CN110476223B - 碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法 - Google Patents

碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法 Download PDF

Info

Publication number
CN110476223B
CN110476223B CN201780089191.5A CN201780089191A CN110476223B CN 110476223 B CN110476223 B CN 110476223B CN 201780089191 A CN201780089191 A CN 201780089191A CN 110476223 B CN110476223 B CN 110476223B
Authority
CN
China
Prior art keywords
silicon carbide
gas
injection holes
flow rate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780089191.5A
Other languages
English (en)
Other versions
CN110476223A (zh
Inventor
大野彰仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN110476223A publication Critical patent/CN110476223A/zh
Application granted granted Critical
Publication of CN110476223B publication Critical patent/CN110476223B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/32Carbides
    • C23C16/325Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type

Abstract

将碳化硅衬底(2)配置为使主面相对于横向型CVD装置的横向一列地排列的多个喷射孔(8)平行。从多个喷射孔(8)供给原料气体而在碳化硅衬底(2)的主面之上使碳化硅外延生长层(10)外延生长。从多个喷射孔(8)供给的原料气体被分割至多个***管线,分别由单独的质量流量控制器(9a~9l)进行控制。碳化硅衬底(2)的主面之上的原料气体的流速大于1m/sec。

Description

碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法
技术领域
本发明涉及碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法。
背景技术
近年来,与硅半导体相比带隙、绝缘破坏电场强度、饱和漂移速度、热传导率都相对大的碳化硅半导体主要作为电力控制用功率器件材料受到关注。就上述的碳化硅半导体装置而言,由于能够实现功率损耗的大幅度降低、小型化等,能够实现电源电力转换时的节能化,因此在电动汽车的高性能化、太阳能电池***等的高功能化等低碳社会的实现上成为关键器件。作为碳化硅半导体装置,举出MOSFET(Metal Oxide Semiconductor FieldEffect Transistor)、肖特基势垒二极管、IGBT(Insulated Gate Bipolar Transistor)及各种二极管等。
在制造碳化硅半导体装置的情况下,在碳化硅块体单晶衬底之上,预先通过热CVD法(热化学气相沉积法)等使成为半导体器件的有源区的碳化硅外延生长层外延生长。这里所说的有源区是在对晶体中的杂质浓度及膜厚度进行了精密控制的基础上制作出的包含生长方向轴的剖面区域。需要这样的外延生长层的理由是因为根据器件的规格,杂质浓度及膜厚度大致是既定的,通常,作为其精度而言,要求比块体单晶衬底更高精度的参数。
下面,将在碳化硅块体单晶衬底之上外延生长了碳化硅外延生长层的晶片称为碳化硅外延晶片。碳化硅半导体装置是对碳化硅外延晶片实施各种加工而制造的。有时作为碳化硅外延生长层的外延生长时的掺杂剂所使用的氮的导入量在晶片面内不均匀。就在未得到所期望的杂质浓度的区域制造出的碳化硅半导体装置而言,存在不能保持高电压等,制造碳化硅半导体装置时的合格率降低的问题。作为氮的导入量的晶片面内不均匀的原因,举出由于外延生长装置的衬托器(Susceptor)的温度在其周边部和中央部不同,因此在晶片之上流动的原料气体浓度在周边部和中央部稍微产生变化。
作为膜厚度分布及电阻率分布优异的硅膜的外延生长方法,公开了从多个喷射器喷出在腔室的宽度方向中央部侧和周边部侧适当变化的原料气体的方法(例如,参照专利文献1)。另外,作为硅膜的外延生长方法,还公开了使处理炉内的气体流速大于或等于2m/分的层流的载气流下的方法(例如,参照专利文献2)。
专利文献1:日本特开平6-232060号公报
专利文献2:日本特开平8-236458号公报
发明内容
硅膜的生长温度为1000度~1200度,与此相对,碳化硅外延生长层的生长温度为1500度~1700度,相差500度左右。因此,由原料气体的分解效率引起的腔室内的气体浓度分布及衬托器的温度分布大不相同。因此,仅仅是使用硅膜的外延生长方法而使碳化硅外延生长,难以兼顾杂质浓度的晶片面内均匀性和膜厚度分布。
另外,碳化硅半导体的杂质浓度的控制不仅根据掺杂剂即氮气流量控制,还根据硅原料和碳原料的比率而大幅变化。因此,难以将现有的硅膜的生长技术转用于碳化硅外延生长层的生长。
本发明就是为了解决上述的课题而提出的,其目的在于得到能够制造杂质浓度的晶片面内均匀性良好的外延晶片的碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法。
本发明涉及的碳化硅外延晶片的制造方法的特征在于具备:将碳化硅衬底配置为使主面相对于横向型CVD装置的横向一列地排列的多个喷射孔平行的工序;以及从所述多个喷射孔供给原料气体而在所述碳化硅衬底的所述主面之上使碳化硅外延生长层外延生长的工序,从所述多个喷射孔供给的所述原料气体被分割至多个***管线,分别由单独的质量流量控制器进行控制,所述碳化硅衬底的所述主面之上的所述原料气体的流速大于1m/sec。
发明的效果
在本发明中,从多个喷射孔供给的原料气体被分割至多个***管线(systemline),分别由单独的质量流量控制器进行控制,碳化硅衬底的主面之上的原料气体的流速大于1m/sec。由此,能够制造杂质浓度的晶片面内均匀性良好的外延晶片。
附图说明
图1是表示本发明的实施方式1涉及的碳化硅外延晶片的制造装置的剖视图。
图2是表示生长炉的内部的俯视图。
图3是表示喷射器的正视图。
图4是表示本发明的实施方式3涉及的碳化硅半导体装置的剖视图。
图5是表示本发明的实施方式4涉及的碳化硅半导体装置的剖视图。
具体实施方式
参照附图对本发明的实施方式涉及的碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法进行说明。有时对相同或对应的结构要素标注相同标号,省略重复说明。
实施方式1
图1是表示本发明的实施方式1涉及的碳化硅外延晶片的制造装置的剖视图。在生长炉1内设置有载置碳化硅衬底2的晶片托架3。生长炉1为石英管。喷射器4将原料气体供给至生长炉1内。气体排气口5将供给至生长炉1内的气体从生长炉1排出。在晶片托架3的上下分别设置有衬托器6。在生长炉1的外侧设置有感应线圈7。
图2是表示生长炉的内部的俯视图。图3是表示喷射器的正视图。在喷射器4中,横向一列地配置有具有气体喷射孔的多个喷射孔8。从各喷射孔8供给丙烷气体、单硅烷气体、氮气。喷射器4被分割为多个***管线,从多个喷射孔8供给的原料气体被分割至***管线,分别由单独的质量流量控制器9a~9l控制。在本实施方式中,喷射器4被分割为中央部和2个周边部这3个***管线。另外,各种原料气体通过氢气稀释而供给至生长炉1。
接着,对本发明的实施方式1涉及的碳化硅外延晶片的制造方法进行说明。首先,准备相对于成为主面的(0001)面(C面)向<11-20>方向的偏角为4度的4H-SiC块体单晶衬底即碳化硅衬底2。通过机械研磨及使用了酸性或碱性的药液的化学机械研磨而进行碳化硅衬底2的平坦化处理。接着,通过使用了丙酮的超声波清洗而除去有机物。接着,对碳化硅衬底2进行所谓的RCA清洗。即,将碳化硅衬底2在加热到75度(±5度)的氨水和过氧化氢水溶液的混合液(1:9)中浸渍10分钟后,浸渍在加热到75度(±5度)的盐酸和过氧化氢水溶液(1:9)中。进而,在将碳化硅衬底2浸渍在含有体积比率5%左右的氢氟酸的水溶液后,通过纯水实施置换处理。这里,碳化硅衬底2的偏角并不限于4度,只要处于2度~10度左右的范围内,通过化学机械研磨实施了平坦化处理即可。
接着,将碳化硅衬底2导入横向型CVD装置的生长炉1内而载置于晶片托架3之上。将碳化硅衬底2配置为使主面相对于横向一列地排列的多个喷射孔8平行。接着,作为还原性气体例如将氢气导入至生长炉1内。该氢气兼作载气。接着,对压力进行控制以将反应炉的真空度恒定地保持为例如5kPa左右。接着,将反应炉加热至1650度左右,在还原性气体环境中实施退火。
接着,从多个喷射孔8供给原料气体而在碳化硅衬底2的主面之上使碳化硅外延生长层10外延生长来制造碳化硅外延晶片11。在原料气体中,例如作为Si原料使用硅烷气体(SiH4),作为C原料使用丙烷气体(C3H8)。将氮气用于N型掺杂。将从喷射器4的中央部的喷射孔8供给的SiH4气体的流量设为500sccm,将C3H8气体的流量设为200sccm,将氮气的流量设为10sccm。将从喷射器4的2个周边部分别供给的SiH4气体的流量设为500sccm,将C3H8气体的流量设为200sccm,将氮气的流量设为8sccm。由此,以膜厚度10μm对碳化硅外延生长层10进行成膜。另外,对氮气进行控制,以使得杂质浓度在有源区成为8×1015/cm3。此时,对载气即氢气流量进行控制,以使得碳化硅衬底2的主面之上的原料气体的流速成为1.18m/秒。之后,停止原料气体的供给,降温至室温。
如果通过CV测定装置对制造出的碳化硅外延晶片的杂质浓度进行测量,则碳化硅外延生长层10所包含的杂质浓度的晶片面内均匀性σ/mean(晶片面内的杂质浓度的标准偏差相对于平均值的比率)小于或等于2%,极其良好。通过使用该碳化硅外延晶片而制造碳化硅半导体装置,能够得到高成品率的器件。
表1示出在碳化硅外延晶片的生长工序时改变了碳化硅衬底面之上的气体流速时的杂质浓度的晶片面内均匀性的调查结果。这里,气体流速能够通过使载气即氢气流量变化、或使生长炉1的压力变化来控制。另外,使用碳化硅外延晶片来制造MOSFET,将由于在晶片面内杂质浓度偏离规定值而变得不合格的MOSFET为零的情况设为○,将不合格不是零的情况设为×。
[表1]
流速[m/sec] 0.60 0.95 1.18 1.78
杂质浓度的晶片面内均匀性 × ×
在气体流速小于1m/秒的情况下产生不合格品。这被推测为,由于原料气体没有充分到达碳化硅衬底2的主面,或即使到达也是在生长炉1内的上游侧消耗大多气体,因此没有到达中央附近,使杂质浓度的晶片面内均匀性恶化。另一方面,通过将气体流速设为大于1m/秒,由此能够良好地控制杂质浓度的均匀性,由杂质浓度偏离而造成的不合格品的发生为零。
如以上说明所述,在本实施方式中,从多个喷射孔8供给的原料气体被分割至多个***管线,分别由单独的质量流量控制器9a~9l进行控制,碳化硅衬底2的主面之上的原料气体的流速大于1m/sec。由此,能够制造杂质浓度的晶片面内均匀性良好的外延晶片。
另外,优选在使碳化硅外延生长层10外延生长时从多个喷射孔8供给的原料气体的流速是均匀的。由此,变得容易对生长炉1内的气体浓度进行控制,膜厚度的晶片面内均匀性提高。通过与喷射孔8的个数相匹配地对供给气体流量进行调整,能够使从多个喷射孔8供给的原料气体的流速均匀。
具体而言,就实施方式1的喷射器4而言,中央部的喷射孔8为5个,周边部的喷射孔8分别为5个。另一方面,在中央部的喷射孔8为9个,周边部的喷射孔8分别为3个的情况下,在中央部将SiH4气体的流量设为900sccm,将C3H8气体的流量设为360sccm,将氮气的流量设为18sccm,在2个周边部将SiH4气体的流量设为300sccm,将C3H8气体的流量设为120sccm,将氮气的流量设为4.8sccm。这样,通过将与中央部的喷射器连接的供给气体流量设为周边部的3倍,从而能够使从各喷射孔流出的气体均匀。此时,针对载气即氢气流量也进行同样的调整即可。
此外,在本实施方式中使用了分割为3个部分的喷射器4,但分割数量并不限于3,例如分割为4个部分或5个部分也能够得到同样的效果。但是,如果增加分割数量,则与气体***的增加相伴,MFC数量和配管根数也增加而使装置结构变得复杂,因此优选分割数量至多为大致小于或等于10。
实施方式2
对本发明的实施方式2涉及的碳化硅外延晶片的制造方法进行说明。使用与实施方式1同样的制造装置。将自分割为3个部分的喷射器4的中央部的从多个喷射孔8供给的SiH4气体的流量设为500sccm,将C3H8气体的流量设为200sccm,将氮气的流量设为10sccm。将从喷射器4的2个周边部分别供给的SiH4气体的流量设为500sccm,将C3H8气体的流量设为220sccm,将氮气的流量设为10sccm。由此,以膜厚度10μm对碳化硅外延生长层10进行成膜。另外,对氮气进行控制以使得杂质浓度在有源区成为8×1015/cm3。此时,对载气即氢气流量进行控制,以使得碳化硅衬底2的主面之上的原料气体的流速成为1.18m/秒。其它制造方法与实施方式1同样。
如果通过CV测定装置对制造出的碳化硅外延晶片的杂质浓度进行测量,则杂质浓度的晶片面内均匀性σ/mean小于或等于2%,极其良好。通过使用该碳化硅外延晶片而制造碳化硅半导体装置,能够得到高成品率的器件。
在实施方式1中在分割为3个部分的喷射器4的中央部和周边部,对杂质的原料气体即氮气的流量进行了调整。相对于此,在实施方式2中,在中央部和周边部,对碳的原料气体即C3H8气体的流量进行调整。这是作为杂质浓度的控制方法,导入了通过硅的原料气体和碳的原料气体的比率在晶片面内对氮的掺杂效率进行调整这一方法。在该情况下,也能够对杂质浓度的晶片面内均匀性进行调整。另外,由于将硅的原料气体即SiH4气体的流量固定下来更容易对膜厚度的晶片面内均匀性进行控制,因此优选。
实施方式3
图4是表示本发明的实施方式3涉及的碳化硅半导体装置的剖视图。该装置是使用通过实施方式1或2涉及的方法制造出的碳化硅外延晶片11而制造出的MOSFET。
通过在碳化硅外延生长层10的表层选择性地掺杂铝作为p型杂质,从而形成多个p型基极区域12。通过在p型基极区域12的表层作为n型杂质而掺杂氮,从而形成n型源极区域13。横跨碳化硅外延生长层10、p型基极区域12及n型源极区域13的一部分之上,形成有由氧化硅构成的栅极绝缘膜14。在由一对n型源极区域13夹着的碳化硅外延生长层10的区域,隔着栅极绝缘膜14相对地形成栅极电极15。在没有形成栅极绝缘膜14的n型源极区域13之上形成有源极电极16。漏极电极17形成于碳化硅衬底2的背面。
由于通过实施方式1或2涉及的方法制造出的碳化硅外延晶片11的杂质浓度的晶片面内均匀性良好,因此能够高元件成品率地制造MOSFET。
实施方式4
图5是表示本发明的实施方式4涉及的碳化硅半导体装置的剖视图。该装置是使用通过实施方式1或2涉及的方法制造出的碳化硅外延晶片11而制造出的肖特基势垒二极管。
通过在碳化硅外延生长层10的表层选择性地掺杂铝作为p型杂质,从而形成多个离子注入区域18。肖特基电极19是横跨被离子注入区域18夹着的碳化硅外延生长层10的区域之上和离子注入区域18的一部分之上而形成的。欧姆电极20形成于碳化硅衬底2的背面。
由于通过实施方式1或2涉及的方法制造出的碳化硅外延晶片11的杂质浓度的晶片面内均匀性良好,因此能够高元件成品率地制造肖特基势垒二极管。
以上,详情地公开并记述了本发明的实施方式,但以上记述只是例示出本发明的能够应用的方案,本发明并不限于此。本发明可以在其发明的范围内对各实施方式自由地进行组合,或适当变形、省略。
标号的说明
2碳化硅衬底,8喷射孔,10碳化硅外延生长层

Claims (7)

1.一种碳化硅外延晶片的制造方法,其特征在于,具备:
在喷射器和气体排气口之间配置碳化硅基板的工序,该喷射器包含多个喷射孔,该多个喷射孔沿与气体的流动方向正交且与所述碳化硅基板的主面平行的排列方向配置,该气体的流动方向是来自喷射器的所述气体沿所述碳化硅基板的主面流向气体排气口的方向;以及
从所述多个喷射孔供给原料气体及载气而在所述碳化硅衬底的所述主面之上使碳化硅外延生长层外延生长的外延生长工序,
从所述多个喷射孔供给的所述原料气体及所述载气被分割至多个***管线,分别由单独的质量流量控制器进行控制,所述多个***管线分别供给单独的所述原料气体及所述载气,
所述多个***管线具有第1及第2***管线,
从连接于所述第1***管线的1个所述喷射孔供给的所述原料气体的总流量与从连接于所述第2***管线的1个所述喷射孔供给的所述原料气体的总流量不同,
与各个所述***管线的所述喷射孔的个数相匹配地对所述原料气体及所述载气的流量进行调整,以使得在所述外延生长工序时从所述多个喷射孔供给的所述原料气体及所述载气的流速均匀,
所述碳化硅衬底的所述主面之上的所述原料气体的流速大于1m/sec。
2.一种碳化硅外延晶片的制造方法,其特征在于,具备:
在喷射器和气体排气口之间配置碳化硅基板的工序,该喷射器包含多个喷射孔,该多个喷射孔沿与气体的流动方向正交且与所述碳化硅基板的主面平行的排列方向配置,该气体的流动方向是来自喷射器的所述气体沿所述碳化硅基板的主面流向气体排气口的方向;以及
从所述多个喷射孔供给原料气体及载气而在所述碳化硅衬底的所述主面之上使碳化硅外延生长层外延生长的外延生长工序,
从所述多个喷射孔供给的所述原料气体被分割至多个***管线,分别由单独的质量流量控制器进行控制,所述多个***管线分别供给单独的所述原料气体及所述载气,
所述多个***管线具有第1及第2***管线,
连接于所述第1***管线的所述喷射孔的个数与连接于所述第2***管线的所述喷射孔的个数不同,
与各个所述***管线的所述喷射孔的个数相匹配地对所述原料气体及所述载气的流量进行调整,以使得在所述外延生长工序时从所述多个喷射孔供给的所述原料气体及所述载气的流速均匀,
所述碳化硅衬底的所述主面之上的所述原料气体的流速大于1m/sec。
3.根据权利要求1或2所述的碳化硅外延晶片的制造方法,其特征在于,
针对所述多个***管线的每一者对所述原料气体的流量进行调整,以使得所述碳化硅外延生长层所包含的杂质浓度的晶片面内均匀性小于或等于2%。
4.根据权利要求3所述的碳化硅外延晶片的制造方法,其特征在于,
针对所述多个***管线的每一者对杂质的原料气体的流量进行调整。
5.根据权利要求3所述的碳化硅外延晶片的制造方法,其特征在于,
针对所述多个***管线的每一者对碳的原料气体的流量进行调整。
6.一种碳化硅外延晶片的制造方法,其特征在于,具备:
在喷射器和气体排气口之间配置碳化硅基板的工序,该喷射器包含多个喷射孔,该多个喷射孔沿与气体的流动方向正交且与所述碳化硅基板的主面平行的排列方向配置,该气体的流动方向是来自喷射器的所述气体沿所述碳化硅基板的主面流向气体排气口的方向;以及
从所述多个喷射孔供给原料气体及载气而在所述碳化硅衬底的所述主面之上使碳化硅外延生长层外延生长的外延生长工序,
从所述多个喷射孔供给的所述原料气体被分割至多个***管线,分别由单独的质量流量控制器进行控制,所述多个***管线分别供给单独的所述原料气体及所述载气,
与各个所述***管线的所述喷射孔的个数相匹配地对所述原料气体及所述载气的流量进行调整,以使得在所述外延生长工序时从所述多个喷射孔供给的所述原料气体及所述载气的流速均匀,
所述碳化硅衬底的所述主面之上的所述原料气体的流速大于1m/sec,
针对所述多个***管线的每一者对所述原料气体的流量进行调整,以使得所述碳化硅外延生长层所包含的杂质浓度的晶片面内均匀性小于或等于2%,
针对所述多个***管线的每一者对碳的原料气体的流量进行调整,
硅的原料气体的流量是固定的。
7.一种碳化硅半导体装置的制造方法,其特征在于,
使用通过权利要求1至6中任一项所述的方法制造出的碳化硅外延晶片对碳化硅半导体装置进行制造。
CN201780089191.5A 2017-04-04 2017-04-04 碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法 Active CN110476223B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014130 WO2018185850A1 (ja) 2017-04-04 2017-04-04 炭化珪素エピタキシャルウエハの製造方法及び炭化珪素半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN110476223A CN110476223A (zh) 2019-11-19
CN110476223B true CN110476223B (zh) 2023-05-30

Family

ID=60658977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780089191.5A Active CN110476223B (zh) 2017-04-04 2017-04-04 碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法

Country Status (4)

Country Link
US (1) US10858758B2 (zh)
JP (1) JP6245416B1 (zh)
CN (1) CN110476223B (zh)
WO (1) WO2018185850A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021170579A (ja) * 2020-04-14 2021-10-28 株式会社ノベルクリスタルテクノロジー 半導体膜及びその製造方法
CN111489964B (zh) * 2020-04-27 2022-05-10 中国电子科技集团公司第四十六研究所 一种降低图形漂移率的厚层硅外延片的制备方法
CN113564710B (zh) * 2021-07-19 2022-08-23 瀚天天成电子科技(厦门)有限公司 一种碳化硅外延生长的控制方法
CN115961346A (zh) * 2022-12-29 2023-04-14 深圳市重投天科半导体有限公司 大尺寸碳化硅外延气体供应装置及供应方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147714B2 (en) * 2000-12-12 2006-12-12 Denso Corporation Manufacturing method of silicon carbide single crystals
US7651668B2 (en) * 2004-09-24 2010-01-26 Japan Science And Technology Agency Production method and production device for carbon nano structure
US8941122B2 (en) * 2012-04-03 2015-01-27 Denso Corporation Silicon carbide semiconductor device and method of manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2790009B2 (ja) 1992-12-11 1998-08-27 信越半導体株式会社 シリコンエピタキシャル層の成長方法および成長装置
JPH08236458A (ja) 1995-02-24 1996-09-13 Sumitomo Sitix Corp 半導体基板の製造方法
TW200307064A (en) * 2002-03-19 2003-12-01 Central Res Inst Elect Method for preparing SiC crystal with reduced micro-pipes extended from substrate, SiC crystal, SiC monocrystalline film, SiC semiconductor component, SiC monocrystalline substrate and electronic device, and method for producing large SiC crystal
US7118781B1 (en) * 2003-04-16 2006-10-10 Cree, Inc. Methods for controlling formation of deposits in a deposition system and deposition methods including the same
JP4334370B2 (ja) * 2004-02-17 2009-09-30 株式会社東芝 気相成長装置及び気相成長方法
DE602006004973D1 (de) * 2006-05-11 2009-03-12 Agfa Graphics Nv Methode zur Herstellung von pigmentierten Tinten
JP2014099427A (ja) * 2011-03-08 2014-05-29 Hitachi Kokusai Electric Inc 基板処理装置、及び、基板の製造方法
JP2013197507A (ja) * 2012-03-22 2013-09-30 Hitachi Kokusai Electric Inc 基板処理装置および基板処理方法ならびに半導体装置の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7147714B2 (en) * 2000-12-12 2006-12-12 Denso Corporation Manufacturing method of silicon carbide single crystals
US7651668B2 (en) * 2004-09-24 2010-01-26 Japan Science And Technology Agency Production method and production device for carbon nano structure
US8941122B2 (en) * 2012-04-03 2015-01-27 Denso Corporation Silicon carbide semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JP6245416B1 (ja) 2017-12-13
CN110476223A (zh) 2019-11-19
WO2018185850A1 (ja) 2018-10-11
JPWO2018185850A1 (ja) 2019-04-11
US10858758B2 (en) 2020-12-08
US20200017991A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
CN110476223B (zh) 碳化硅外延晶片的制造方法及碳化硅半导体装置的制造方法
JP5637086B2 (ja) エピタキシャルウエハ及び半導体素子
US20080079008A1 (en) Silicon carbide semiconductor device and method for manufacturing the same
US8877656B2 (en) Method for manufacturing silicon carbide semiconductor device
CN103348776A (zh) 多区等离子体生成的方法和设备
CN108463871A (zh) 碳化硅外延衬底及制造碳化硅半导体器件的方法
US10711372B2 (en) Silicon carbide epitaxial wafer manufacturing method, silicon carbide semiconductor device manufacturing method and silicon carbide epitaxial wafer manufacturing apparatus
CN203474963U (zh) 一种用于生产碳化硅外延片的化学气相沉积设备
JP2014187113A (ja) 気相成長装置および気相成長方法
SE533083C2 (sv) Förfarande för framställning av halvledaranordning
US9711353B2 (en) Method for manufacturing compound semiconductor epitaxial substrates including heating of carrier gas
CN103262214A (zh) 半导体基板、半导体装置、以及半导体基板的制造方法
US11094539B2 (en) Method for manufacturing nitride semiconductor substrate and nitride semiconductor substrate
CN103603048A (zh) 一种用于生产碳化硅外延片的化学气相沉积设备
KR102098297B1 (ko) 에피택셜 웨이퍼
KR102565964B1 (ko) 에피택셜 웨이퍼 및 그 제조 방법
KR101453156B1 (ko) 반도체 제조장치 및 제조방법
CN112522781B (zh) 碳化硅衬底上的缓冲层及其形成方法
CN103081062A (zh) 化合物半导体的制造方法
KR20090017074A (ko) 에피층 성장방법
CN117587507B (zh) 一种改善碳化硅外延片掺杂均匀性的方法及装置
CN115881775A (zh) 功率半导体器件的外延片及其制备方法
KR20200019502A (ko) 에피택셜 웨이퍼 및 그 제조 방법
CN113594021A (zh) 硅基GaN-HEMT外延结构的制作方法
JP2005216967A (ja) 電界効果トランジスタ用エピタキシャルウエハ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant