高指数晶面。因此,目前亟需一种可以高效地、简单地制备高催化活性金纳米棒的方法。
发明内容
本发明的目的是基于飞秒激光的高催化活性金纳米棒制备方法及其***,通过种子液生长法合成金纳米棒溶液,然后离心滴在硅基底上,通过改变激光脉冲的参数,调控金纳米棒表面的电场分布,从而实现高催化活性金纳米棒的制备。
本发明提出的基于飞秒激光的高催化活性金纳米棒的制备方法,包括以下步骤:
(1)合成金种子溶液:
将摩尔浓度为0.01mol/L的四氯金酸溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为(0.3~0.5)mmol/L、(0.07~0.09)mol/L和(0.7~0.9)mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:
将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C6H8O6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.07~0.09mol/L、0.4~ 0.6mmol/L、0.06~0.07mmol/L和0.6~0.9mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1: (143~250);
(3)对步骤(2)的金纳米棒溶液进行离心分离,离心分离转速为5000~8000rpm/min,离心分离时间为10~15min,将离心分离得到的金纳米棒滴在硅基底上;
(4)使飞秒激光脉冲入射到步骤(3)的硅基底上,飞秒激光通量为0.2~2.1mJ/cm2,飞秒激光照射时间为5~15min,调节飞秒激光波长,使硅基底上金纳米棒表面电场分布发生变化,实现金纳米棒表面原子的部分剥离,得到高催化活性金纳米棒。
上述高催化活性金纳米棒制备方法的步骤(4)中,激光波长可以为400~800nm。
本发明提出的基于飞秒激光的高催化活性金纳米棒制备***,包括飞秒激光器、衰减片、半波片、第一反射镜、第二反射镜、电控快门、二向色镜、倍频晶体、载物台、分束镜、照明灯和相机;其中,飞秒激光器、衰减片、半波片和第一反射镜构成共光轴,飞秒激光器产生的飞秒激光脉冲经过衰减片调节能量后,经过半波片调整偏振方向,再通过第一反射镜和第二反射镜改变传播方向,经过电控快门,由二向色镜改变传播方向,二向色镜的一侧设置倍频晶体和载物台,通过倍频晶体改变波长,最后辐照到载物台上,装有金纳米棒的硅基底置于载物台上,二向色镜的另一侧设置由分束镜、照明灯和相机组成的观测***,照明灯发射出照明光,经过分束镜到达硅基底表面,反射回相机,以观察高催化活性金纳米棒的制备过程。
本发明提出的基于飞秒激光的高催化活性金纳米棒制备方法及其***,其优点是:
1、本发明的基于飞秒激光的高催化活性金纳米棒制备方法,相比于已有的化学法等,已有的化学刻蚀法反应条件复杂、反应过程可控性差,本发明利用飞秒激光脉冲辐照金纳米棒,合理设计激光偏振和波长,即可制备出高催化活性金纳米棒,制备过程相对简单。
2、本发明的基于飞秒激光的高催化活性金纳米棒制备***,可以任意调整飞秒激光偏振方向和波长,而且操作方便。
附图说明
图1是本发明提出的基于飞秒激光的高催化活性金纳米棒制备***的结构示意图。
图2是本发明实施例1中,采用800nm波长激光辐照的金纳米棒透射电镜图。
图3是本发明实施例2中,采用400nm波长激光辐照的金纳米棒透射电镜图。
图1中,1是飞秒激光器,2是衰减片,3是半波片,4是第一反射镜,5是第二反射镜,6是电控快门,7是二向色镜,8是BBO晶体,9是硅基底,10是载物台,11是分束镜,12是照明灯,13是相机。
具体实施方式
本发明提出的基于飞秒激光的高催化活性金纳米棒的制备方法,包括以下步骤:
(1)合成金种子溶液:
将摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠(NaBH4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为(0.3~0.5)mmol/L、(0.07~0.09)mol/L 和(0.7~0.9)mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:
将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L 的四氯金酸(HAucl4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C6H8O6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.07~0.09mol/L、0.4~0.6mmol/L、0.06~0.07mmol/L和0.6~0.9mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1: (143~250);
(3)对步骤(2)的金纳米棒溶液进行离心分离,离心分离转速为5000~8000rpm/min,离心分离时间为10~15min,将离心分离得到的金纳米棒滴在硅基底上;
(4)使飞秒激光脉冲入射到步骤(3)的硅基底上,飞秒激光通量为0.2~2.1mJ/cm2,飞秒激光照射时间为5~15min,调节飞秒激光波长,使硅基底上金纳米棒表面电场分布发生变化,实现金纳米棒表面原子的部分剥离,得到高催化活性金纳米棒。
上述高催化活性金纳米棒制备方法的步骤(4)中,激光波长可以为400~800nm。
3、一种基于飞秒激光的高催化活性金纳米棒制备***,其特征在于包括飞秒激光器、衰减片、半波片、第一反射镜、第二反射镜、电控快门、二向色镜、倍频晶体、载物台、分束镜、照明灯和相机;其中,
飞秒激光器、衰减片、半波片和第一反射镜构成共光轴,飞秒激光器产生的飞秒激光脉冲经过衰减片调节能量后,经过半波片调整偏振方向,再通过第一反射镜和第二反射镜改变传播方向,经过电控快门,由二向色镜改变传播方向,二向色镜的一侧设置倍频晶体和载物台,通过倍频晶体改变波长,最后辐照到载物台上,装有金纳米棒的硅基底置于载物台上,二向色镜的另一侧设置由分束镜、照明灯和相机组成的观测***,照明灯发射出照明光,经过分束镜到达硅基底表面,反射回相机,以观察高催化活性金纳米棒的制备过程。
以下介绍本发明方法的实施例:
实施例1
(1)合成金种子溶液:将摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L 的冰硼氢化钠(NaBH4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为0.3mmol/L、0.09mol/L 和0.7mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C6H8O6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.09mol/L、0.4mmol/L、0.06mmol/L和0.6mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:250;
(3)将步骤(2)的1mL金纳米棒溶液离心,离心转速为8000rpm/min,离心时间为10min,然后滴在硅基底上;
(4)将飞秒激光脉冲引入到步骤(3)的硅基底,激光通量为2mJ/cm2,辐照时间为8min,选择激光波长为800nm,从而实现金纳米棒的选择性烧蚀。
实施例1得到的高催化活性金纳米棒的透射电镜图如图2所示。
实施例2
(1)合成金种子溶液:将摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L 的冰硼氢化钠(NaBH4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为0.3mmol/L、0.09mol/L 和0.7mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C6H8O6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.09mol/L、0.4mmol/L、0.06mmol/L和0.6mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:250;
(3)将步骤(2)的1mL金纳米棒溶液离心,离心转速为8000rpm/min,离心时间为10min,然后滴在硅基底上;
(4)将飞秒激光脉冲引入到步骤(3)的硅基底,激光通量为2mJ/cm2,辐照时间为8min,选择激光波长为400nm,从而实现金纳米棒的选择性烧蚀。
本实施例2得到的高催化活性金纳米棒的透射电镜图如图3所示,从图3与图2的对比可以看出,当激光通量相同时,改变激光波长,可调节金纳米棒表面的电场分布,从而使得加工所得的金纳米棒表面晶面结构发生改变。
实施例3
(1)合成金种子溶液:将摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L 的冰硼氢化钠(NaBH4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为0.4mmol/L、0.08mol/L 和0.8mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C6H8O6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.07mol/L、0.4mmol/L、0.06mmol/L和0.65mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:200;
(3)将步骤(2)的1mL金纳米棒溶液离心,离心转速为8000rpm/min,离心时间为10min,然后滴在硅基底上;
(4)将飞秒激光脉冲引入到步骤(3)的硅基底,激光通量为1.5mJ/cm2,辐照时间为10min,选择激光波长为800nm,从而实现金纳米棒的选择性烧蚀。
实施例4
(1)合成金种子溶液:将摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液中,再将摩尔浓度为0.01mol/L 的冰硼氢化钠(NaBH4)溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为0.5mmol/L、0.09mol/L 和0.9mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵(CTAB)溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C6H8O6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.08mol/L、0.5mmol/L、0.07mmol/L和0.9mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:180;
(3)将步骤(2)的1mL金纳米棒溶液离心,离心转速为8000rpm/min,离心时间为10min,然后滴在硅基底上;
(4)将飞秒激光脉冲引入到步骤(3)的硅基底,激光通量为1.5mJ/cm2,辐照时间为15min,选择激光波长为400nm,从而实现金纳米棒的选择性烧蚀。
本发明提出的基于飞秒激光高催化活性金纳米棒制备***,其结构如图1所示,包括飞秒激光器1、衰减片2、半波片3、第一反射镜4、第二反射镜5、电控快门6、二向色镜7、倍频晶体8、载物台10、分束镜11、照明灯12和相机13;其中,
飞秒激光器1、衰减片2、半波片3、和第一反射镜4构成共光轴,激光脉冲依次经过第二反射镜5和二向色镜7,电控快门6设置在第二反射镜5和二向色镜7之间,二向色镜7一侧设置BBO晶体8、硅基底9和载物台10,二向色镜7另一侧设置由分束镜11、照明灯12和相机13组成的观测***,飞秒激光器1产生的飞秒激光脉冲经过衰减片2调节能量后,经过半波片3调整偏振方向,分别通过第一反射镜4和第二反射镜5改变传播方向,经过电控快门6,再由二向色镜7改变传播方向,通过BBO晶体8改变波长,最后辐照到装有金纳米棒的硅基底9,通过观测***观测高催化活性金纳米棒的制备过程。
本发明的基于飞秒激光的高催化活性金纳米棒制备***的一个实施例中,所用的飞秒激光器为相干公司(Coherent)生产的钛蓝宝石激光器,型号Astrella,中心波长800nm,脉冲宽度35fs,重复频率最高1000Hz,最大单脉冲能量为7mJ,光强分布为高斯分布。
本发明***的一个实施例飞秒激光器1的主要参数为:激光中心波长800nm,重复频率 1KHz,脉冲宽度为35fs。
本发明的基于飞秒激光的高催化活性金纳米棒制备***的操作过程如下:
打开飞秒激光器1,产生激光脉冲,通过衰减片2调节激光能量,使其满足烧蚀金纳米棒所需功率要求,在0.2~2.1mJ/cm2之间。通过半波片3获得垂直偏振激光。调节BBO晶体8,改变激光波长为800nm或400nm。将飞秒激光引入到硅基底9,硅基底9放置在载物台10上,并调节光束与载物台10的相对位置,使激光通过硅基底9的中心。通过调节电控快门6的打开时间,控制入射到金纳米棒脉冲的辐照时间,实现高催化活性金纳米棒制备。
操作过程的一个实施例中,通过调节衰减片2,将激光通量调节为2mJ/cm2;通过调节 BBO晶体8,得到800nm波长;通过电控快门7,控制入射到金纳米棒脉冲的辐照时间为8min, 即制备得到了如图2所示的金纳米棒。
操作过程的另一个实施例中,通过调节衰减片2,将激光通量调节为2mJ/cm2;通过调节BBO晶体8,得到400nm波长;通过电控快门7,控制入射到金纳米棒脉冲的辐照时间为8min, 即制备得到了如图3所示的金纳米棒。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (3)

1.一种基于飞秒激光的高催化活性金纳米棒的制备方法,其特征在于:该方法包括以下步骤:
(1)合成金种子溶液:
将摩尔浓度为0.01mol/L的四氯金酸溶液注入到摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵溶液中,再将摩尔浓度为0.01mol/L的冰硼氢化钠溶液一次性加入,快速搅拌2~4分钟,得到金种子液,金种子液中四氯金酸、十六烷基三甲基溴化铵和硼氢化钠的摩尔浓度分别为(0.3~0.5)mmol/L、(0.07~0.09)mol/L和(0.7~0.9)mmol/L;
(2)通过种子液生长法合成金纳米棒溶液:
将摩尔浓度为0.1mol/L的十六烷基三甲基溴化铵溶液、摩尔浓度为0.01mol/L的四氯金酸(HAucl4)溶液和摩尔浓度为0.01mol/L的硝酸银(AgNO3)溶液混合并搅拌,再加入摩尔浓度为0.1mol/L的抗坏血酸(C6H8O6)溶液,得到混合液,混合液中十六烷基三甲基溴化铵、四氯金酸、硝酸银和抗坏血酸的摩尔浓度各为0.07~0.09mol/L、0.4~0.6mmol/L、0.06~0.07mmol/L和0.6~0.9mmol/L,在混合液中加入步骤(1)的金种子液,静置3小时,得到金纳米棒溶液,金纳米棒溶液中金种子液和混合液的体积比为1:(143~250);
(3)对步骤(2)的金纳米棒溶液进行离心分离,离心分离转速为5000~8000rpm/min,离心分离时间为10~15min,将离心分离得到的金纳米棒滴在硅基底上;
(4)使飞秒激光脉冲入射到步骤(3)的硅基底上,飞秒激光通量为0.2~2.1mJ/cm2,飞秒激光照射时间为5~15min,调节飞秒激光波长,使硅基底上金纳米棒表面电场分布发生变化,实现金纳米棒表面原子的部分剥离,得到高催化活性金纳米棒。
2.如权利要求1所述的高催化活性金纳米棒制备方法,其特征在于,所述的步骤(4)中,激光波长为400~800nm。
3.一种基于飞秒激光的高催化活性金纳米棒制备***,其特征在于包括飞秒激光器、衰减片、半波片、第一反射镜、第二反射镜、电控快门、二向色镜、倍频晶体、载物台、分束镜、照明灯和相机;其中,
飞秒激光器、衰减片、半波片和第一反射镜构成共光轴,飞秒激光器产生的飞秒激光脉冲经过衰减片调节能量后,经过半波片调整偏振方向,再通过第一反射镜和第二反射镜改变传播方向,经过电控快门,由二向色镜改变传播方向,二向色镜的一侧设置倍频晶体和载物台,通过倍频晶体改变波长,最后辐照到载物台上,装有金纳米棒的硅基底置于载物台上,二向色镜的另一侧设置由分束镜、照明灯和相机组成的观测***,照明灯发射出照明光,经过分束镜到达硅基底表面,反射回相机,以观察高催化活性金纳米棒的制备过程。
CN201910881199.6A 2019-09-18 2019-09-18 基于飞秒激光的高催化活性金纳米棒制备方法及其*** Active CN110560703B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910881199.6A CN110560703B (zh) 2019-09-18 2019-09-18 基于飞秒激光的高催化活性金纳米棒制备方法及其***
PCT/CN2020/110434 WO2021052105A1 (zh) 2019-09-18 2020-08-21 基于飞秒激光的高催化活性金纳米棒的制备方法及其***
US17/318,036 US11110448B1 (en) 2019-09-18 2021-05-12 Method for preparing gold nanorods having high catalytic activity by using femtosecond laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910881199.6A CN110560703B (zh) 2019-09-18 2019-09-18 基于飞秒激光的高催化活性金纳米棒制备方法及其***

Publications (2)

Publication Number Publication Date
CN110560703A true CN110560703A (zh) 2019-12-13
CN110560703B CN110560703B (zh) 2020-09-18

Family

ID=68780824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910881199.6A Active CN110560703B (zh) 2019-09-18 2019-09-18 基于飞秒激光的高催化活性金纳米棒制备方法及其***

Country Status (3)

Country Link
US (1) US11110448B1 (zh)
CN (1) CN110560703B (zh)
WO (1) WO2021052105A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112171064A (zh) * 2020-09-24 2021-01-05 北京理工大学 基于飞秒激光制备的光控驱动微流传输***
WO2021052105A1 (zh) * 2019-09-18 2021-03-25 清华大学 基于飞秒激光的高催化活性金纳米棒的制备方法及其***
CN113305297A (zh) * 2021-05-28 2021-08-27 杭州苏铂科技有限公司 一种激光辅助无种子的金纳米棒合成方法
CN113305296A (zh) * 2021-05-27 2021-08-27 杭州苏铂科技有限公司 一种激光辅助功能化金纳米棒的快速制造方法
CN113547130A (zh) * 2021-07-12 2021-10-26 杭州苏铂科技有限公司 一种激光辅助功能化金纳米星制备方法
CN113649586A (zh) * 2021-07-12 2021-11-16 杭州苏铂科技有限公司 一种激光辅助无种子的金纳米星合成方法
WO2022021509A1 (zh) * 2020-07-28 2022-02-03 清华大学 采用超快脉冲激光对金属材料非晶化处理的方法及***

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114136958B (zh) * 2021-11-22 2023-08-18 杭州师范大学 一种基于肿瘤标志物与金纳米球相互作用调控金纳米棒刻蚀的高灵敏可视化方法
CN115198226B (zh) * 2022-08-16 2023-08-22 中国人民解放军空军工程大学 基于飞秒激光诱导表面氧化层提升金属抗腐蚀性能的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8309389B1 (en) * 2009-09-10 2012-11-13 Sionyx, Inc. Photovoltaic semiconductor devices and associated methods
CN104028777A (zh) * 2014-06-23 2014-09-10 北京理工大学 基于飞秒激光电子动态调控制备表面增强拉曼基底的方法
US20150093550A1 (en) * 2012-02-16 2015-04-02 Ultra Small Fibers, LLC Nanostructures from Laser-Ablated Nanohole Templates
CN105842181A (zh) * 2016-06-03 2016-08-10 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN106216833A (zh) * 2016-08-10 2016-12-14 北京理工大学 基于电子动态调控激光加工半导体双级表面结构的方法
CN106905966A (zh) * 2017-01-12 2017-06-30 北京理工大学 一种基于电子动态调控制备单层二硫化钼量子点的方法
CN108568594A (zh) * 2018-03-22 2018-09-25 北京工业大学 基于类等离子体透镜效应调控晶硅表面波纹结构的方法
CN108788472A (zh) * 2018-05-24 2018-11-13 清华大学 基于电子动态调控的二氧化钛表面周期结构加工方法
CN109576640A (zh) * 2018-11-28 2019-04-05 江苏大学 一种在钛基底上制备TiO2多尺度微纳复合结构的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4259220B2 (ja) * 2003-08-25 2009-04-30 三菱マテリアル株式会社 金属ナノロッド製造方法
JP5002808B2 (ja) * 2006-03-07 2012-08-15 国立大学法人北海道大学 レーザ加工装置及びレーザ加工方法
US20100055448A1 (en) * 2006-11-08 2010-03-04 Tatsuya Tomura Multiphoton absorption functional material, composite layer having multiphoton absorption function and mixture, and optical recording medium, photoelectric conversion element, optical control element, and optical modeling system using the same
CN101343778B (zh) * 2008-08-29 2011-04-06 北京航空航天大学 短长径比金纳米棒的制备方法
US9574272B2 (en) * 2008-09-02 2017-02-21 Ramot At Tel-Aviv University Ltd Metal nanowire thin-films
CN103945966B (zh) * 2011-09-23 2018-11-16 南洋理工大学 用于在基底上形成金纳米线的方法及由该方法形成的金纳米线
US9373515B2 (en) * 2012-03-01 2016-06-21 Ramot At Tel-Aviv University Ltd Conductive nanowire films
CN102962469B (zh) * 2012-03-01 2015-01-21 纳米籽有限公司 高产率大长径比金纳米棒及其制备方法
CN102921961B (zh) * 2012-11-30 2016-01-20 南京大学 一种飞秒激光制备金属纳米材料的方法
WO2014137292A1 (en) * 2013-03-06 2014-09-12 Nanyang Technological University Monolayer of nanorods on a substrate and method of forming the same
CN103658993B (zh) * 2013-12-11 2015-05-06 北京理工大学 基于电子动态调控的晶硅表面飞秒激光选择性烧蚀方法
CN104907578A (zh) * 2015-04-29 2015-09-16 福州大学 一种金纳米棒的制备方法
CN108213718B (zh) * 2018-01-05 2019-10-29 北京工业大学 一种飞秒激光调控GemSbnTek晶态纳米结构几何形态方法
CN109868462A (zh) * 2019-03-28 2019-06-11 北京理工大学 一种实现在纳米尺度下激光辅助金离子化学还原的方法
CN110280776B (zh) * 2019-04-15 2020-10-16 清华大学 基于飞秒双脉冲激光的金纳米棒增强整形方法及其***
CN110560703B (zh) * 2019-09-18 2020-09-18 清华大学 基于飞秒激光的高催化活性金纳米棒制备方法及其***

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8309389B1 (en) * 2009-09-10 2012-11-13 Sionyx, Inc. Photovoltaic semiconductor devices and associated methods
US20150093550A1 (en) * 2012-02-16 2015-04-02 Ultra Small Fibers, LLC Nanostructures from Laser-Ablated Nanohole Templates
CN104028777A (zh) * 2014-06-23 2014-09-10 北京理工大学 基于飞秒激光电子动态调控制备表面增强拉曼基底的方法
CN105842181A (zh) * 2016-06-03 2016-08-10 盐城工学院 一种基于金纳米棒检测氰根离子的方法
CN106216833A (zh) * 2016-08-10 2016-12-14 北京理工大学 基于电子动态调控激光加工半导体双级表面结构的方法
CN106905966A (zh) * 2017-01-12 2017-06-30 北京理工大学 一种基于电子动态调控制备单层二硫化钼量子点的方法
CN108568594A (zh) * 2018-03-22 2018-09-25 北京工业大学 基于类等离子体透镜效应调控晶硅表面波纹结构的方法
CN108788472A (zh) * 2018-05-24 2018-11-13 清华大学 基于电子动态调控的二氧化钛表面周期结构加工方法
CN109576640A (zh) * 2018-11-28 2019-04-05 江苏大学 一种在钛基底上制备TiO2多尺度微纳复合结构的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈秋群: "飞秒激光诱导材料微结构及其在光存储的应用探索", 《中国优秀硕士学位论文全文数据库》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021052105A1 (zh) * 2019-09-18 2021-03-25 清华大学 基于飞秒激光的高催化活性金纳米棒的制备方法及其***
US11110448B1 (en) 2019-09-18 2021-09-07 Tsinghua University Method for preparing gold nanorods having high catalytic activity by using femtosecond laser
WO2022021509A1 (zh) * 2020-07-28 2022-02-03 清华大学 采用超快脉冲激光对金属材料非晶化处理的方法及***
CN112171064A (zh) * 2020-09-24 2021-01-05 北京理工大学 基于飞秒激光制备的光控驱动微流传输***
CN113305296A (zh) * 2021-05-27 2021-08-27 杭州苏铂科技有限公司 一种激光辅助功能化金纳米棒的快速制造方法
CN113305297A (zh) * 2021-05-28 2021-08-27 杭州苏铂科技有限公司 一种激光辅助无种子的金纳米棒合成方法
CN113547130A (zh) * 2021-07-12 2021-10-26 杭州苏铂科技有限公司 一种激光辅助功能化金纳米星制备方法
CN113649586A (zh) * 2021-07-12 2021-11-16 杭州苏铂科技有限公司 一种激光辅助无种子的金纳米星合成方法

Also Published As

Publication number Publication date
US20210268488A1 (en) 2021-09-02
CN110560703B (zh) 2020-09-18
US11110448B1 (en) 2021-09-07
WO2021052105A1 (zh) 2021-03-25

Similar Documents

Publication Publication Date Title
CN110560703B (zh) 基于飞秒激光的高催化活性金纳米棒制备方法及其***
CN110280776B (zh) 基于飞秒双脉冲激光的金纳米棒增强整形方法及其***
CN108568594B (zh) 基于类等离子体透镜效应调控晶硅表面波纹结构的方法
Hajiesmaeilbaigi et al. Preparation of silver nanoparticles by laser ablation and fragmentation in pure water
JP2012516391A5 (zh)
Murshid et al. Optimized synthetic protocols for preparation of versatile plasmonic platform based on silver nanoparticles with pentagonal symmetries
CN108057880B (zh) 一种电沉积制备金属光子晶体的方法
CN105728945A (zh) 一种飞秒激光双脉冲一步法制备表面增强拉曼基底
CN108788472A (zh) 基于电子动态调控的二氧化钛表面周期结构加工方法
Jiménez et al. A novel method of nanocrystal fabrication based on laser ablation in liquid environment
CN111003724B (zh) 一种液相中脉冲激光辐照调控二氧化铈纳米材料氧缺陷的方法
CN110773748B (zh) 基于飞秒激光的金银核壳纳米球的银壳剥离方法及***
Ayyyzhy et al. Laser fabrication and fragmentation of selenium nanoparticles in aqueous media
Hajiesmaeilbaigi et al. Synthesis of Au/Ag alloy nanoparticles by Nd: YAG laser irradiation
Gao et al. Single-layer gold nanoparticle film enhances the upconversion luminescence of a single NaYbF4: 2% Er3+ microdisk
CN106903301A (zh) 纳米颗粒尺寸控制方法及实现装置
CN1273401C (zh) 紫外脉冲激光辐照辅助纳米掺杂玻璃的制作方法
CN115283684A (zh) 一种使用液相激光烧蚀法连续制备纳米颗粒的装置
CN106495219B (zh) 激光诱导制备KNb3O8纳米线的方法
CN108893714A (zh) 一种高密度Ag纳米柱表面增强拉曼散射衬底的制备方法
CN109604632B (zh) 以多粘菌素e为模板制备纳米金粒子的方法
Juang et al. Synthesis of ultrafine glass particles by laser ablation of microspheres
Shimotsuma et al. Functional Nanomaterials Synthesized by Femtosecond Laser Pulses
CN106629821B (zh) 一种亚微米羟基锡酸盐ZnSn(OH)6立方块的制备方法
CN114318227B (zh) 一种花瓣纳米片周期性阵列制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant