CN110544723B - 具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法 - Google Patents

具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法 Download PDF

Info

Publication number
CN110544723B
CN110544723B CN201910754806.2A CN201910754806A CN110544723B CN 110544723 B CN110544723 B CN 110544723B CN 201910754806 A CN201910754806 A CN 201910754806A CN 110544723 B CN110544723 B CN 110544723B
Authority
CN
China
Prior art keywords
type
epitaxial layer
silicon carbide
silicon
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910754806.2A
Other languages
English (en)
Other versions
CN110544723A (zh
Inventor
段宝兴
杨鑫
王夏萌
张一攀
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910754806.2A priority Critical patent/CN110544723B/zh
Publication of CN110544723A publication Critical patent/CN110544723A/zh
Application granted granted Critical
Publication of CN110544723B publication Critical patent/CN110544723B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提出了一种具有部分碳化硅材料/硅材料异质结的U‑MOSFET及其制作方法,该U‑MOSFET器件主要特点是将碳化硅材料与硅材料相结合形成异质结,以碳化硅衬底和N型碳化硅外延层整体的凸字型结构表面为基础形成N型硅外延层,并刻蚀N型硅外延层中间区域深入N型碳化硅外延层顶部,形成槽栅结构。利用碳化硅材料的高临界击穿电场特性,通过击穿点转移技术,将器件槽栅拐角处栅氧的强电场引入碳化硅材料中,抬高了器件的纵向电场峰,器件可承担更高的击穿电压,突破了传统硅基U‑MOSFET器件受单一硅材料临界击穿电场的限制,同时碳化硅材料的高热导率特性有利于器件散热,提高了器件可靠性,有效改善了器件性能。

Description

具有部分碳化硅材料/硅材料异质结的U-MOSFET及其制作 方法
技术领域
本发明涉及功率半导体器件领域,尤其涉及一种U-MOSFET结构及其制作方法。
背景技术
半导体功率器件是指主要用于电力设备的电能变换和控制电路方面的大功率电子器件。随着半导体功率技术的快速发展,功率半导体器件已经广泛应用于现代工业控制和国防装备中。在20世纪80年代后期,由于刻槽技术的发展,功率半导体界开始采用该工艺技术开发U-MOSFET结构。与VD-MOSFET结构相比,U-MOSFET结构同样具备开关速度快、损耗小、输入阻抗高、驱动功率小、频率特性好、跨导高线性度高等特性,由于U-MOSFET结构没有JFET区,其内部电阻明显降低。
发明内容
本发明提出了一种具有部分碳化硅材料/硅材料异质结的U-MOSFET及其制作方法,旨在进一步提高U-MOSFET的击穿电压,改善器件性能。
本发明的技术方案如下:
具有部分碳化硅材料/硅材料异质结的U-MOSFET,包括:
N+型衬底;
位于N+型衬底上表面的N型外延层;
在N型外延层上部左、右两端区域分别形成的P型基区;P型基区中形成沟道以及N+型源区和P+沟道衬底接触;
源极,覆盖P+沟道衬底接触与N+型源区相接区域的上表面;两处源极共接;
漏极,位于所述N+型衬底下表面;
其特殊之处在于:
所述N+型衬底采用碳化硅材料;
所述N型外延层由两部分构成:一部分为凹字型结构的N型碳化硅外延层,位于所述N+型衬底上表面中间区域;另一部分为两处N型硅外延层,分别位于所述N+型衬底上表面左、右两端区域,相应与所述N型碳化硅外延层的侧面邻接;两处P型基区相应形成于两处N型硅外延层的上部;
所述N型硅外延层的厚度大于N型碳化硅外延层的厚度,整体构成凹槽结构,该凹槽以所述凹字型结构的凹部为底,凹槽深度大于P型基区与N型硅外延层之间PN结的深度,所述凹槽内填充形成栅极,在栅极与凹槽内壁之间设置有栅氧化层;栅极的上表面覆盖有钝化层;
所述N型碳化硅外延层和N型硅外延层的厚度和掺杂浓度由器件的耐压要求决定,其中,N型碳化硅外延层和N型硅外延层的掺杂浓度低于N+型衬底的掺杂浓度。
基于以上方案,本发明还进一步作了如下优化:
两处源极通过覆盖于钝化层上表面的同材料金属(即与源级材料相同的金属)连成一体。
所述凹字型结构是通过部分刻蚀形成的,N型外延层左右两边刻蚀延伸到N+型衬底上表面,中间部分刻蚀深入到N型碳化硅外延层内,N型碳化硅外延层顶部的刻蚀深度Ln为0.5μm~2μm。
N型硅外延层是通过异质外延技术或键合技术在N+型衬底和N型碳化硅外延层上表面形成的;所述P型基区及其N+型源区和P+沟道衬底接触,是在N型硅外延层上部采用离子注入技术形成的。
N型硅外延层和N型碳化硅外延层的掺杂浓度比N+型衬底的掺杂浓度小4-6个数量级。
N型硅外延层的掺杂浓度为1×1015~3×1015cm-3,N型碳化硅外延层的掺杂浓度为3×1015~6×1015cm-3
所述凹槽底部与所述PN结之间的高度差Lm为2μm~4μm。
所述凹槽侧面到N型碳化硅外延层侧面的距离Wn为0.5μm~2μm。
栅极为多晶硅栅极,源极为金属化源极,漏极为金属化漏极。
本发明技术方案的有益效果如下:
本发明将碳化硅材料与硅材料相结合,采用碳化硅材料作U-MOSFET的衬底,在碳化硅材料N+型衬底上外延生长形成掺杂浓度较低的N型碳化硅材料外延层,对N型碳化硅材料外延层进行部分刻蚀形成凸字型结构,再以该N型碳化硅外延层为基础异质外延生长(或利用键合技术形成)N型硅材料外延层,采用硅成熟工艺形成U-MOSFET器件的有源区。利用碳化硅材料的高临界击穿电场特性,通过击穿点转移,将器件槽栅拐角处栅氧的强电场引入碳化硅材料中,抬高了器件的纵向电场峰,U-MOSFET器件可承担更高的击穿电压,突破了传统硅基U-MOSFET器件受单一硅材料临界击穿电场的限制,同时碳化硅材料的高热导率特性有利于器件散热,提高了器件可靠性,有效改善了器件性能。
附图说明
图1是本发明的结构示意图。
其中,1-N+型源区;2-P+沟道衬底接触(P+型体区);3-栅极;4-钝化层;5-源极;6-栅氧化层;7-P型基区;8-N型碳化硅外延层;9-N型硅外延层;10-N+型衬底;11-漏极。
具体实施方式
下面结合附图以N沟道U-MOSFET为例介绍本发明。
如图1所示,本实施例包括:
碳化硅材料的N+型衬底10;
位于N+型衬底10上表面中间区域的N型碳化硅外延层8,N型碳化硅外延层的厚度和浓度根据不同的耐压等级设定;
在N+型衬底10和N型碳化硅外延层8上表面异质外延生长或利用键合技术形成的N型硅外延层9,N型硅外延层的厚度和浓度根据不同的耐压等级设定;
分别在N型硅外延层9上部的左、右两端区域形成的两处P型基区7;每一处P型基区7中形成沟道以及N+型源区2和P+沟道衬底接触1;在所述N型硅外延层位于两处N+型源区2之间的区域刻蚀凹槽至N型硅外延层9中,同时满足凹槽深度大于P型基区7与N型硅外延层9之间PN结的深度,凹槽延伸到N型碳化硅外延层8中,凹槽的深度根据不同的耐压等级设定,在凹槽内壁淀积有栅氧化层6;
栅极3设置于栅氧化层6的内壁;栅极3的上表面覆盖有钝化层4;
源极5,覆盖P+沟道衬底接触1与N+型源区2相接区域的上表面;两处源极5共接;
漏极11,位于所述N+型衬底10下表面。
N型硅外延层和N型碳化硅外延层的掺杂浓度比N+型衬底的掺杂浓度小4-6个数量级。N型硅外延层的掺杂浓度为1×1015~3×1015cm-3,N型碳化硅外延层的掺杂浓度为3×1015~6×1015cm-3
N型碳化硅外延层顶部的刻蚀深度Ln为0.5μm~2μm。凹槽底部与所述PN结之间的高度差Lm为2μm~4μm。凹槽侧面到N型碳化硅外延层侧面的距离Wn为0.5μm~2μm。
以N沟道U-MOSFET为例,具体可以通过以下步骤进行制备:
1)在碳化硅材料的N+型衬底10的上表面外延形成所述N型碳化硅外延层8;
2)在N+型衬底10下表面形成金属化漏极;
3)采用部分刻蚀技术对N型碳化硅外延层8进行部分刻蚀,刻蚀延伸到N+型衬底10上表面,形成凸字型结构;
4)在N+型衬底10和N型碳化硅外延层8上表面异质外延生长技术(或利用键合技术)形成N型硅外延层9;
5)在N型硅外延层9上部的左、右两端区域采用离子注入技术形成P型基区7以及N+型源区2和P+沟道衬底接触1,并在两处N+型源区2之间的区域刻蚀形成凹槽,满足凹槽深度大于P型基区7与N型硅外延层9之间PN结的深度,凹槽延伸到N型碳化硅外延层8中;在凹槽内壁淀积有栅氧化层6;
6)采用局部氧化技术在凹槽内壁淀积形成栅氧化层6,并淀积多晶硅,然后刻蚀多晶硅以及栅氧化层,形成多晶硅栅极3;
7)在器件表面淀积钝化层4,并在对应于源极的位置刻蚀接触孔;
8)在接触孔内淀积金属并刻蚀形成源极,形成覆盖整个P型基区7以及钝化层4上表面的源级一体结构。
经ISE TCAD仿真表明,该器件较之传统硅基U-MOSFET的性能改善,在两种器件漂移区长度相同,漂移区掺杂浓度相同的情况下,该器件的击穿电压相比于传统硅基U-MOSFET提高了2-3倍。例如,U-MOSFET的漂移区长度为11μm时,击穿电压突破300V。
本发明中的U-MOSFET也可以为P型沟道,其结构与N沟道U-MOSFET等同,也将其视为属于本申请权利要求的保护范围,在此不再赘述。
本发明的U-MOSFET中,8与9可以同型,也可以不同型,即:8为N型碳化硅外延层,9也可以为P型硅外延层;也可以8为P型碳化硅外延层,9为N型硅外延层;也可以8为P型碳化硅外延层,9为P型硅外延层。其结构仍是U-MOSFET器件,与本发明等同,也应将其视为属于本申请权利要求的保护范围,在此不再赘述。

Claims (10)

1.一种具有部分碳化硅材料/硅材料异质结的U-MOSFET,包括:
N+型衬底(10);
位于N+型衬底(10)上表面的N型外延层;
在N型外延层上部左、右两端区域分别形成的P型基区(7);P型基区(7)中形成沟道以及N+型源区(2)和P+沟道衬底接触(1);
源极(5),覆盖P+沟道衬底接触(1)与N+型源区(2)相接区域的上表面;两处源极(5)共接;
漏极(11),位于所述N+型衬底(10)下表面;
其特征在于:
所述N+型衬底(10)采用碳化硅材料;
所述N型外延层由两部分构成:一部分为凹字型结构的N型碳化硅外延层(8),位于所述N+型衬底(10)上表面中间区域;另一部分为两处N型硅外延层(9),分别位于所述N+型衬底(10)上表面左、右两端区域,相应与所述N型碳化硅外延层(8)的侧面邻接;两处P型基区(7)相应形成于两处N型硅外延层(9)的上部;
所述N型硅外延层(9)的厚度大于N型碳化硅外延层(8)的厚度,整体构成凹槽结构,该凹槽以所述凹字型结构的凹部为底,凹槽深度大于P型基区(7)与N型硅外延层(9)之间PN结的深度,所述凹槽内填充形成栅极(3),在栅极(3)与凹槽内壁之间设置有栅氧化层(6);栅极(3)的上表面覆盖有钝化层(4);
所述N型碳化硅外延层(8)和N型硅外延层(9)的厚度和掺杂浓度由器件的耐压要求决定,其中,N型碳化硅外延层(8)和N型硅外延层(9)的掺杂浓度低于N+型衬底(10)的掺杂浓度。
2.根据权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET,其特征在于:两处源极(5)通过覆盖于钝化层(4)上表面的同材料金属连成一体。
3.根据权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET,其特征在于:所述凹字型结构是通过部分刻蚀形成的,N型外延层左右两边刻蚀延伸到N+型衬底(10)上表面,中间部分刻蚀深入到N型碳化硅外延层(8)内,N型碳化硅外延层(8)顶部的刻蚀深度Ln为0.5μm~2μm。
4.根据权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET,其特征在于:所述N型硅外延层(9)是通过异质外延技术或键合技术在N+型衬底(10)和N型碳化硅外延层(8)上表面形成的;所述P型基区(7)及其N+型源区(2)和P+沟道衬底接触(1),是在N型硅外延层(9)上部采用离子注入技术形成的。
5.根据权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET,其特征在于:所述N型硅外延层(9)和N型碳化硅外延层(8)的掺杂浓度比N+型衬底(10)的掺杂浓度小4-6个数量级。
6.根据权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET,其特征在于:所述N型硅外延层(9)的掺杂浓度为1×1015~3×1015cm-3,N型碳化硅外延层(8)的掺杂浓度为3×1015~6×1015cm-3
7.根据权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET,其特征在于:所述凹槽底部与所述PN结之间的高度差Lm为2μm~4μm。
8.根据权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET,其特征在于:所述凹槽侧面到N型碳化硅外延层(8)侧面的距离Wn为0.5μm~2μm。
9.根据权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET,其特征在于:所述栅极(3)为多晶硅栅极,所述源极(5)为金属化源极,漏极(11)为金属化漏极。
10.一种制作权利要求1所述的具有部分碳化硅材料/硅材料异质结的U-MOSFET的方法,包括以下步骤:
1)在碳化硅的N+型衬底(10)的上表面外延形成N型碳化硅外延层(8);
2)在N+型衬底(10)下表面形成金属化漏极(11);
3)采用部分刻蚀技术对N型碳化硅外延层(8)进行部分刻蚀,左右两边刻蚀延伸到N+型衬底(10)上表面;
4)在N+型衬底(10)和N型碳化硅外延层(8)上表面异质外延生长或利用键合技术形成N型硅外延层(9);
5)在N型硅外延层(9)上部的左、右两端区域采用离子注入技术形成P型基区(7)以及N+型源区(2)和P+沟道衬底接触(1),并在两处N+型源区(2)之间的区域刻蚀形成凹槽,凹槽延伸到N型碳化硅外延层(8)中,满足凹槽深度大于P型基区(7)与N型硅外延层(9)之间PN结的深度,凹槽底部深入N型碳化硅外延层(8)内部,凹槽的宽度小于N型碳化硅外延层(8)的宽度,在凹槽内壁淀积栅氧化层(6);
6)采用局部氧化技术在凹槽内壁淀积形成栅氧化层(6),并淀积多晶硅,然后刻蚀多晶硅以及栅氧化层,形成多晶硅栅极(3);
7)在器件表面淀积钝化层(4),并在对应于源极的位置刻蚀接触孔;
8)在接触孔内淀积金属并刻蚀形成源极,形成覆盖整个P型基区(7)以及钝化层(4)上表面的源极一体结构。
CN201910754806.2A 2019-08-15 2019-08-15 具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法 Active CN110544723B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910754806.2A CN110544723B (zh) 2019-08-15 2019-08-15 具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910754806.2A CN110544723B (zh) 2019-08-15 2019-08-15 具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法

Publications (2)

Publication Number Publication Date
CN110544723A CN110544723A (zh) 2019-12-06
CN110544723B true CN110544723B (zh) 2022-11-11

Family

ID=68711622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910754806.2A Active CN110544723B (zh) 2019-08-15 2019-08-15 具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法

Country Status (1)

Country Link
CN (1) CN110544723B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382665A (zh) * 2020-11-03 2021-02-19 广东省科学院半导体研究所 一种氧化镓基mosfet器件及其制作方法
CN112687745B (zh) * 2020-12-29 2022-06-24 电子科技大学 碳化硅沟槽mosfet器件及制备方法
CN113054030A (zh) * 2021-03-12 2021-06-29 深圳方正微电子有限公司 垂直双扩散金属氧化物半导体晶体管及其制备方法和应用
CN113035936B (zh) * 2021-03-12 2023-01-13 深圳市昭矽微电子科技有限公司 沟槽型垂直双扩散金属氧化物半导体晶体管及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086243A (zh) * 2017-03-16 2017-08-22 西安电子科技大学 具有宽带隙材料与硅材料复合的u‑mosfet
CN107256884A (zh) * 2017-06-09 2017-10-17 电子科技大学 一种碳化硅功率二极管器件及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8492771B2 (en) * 2007-09-27 2013-07-23 Infineon Technologies Austria Ag Heterojunction semiconductor device and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086243A (zh) * 2017-03-16 2017-08-22 西安电子科技大学 具有宽带隙材料与硅材料复合的u‑mosfet
CN107256884A (zh) * 2017-06-09 2017-10-17 电子科技大学 一种碳化硅功率二极管器件及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Novel SiC/Si Heterojunction Power MOSFET With Breakdown Point Transfer Terminal Technology by TCAD Simulation Study";Baoxing Duan et al;《IEEE TRANSACTIONS ON ELECTRON DEVICES》;20180831;第3388-3393页 *

Also Published As

Publication number Publication date
CN110544723A (zh) 2019-12-06

Similar Documents

Publication Publication Date Title
CN110544723B (zh) 具有部分碳化硅材料/硅材料异质结的u-mosfet及其制作方法
US9472403B2 (en) Power semiconductor switch with plurality of trenches
CN110148629B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
CN107123684B (zh) 一种具有宽带隙材料与硅材料复合垂直双扩散金属氧化物半导体场效应管
CN108511528B (zh) 具有深漏区的横向双扩散金属氧化物复合半导体场效应管及其制作方法
CN107093623B (zh) 一种具有宽带隙衬底材料的垂直双扩散金属氧化物半导体场效应管
CN103050541B (zh) 一种射频ldmos器件及其制造方法
CN110277439B (zh) 一种碳化硅倒t形掩蔽层结构的mosfet器件及其制备方法
CN114823872A (zh) 一种全隔离衬底耐压功率半导体器件及其制造方法
CN108538909A (zh) 具有电荷补偿块的异质结垂直双扩散金属氧化物半导体场效应管及其制作方法
CN112820648B (zh) 一种氮化镓金属氧化物半导体晶体管及其制备方法
CN110429137B (zh) 具有部分氮化镓/硅半导体材料异质结的vdmos及其制作方法
CN110518069B (zh) 具有部分碳化硅/硅半导体材料异质结的vdmos及其制作方法
CN113113480A (zh) 具有p-GaN盖帽层的HEMT器件及制备方法
CN219419037U (zh) 一种沟槽型碳化硅mosfet器件
CN110021660B (zh) AlGaN/GaN异质结垂直型场效应晶体管及其制作方法
CN108258040B (zh) 具有宽带隙半导体衬底材料的绝缘栅双极晶体管及其制作方法
CN108598159B (zh) 具有宽带隙半导体材料/硅半导体材料异质结的绝缘栅双极晶体管及其制作方法
CN116799036A (zh) 宽禁带半导体沟槽mosfet器件结构及其制作方法
CN116314302A (zh) 一种沟槽型碳化硅mosfet器件的制造方法
CN113066866B (zh) 碳化硅mosfet器件及其工艺方法
CN110429138B (zh) 具有部分氮化镓/硅半导体材料异质结的u-mosfet及其制作方法
CN110571268B (zh) 具有部分宽禁带材料/硅材料异质结的igbt及其制作方法
CN110047932B (zh) 具有电荷补偿层和低阻通道的vdmos及其制作方法
CN112018162B (zh) 一种4H-SiC侧栅集成SBD MOSFET器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant