CN110501051A - 阻抗限位传感器 - Google Patents

阻抗限位传感器 Download PDF

Info

Publication number
CN110501051A
CN110501051A CN201910407831.3A CN201910407831A CN110501051A CN 110501051 A CN110501051 A CN 110501051A CN 201910407831 A CN201910407831 A CN 201910407831A CN 110501051 A CN110501051 A CN 110501051A
Authority
CN
China
Prior art keywords
measurement
probe
electronic unit
oscillating circuit
limit sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910407831.3A
Other languages
English (en)
Inventor
克里斯蒂安·温齐尔勒
于尔根·哈斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vega Grieshaber KG
Original Assignee
Vega Grieshaber KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vega Grieshaber KG filed Critical Vega Grieshaber KG
Publication of CN110501051A publication Critical patent/CN110501051A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/265Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

本发明涉及一种阻抗限位传感器(100),其具有:探头(102),其测量电容(110)能够被环绕所述探头(102)的介质影响,其中,所述探头(102)包括测量电极(106)和与所述测量电极(106)隔离的参考电极(108),其中,所述测量电容(110)形成在所述测量电极和所述参考电极之间;测量振荡电路,所述探头(102)作为电容确定元件布置在所述测量振荡电路中;电子单元(101),其具有用于激励所述测量振荡电路的信号发生器(103);用于生成测量信号的评估控制单元(105),其连接到所述电子单元(101),其特征在于,所述电子单元(101)包括用于检测所述信号发生器(103)的输入端处的电流的电流计(402)。

Description

阻抗限位传感器
技术领域
本发明涉及一种根据权利要求1的前序部分的阻抗限位传感器。
背景技术
例如测量极限物位或填充物位的阻抗限位传感器在现有技术中是众所周知的。用于检测预定填充物位(极限物位)的典型应用例如包括诸如处理工业中的处理罐、储罐、筒仓或管路等处理容器。在此,阻抗限位传感器经常在不同液体以及颗粒状和粉状的散装材料中用作所谓的限位开关,即用于确定填充介质是否超过或未到达一定的填充物位(所谓的极限物位)。
根据应用领域、处理条件和填充介质的特性选择的其他类型的限位开关或限位传感器也是已知的。除阻抗限位传感器之外,还使用根据时域反射(TDR:Time DomainReflectometry)原理工作的传感器或者振动式限位传感器或电容式传感器。例如,限位开关的切换命令能够启动或停止填充设备或排空设备以避免各个处理容器的溢出或空转。
在本申请中,出于简化的原因,也使用阻抗传感器、限位开关或限位传感器这些术语作为同义词,以代替阻抗限位传感器这一术语。
图1中示出已知的阻抗传感器100。
图1示出根据现有技术的阻抗传感器100的开关块的简化图。基本上,根据现有技术的阻抗传感器100包括电子单元101和探头102。探头102在本示例性实施例中被设计为串联振荡电路。在测量电极106和参考电极108之间形成有测量电容110,测量电容110连接到分立电感109以形成作为串联振荡电路的测量振荡电路。
测量电极106被设计为关于阻抗传感器100的纵向轴线A旋转对称,并且通过绝缘体107与处理室90分离。在本阻抗传感器100中,参考电极108也被实施为关于纵向轴线A旋转对称。在本示例性实施例中,参考电极108形成为管,且同时形成传感器壳体的一部分。在从纵向轴线A的方向看时,测量电极106布置在管的上游并且被布置在管上的绝缘体107环绕。绝缘体107同时形成壳体的前端。
有利地,对分立电感109进行选择,使得针对各种介质和/或覆盖条件(空的、满的和被沾染)在100MHz和200MHz之间设置振荡电路的谐振频率fres。
有利地,在100MHz和200MHz之间分析该测量振荡电路的由于频率而变化的复值敏感的阻抗|Z|的值,即通过频率生成器103利用具有100MHz与200MHz之间的频率的频率扫描来激励测量振荡电路,并且利用频率检测器104来检测测量振荡电路的响应信号(频率响应)。如果介质在探头102附近,那么测量振荡电路的阻抗特性改变,即特别地,测量振荡电路在形成阻抗最小值时的谐振频率fres发生偏移。
频率扫描被理解为利用频率范围内的多个连续频率的顺序激励,由此,频率范围理想地包含测量振荡电路的所有可能的谐振频率。
测量振荡电路的阻抗的变化用于评估控制单元105中的分析。具体地,对与频率变化Δf有关的频率响应以及阻抗Z的最小值的振幅变化(也称为振幅变化)进行评估,并据此生成切换命令。替代地,也可以在阻抗Z的最大值处进行评估。
根据现有技术的阻抗传感器在-40℃至+115℃的处理温度下使用。这些温度差对频率发生器103和频率检测器104的特性有很大影响,从而能够导致测量误差,并因而导致错误的切换命令。这被认为是现有技术的缺点。
例如,图2列出根据现有技术的用于番茄酱介质的阻抗传感器100的频率响应。
第一曲线200示出清洁探头102的响应特性。阻抗Z的值被以参照频率f的方式示出。
曲线201示出被番茄酱附着物沾染的探头102的特性,并且曲线202示出完全被番茄酱覆盖的探头102的特性。
切换命令(空、满)由评估控制单元105实现,因此,根据现有技术,仅谐振曲线的最小值用于分析。它们以参照频率变化Δf和振幅变化ΔZ的方式被评估。如果谐振曲线的最小值位于第一范围I中,那么评估控制单元105发出切换命令“空”。然而,如果最小值在第二范围II中,那么此处发出“满”状态。能够通过工厂将这两个定义的切换范围I、II编程在阻抗传感器100中,或者通过客户校直来调整和改变它们。理想地,这些范围应当被定义成使得对于尽可能多的不同介质来说标准设置是足够的,因为客户侧的校直是耗时的并因此是不期望的。
阻抗传感器100在-40℃至+115℃的工作温度下使用。这导致阻抗传感器100的电子单元101暴露至相对高的温度波动。
图3示出在探头102的未覆盖状态下的阻抗传感器100的两个谐振曲线,其中,曲线300描述+25℃处的特性,并且曲线300'描述+115℃处的特性。从图3中能够看出,在+25℃处,曲线300的最小值处于区间I中,并且在+115℃处,曲线300'的最小值处于区间II中,这与阻抗传感器100的不同切换状态相对应。此处,由于电子单元101的温度关系,温度波动能够导致阻抗传感器100的错误的切换决策。
发明内容
这个问题将由本发明解决。
根据本发明的阻抗传感器包括:探头,其测量电容能够被围绕探头的介质影响,其中,探头包括测量电极和与测量电极隔离的参考电极,测量电容形成在测量电极和参考电极之间;测量振荡电路,探头作为电容确定元件布置在测量振荡电路中;电子单元,其具有用于激励测量振荡电路的信号发生器;以及用于产生测量信号的评估控制单元,其连接到电子单元。该阻抗传感器的特征在于,电子单元包括用于检测信号发生器的输入端处的电流的电流计。
信号发生器的输入端处的电流(在下文中也称为输入电流)或与输入电流对应的信号作为输入信号被提供到评估控制单元,评估控制单元基于输入信号来确定谐振频率。
本发明基于以下认知:当测量振荡电路在其谐振频率下被激励时,信号发生器的电流输入显著地增加。这种效果被用于通过测量所吸收的电流来确定谐振频率。为此,认定如下事实:由信号发生器产生的激励频率在汲取电流增加时等于谐振频率。
例如,评估控制单元可具有用于数字化所测量的电流分布的A/D转换器,并且确定谐振频率以及与例如形成为压控振荡器(VCO)的信号发生器的控制有关的信息,并且基于谐振频率发出切换信号。
通过基于信号发生器处的电流测量确定谐振频率,不再需要安装单独的信号检测器。由于现有技术中的信号检测器代表所使用的测量装置中的对温度具有最强烈反应的组件,所以通过省略信号检测器并基于信号发生器的电流汲取确定谐振频率,能够显著地减少测量装置的温度敏感性。此外,电流测量能够由更少的且低成本的组件来实现电流测量,使得能够显著地减少阻抗限位传感器的成本和测量装置的复杂性。
例如,电流测量装置能够形成为电流传感器,尤其形成为电流电阻器或磁场传感器。当使用电流传感器时,电流测量能够以简单的方式进行。当使用电流电阻器时,这种电流测量能够以特别简单且成本有效的方式实现。当例如在信号发生器的供应线中使用电阻器时,通过电压测量来测量电阻的大小,由此能够确定流过电阻器的电流。
如果不存在在信号发生器的供应线中使用电阻器的选项,那么能够通过磁场传感器来确定由流经供应线的电流产生的磁场,并且因此能够由磁场推断出电流。
根据本发明,提供了一种用于操作阻抗限位传感器的方法,阻抗限位传感器具有:探头,其测量电容能够被围绕探头的介质影响,其中,探头包括测量电极和与测量电极隔离的参考电极,测量电容形成在测量电极和参考电极之间;测量振荡电路,探头作为电容确定元件布置在测量振荡电路中;电子单元,其具有用于激励测量振荡电路的信号发生器;以及用于产生测量信号的评估控制单元,其连接到电子单元,电子单元通过信号发生器利用多个不同的频率连续地激励测量振荡电路。该方法的特征在于,通过确定信号发生器的端子处电流来确定测量振荡电路的谐振点,尤其确定谐振频率。
该方法基于以下认知:当测量振荡电路在其谐振频率下被激励时,信号发生器的电流汲取显著地增加。此处,这种效果用于通过测量电路汲取来确定谐振频率和/或谐振点。为此,认定如下事实:由信号发生器在电流汲取升高时生成的激励频率等于谐振频率。为此,评估控制单元可以例如具有用于数字化测量电流分布的A/D转换器,并且能够确定谐振频率以及与例如被实施为压控振荡器的信号发生器的控制有关的信息,并且基于已确定的谐振频率能够发出切换信号。
例如,能够通过电流电阻器上的电压测量来确定输入电流。
附图说明
在下文中,基于参照附图的示例性实施例更详细地解释本发明。
图1示出根据现有技术的阻抗传感器的框图(已讨论)。
图2示出未被介质覆盖的、被介质沾染的或被介质覆盖的阻抗传感器(已讨论)的频率响应的测量曲线。
图3示出根据现有技术的未被覆盖的阻抗传感器在不同温度下的测量曲线(已讨论)。
图4示出根据现有技术的阻抗传感器的框图。
图5示出根据本申请的阻抗传感器的框图。
图6示出根据图5的阻抗传感器上的信号发生器的输入端处的电流分布。
具体实施方式
在附图中,除非另有规定,否则相同的附图标记标记具有相同功能的相同部件。
在下文中,各个功能块的划分仅用于更好的说明和解释,并且在个别情况下可能会偏离所使用的布置。
出于说明的目的,图4示出阻抗限位传感器100的框图,在下文中出于简化的目的也将阻抗限位传感器100称为阻抗传感器100。阻抗传感器100具有通过代表探头102的传感器块303连接的信号发生器103和信号检测器104,探头102在该情况下利用测量电容110和电感109形成串联振荡电路,其中,测量电容110形成在测量电极106和参考电极10之间。
在图4的框图中,信号发生器103包括D/A转换器301以及压控振荡器302。压控振荡器302被供电单元307供电,并且在输入侧处被D/A转换器301提供电压斜波。压控振荡器302在输出侧处提供频率斜波(所谓的频率扫描)。该频率扫描被提供到传感器块303。
传感器块303基本上包括由分立电感109和测量电容110组成的串联振荡电路。测量电容110由测量电极106、绝缘体107以及参考电极108形成(参见图1),其中,测量电容110形成在测量电极106和参考电极108之间。测量电容110的值能够被待监测的充当电介质的填充介质改变,使得串联振荡电路的谐振频率fres基于传感器的覆盖状态变化。
利用信号检测器104来处理并分析传感器块303的谐振特性。在根据现有技术的图4的框图中,信号检测器104包括AM解调器304和下游的切换放大器电路305。已解调的谐振曲线最终被A/D转换器306数字化并且被提供到评估控制单元105(参见图1)。
信号检测器104和此处尤其AM解调器304包括强的温度依赖性,这导致测量结果的不同的温度曲线,从而可导致图3所示的错误检测。
图5示出根据本申请的阻抗传感器100的框图。
与图4的框图不同之处在于,在图5中,仅信号发生器103连接到传感器块303。不存在现有技术中常见的信号检测器104。
为了确定传感器块303的谐振频率fres和/或谐振点,在供电单元307和压控振荡器302之间布置有电流传感器402,电流传感器402在该情况下被实施为电流电阻器。取决于传感器块303的谐振特性,压控振荡器302抽取不同的电流I。在电流电阻器402上,电压U以与电流I对应的方式形成,并通过测量电路403进行测量。为此,测量电路403连接到电流电阻器402的输入侧和输出侧。
例如,测量电路403能够利用分立地设计的差分放大器或者商用电流计实现。
作为通过电流电阻器402和电压测量来确定电流的替代方式,此处可以使用电流测量的任意其他选项。
测量电路403的测量明显能够检测传感器块303的谐振特性并且利用A/D转换器306来数字化谐振特性。
图6示出通过电流传感器402在具有根据图5的设计的阻抗传感器100中的压控振荡器302的输出端处测量的电流曲线。该图示出在使用番茄酱作为填充介质的情况下在探头102的三个不同覆盖条件下的电流I[mA]相对于频率f[Hz]的分布图。
曲线500示出清洁探头102的谐振特性。当探头102被番茄酱完全覆盖时,得到第二曲线501的谐振特性。被番茄酱沾染的探头102的特性由第三曲线502表征。切换命令(空、满)由评估控制单元105实现,其中,仅电流分布的最大值与评估有关。在电流测量中,测量频率变化Δf和测量电流变化ΔI,从而测量振幅变化。
从图6中可以看到,如同现有技术的方法,能够根据信号发生器的输入端处且/或压控振荡器302处的电流分布来确定传感器块303的谐振特性并因此确定阻抗传感器100的覆盖状态。相对于现有技术,本设计的优点在于其包括显著低温度敏感性并能够以成本更加有效的方式制造。
附图标记列表
90 处理室
100 阻抗限位传感器、阻抗传感器
101 电子单元
102 探头
103 信号发生器
104 信号检测器
105 评估控制单元
106 测量电极
107 绝缘体
108 参考电极
109 电感
110 测量电容
200 第一曲线
201 第二曲线
202 第三曲线
300 曲线
300' 曲线
301 D/A转换器
302 压控振荡器
303 传感器块
304 解调器
305 放大器电路
306 A/D转换器
307 供电单元
402 电流计、电流传感器
403 测量电路
500 第一曲线
501 第二曲线
502 第三曲线
I 第一区域
II 第二区域
A 纵向轴线
F 频率
Δf 频率变化
fres 谐振频率
I 电流
U 电压
Z 阻抗
ΔZ 阻抗变化

Claims (6)

1.一种阻抗限位传感器(100),其具有:
探头(102),所述探头的测量电容(110)能够被环绕所述探头(102)的介质影响,其中,所述探头(102)包括测量电极(106)和与所述测量电极(106)隔离的参考电极(108),其中,所述测量电容(110)形成在所述测量电极和所述参考电极之间;
测量振荡电路,所述探头(102)作为电容确定元件布置在所述测量振荡电路中;
电子单元(101),所述电子单元具有用于激励所述测量振荡电路的信号发生器(103);
用于生成测量信号的评估控制单元(105),所述评估控制单元连接到所述电子单元(101),
其特征在于,所述电子单元(101)包括用于检测所述信号发生器(103)的输入端处的电流的电流计(402)。
2.根据权利要求1所述的阻抗限位传感器(100),其特征在于,所述电流计(402)被实施为电流传感器(402)。
3.根据权利要求2所述的阻抗限位传感器(100),其特征在于,所述电流传感器被实施为电流电阻器。
4.根据权利要求1所述的阻抗限位传感器(100),其特征在于,所述电流计(402)被实施为磁场传感器。
5.一种用于操作阻抗限位传感器(100)的方法,所述阻抗限位传感器具有:
探头(102),所述探头的测量电容(110)能够被环绕所述探头(102)的介质影响,其中,所述探头(102)包括测量电极(106)和与所述测量电极(106)隔离的参考电极(108),所述测量电容(110)形成在所述测量电极和所述参考电极之间;
测量振荡电路,所述探头(102)作为电容确定元件布置在所述测量振荡电路中;
电子单元(101),所述电子单元具有用于激励所述测量振荡电路的信号发生器(103);
用于生成测量信号的评估控制单元(105),所述评估控制单元连接到所述电子单元(101),所述电子单元通过所述信号发生器(103)利用多个不同的频率激励所述测量振荡电路,
其特征在于,通过确定所述信号发生器(103)的输入端处的电流(I)来确定所述测量振荡电路的谐振点。
6.根据权利要求5所述的用于操作阻抗限位传感器(100)的方法,其特征在于,通过电流电阻器上的电压测量来测量所述电流(I)。
CN201910407831.3A 2018-05-17 2019-05-15 阻抗限位传感器 Pending CN110501051A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018111960.7 2018-05-17
DE102018111960.7A DE102018111960A1 (de) 2018-05-17 2018-05-17 Impedanzgrenzstandsensor

Publications (1)

Publication Number Publication Date
CN110501051A true CN110501051A (zh) 2019-11-26

Family

ID=68419192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910407831.3A Pending CN110501051A (zh) 2018-05-17 2019-05-15 阻抗限位传感器

Country Status (3)

Country Link
US (1) US11112293B2 (zh)
CN (1) CN110501051A (zh)
DE (1) DE102018111960A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE051101T2 (hu) * 2018-03-22 2021-03-01 Grieshaber Vega Kg Impedancia-határértékkapcsoló EMC sugárzás csökkentésére és eljárás egy közeg határértékének meghatározására egy impedancia-határértékkapcsolóval

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2573172A (en) * 1947-11-01 1951-10-30 Robert V Funk Tank bleeder
DE8527899U1 (de) * 1985-10-01 1985-11-14 Henkel, Wolfgang Eberhard, 6832 Hockenheim Überfüllsicherungsvorrichtung für Behälter
US5083470A (en) * 1990-01-18 1992-01-28 E. I. Du Pont De Nemours And Company Capacitive liquid level sensor
US5207098A (en) * 1991-04-08 1993-05-04 Berthold Koch Device to measure the level of material within a container
US5602333A (en) * 1994-06-17 1997-02-11 Smiths Industries Apparatus for measuring the level of a liquid in a tank
EP0927877A2 (de) * 1998-01-02 1999-07-07 Volkswagen Aktiengesellschaft Messvorrichtung für eine Kraftstoffanzeige
WO2010063516A1 (de) * 2008-12-01 2010-06-10 Robert Bosch Gmbh Füllstandssensor und verfahren zur herstellung des füllstandssensors
WO2010123109A1 (ja) * 2009-04-23 2010-10-28 愛知製鋼株式会社 超高感度マグネトインピーダンスセンサ
CN104280600A (zh) * 2013-07-11 2015-01-14 英飞凌科技奥地利有限公司 检测器和电压变换器
EP3073282A1 (en) * 2015-03-26 2016-09-28 Aichi Steel Corporation Magnetic impedance sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589281A (en) * 1984-09-20 1986-05-20 Keystone International, Inc. Material level detector and control
US5973415A (en) * 1997-08-28 1999-10-26 Kay-Ray/Sensall, Inc. Capacitance level sensor
US6361396B1 (en) * 1999-08-13 2002-03-26 Bill Goodman Consulting, Llc RF identification system for use in toys
DE102005027344A1 (de) * 2005-06-13 2007-01-04 Ifm Electronic Gmbh Kapazitives Füllstandsmess- bzw. -erkennungsgerät
TWI578237B (zh) * 2010-04-08 2017-04-11 通路實業集團國際公司 銷售點感應系統及其方法
US9074922B2 (en) * 2012-12-10 2015-07-07 Ge-Hitachi Nuclear Energy Americas Llc Systems and methods for remotely measuring a liquid level using time-domain reflectometry (TDR)
EP3283145A1 (en) * 2015-04-16 2018-02-21 Sanofi-Aventis Deutschland GmbH Sensor and sensor assembly for capacitive determination of a filling level

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2573172A (en) * 1947-11-01 1951-10-30 Robert V Funk Tank bleeder
DE8527899U1 (de) * 1985-10-01 1985-11-14 Henkel, Wolfgang Eberhard, 6832 Hockenheim Überfüllsicherungsvorrichtung für Behälter
US5083470A (en) * 1990-01-18 1992-01-28 E. I. Du Pont De Nemours And Company Capacitive liquid level sensor
US5207098A (en) * 1991-04-08 1993-05-04 Berthold Koch Device to measure the level of material within a container
US5602333A (en) * 1994-06-17 1997-02-11 Smiths Industries Apparatus for measuring the level of a liquid in a tank
EP0927877A2 (de) * 1998-01-02 1999-07-07 Volkswagen Aktiengesellschaft Messvorrichtung für eine Kraftstoffanzeige
WO2010063516A1 (de) * 2008-12-01 2010-06-10 Robert Bosch Gmbh Füllstandssensor und verfahren zur herstellung des füllstandssensors
WO2010123109A1 (ja) * 2009-04-23 2010-10-28 愛知製鋼株式会社 超高感度マグネトインピーダンスセンサ
CN104280600A (zh) * 2013-07-11 2015-01-14 英飞凌科技奥地利有限公司 检测器和电压变换器
EP3073282A1 (en) * 2015-03-26 2016-09-28 Aichi Steel Corporation Magnetic impedance sensor

Also Published As

Publication number Publication date
US20190353513A1 (en) 2019-11-21
US11112293B2 (en) 2021-09-07
DE102018111960A1 (de) 2019-11-21

Similar Documents

Publication Publication Date Title
US11519794B2 (en) Device and method for the in-situ calibration of a thermometer
RU2115935C1 (ru) Способ бесконтактного измерения диэлектрической постоянной диэлектрического вещества
US9243941B2 (en) Magnetic-inductive flowmeter with an empty tube detecting device of an admittance measuring type
US8046194B2 (en) Method for predictive maintenance and/or method for determining electrical conductivity in a magneto-inductive flow-measuring device
US2772393A (en) Water-in-oil detector
US20130298667A1 (en) Apparatus and Method for Capacitive Fill Level Measurement
US6867603B2 (en) Method for measuring high frequency resistance in diesel engine lubrication oil
US3965416A (en) Dielectric-constant measuring apparatus
US10620081B2 (en) Method for operating a magnetic-inductive flowmeter and magnetic-inductive flowmeter
US20140373607A1 (en) Apparatus for Determining and/or Monitoring at least one Process Variable
JPH035863Y2 (zh)
CN112292587A (zh) 具有温度补偿的填充物位传感器或极限物位传感器
US20190265093A1 (en) Impedance sensor and method for its operation
CN110501051A (zh) 阻抗限位传感器
US20200141789A1 (en) Capacitive measuring method, and filling level measuring device
US7401513B2 (en) Electronic method and system for detection of conducting or dielectric medium with dielectric constant higher than that of air
JPH06265509A (ja) 燃料のアルコール濃度検知装置
JP3679708B2 (ja) 測定媒体の流量測定装置
US20100313653A1 (en) Admittance meter for monitoring a medium
EP0131024B1 (en) Capacitance measuring circuit
JP2003524784A (ja) 容器内の媒体の充填レベルを検出する装置
US2906948A (en) Dielectric constant meter
US6539811B2 (en) Apparatus for measuring the flow of a medium to be measured through a measuring tube
WO2017018893A1 (en) Method and device for determining the quality of motor-car fuel
JP2017167143A (ja) 静電容量検出装置および静電容量センサ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination