CN110459599A - 具有深埋层的纵向浮空场板器件及制造方法 - Google Patents

具有深埋层的纵向浮空场板器件及制造方法 Download PDF

Info

Publication number
CN110459599A
CN110459599A CN201910819950.XA CN201910819950A CN110459599A CN 110459599 A CN110459599 A CN 110459599A CN 201910819950 A CN201910819950 A CN 201910819950A CN 110459599 A CN110459599 A CN 110459599A
Authority
CN
China
Prior art keywords
field plate
floating field
buried layer
conduction type
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910819950.XA
Other languages
English (en)
Other versions
CN110459599B (zh
Inventor
章文通
何俊卿
杨昆
王睿
张森
乔明
张波
李肇基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201910819950.XA priority Critical patent/CN110459599B/zh
Publication of CN110459599A publication Critical patent/CN110459599A/zh
Application granted granted Critical
Publication of CN110459599B publication Critical patent/CN110459599B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种具有深埋层的纵向浮空场板器件及制造方法,包括:深埋层,第一导电类型半导体衬底、第一导电类型阱区、第一导电类型半导体接触区、第二导电类型漂移区、第二导电类型阱区、第二导电类型半导体接触区、第一介质氧化层、第二介质氧化层、第三介质氧化层、浮空场板多晶硅电极、控制栅多晶硅电极,金属条;第一介质氧化层和浮空场板多晶硅电极构成纵向浮空场板,本发明根据纵向浮空场板的结构与工艺特点,在器件的第二导电类型漂移区或第一导电类型半导体衬底中引入深度达到3‑20μm的深埋层,且该深埋层RESURF技术能够与现有RESURF技术充分兼容,进一步调制漂移区电场,降低器件的比导通电阻。

Description

具有深埋层的纵向浮空场板器件及制造方法
技术领域
本发明属于功率半导体领域,主要提出了一种具有深埋层的纵向浮空场板器件及其制造方法。
背景技术
功率半导体器件由于具有输入阻抗高、损耗低、开关速度快、安全工作区宽等特性,已被广泛应用于消费电子、计算机及外设、网络通信,电子专用设备与仪器仪表、汽车电子、LED显示屏以及电子照明等多个方面。器件由于源极、栅极、漏极都在芯片表面,易于通过内部连接与其他器件及电路集成,被广泛运用于功率集成电路中。为了克服高导通电阻的问题,J.A.APPLES等人提出了RESURF(Reduced Surface Field)降低表面场技术,被广泛应用于器件的设计中。其在,在漂移区中引入掺杂类型相反的埋层是最为常用的RUSURF技术之一。但是,现有器件的埋层深度大都小于3μm,限制了对RUSURF技术的进一步使用。
发明内容
本发明针对背景技术中存在的问题,提出一种具有深埋层的纵向浮空场板器件新结构及其制造方法。
为实现上述发明目的,本发明技术方案如下:
一种具有深埋层的纵向浮空场板器件,包括:深埋层01,第一导电类型半导体衬底11、第一导电类型阱区12、第一导电类型半导体接触区13、第二导电类型漂移区21、第二导电类型阱区22、第二导电类型半导体接触区23、第一介质氧化层31、第二介质氧化层32、第三介质氧化层33、浮空场板多晶硅电极41、控制栅多晶硅电极42,金属条51;
其中,第二导电类型漂移区21位于第一导电类型半导体衬底11上方,第一导电类型阱区12位于第二导电类型漂移区21的左侧,第二导电类型阱区22位于第二导电类型漂移区21的右侧,第一导电类型接触区13和第二导电类型接触区23位于第一导电类型阱区12中,且均采用重掺杂以降低电阻;第二介质氧化层32和第三介质氧化层33位于器件表面,控制栅多晶硅电极42左边界位于第二导电类型半导体接触区23的右边界左侧,控制栅多晶硅电极42右边界位于第二导电类型漂移区21的左边界右侧;第一介质氧化层31和浮空场板多晶硅电极41构成纵向浮空场板,且第一介质氧化层31包围浮空场板多晶硅电极41,纵向浮空场板分布在整个第二导电类型漂移区21中,形成纵向浮空场板阵列;
深埋层01是在刻槽之后利用槽孔进行注入结得到的,纵向浮空场板均匀地分布在整个第二导电类型漂移区21中,深埋层01均匀分布在整个第二导电类型漂移区21中。
作为优选方式,深埋层01的深度为3-20μm。
作为优选方式,纵向浮空场板***第一导电类型半导体衬底11,深埋层01为第二导电类型半导体材料。
作为优选方式,纵向浮空场板不***第一导电类型半导体衬底11,深埋层01为第一导电类型半导体材料。
作为优选方式,深埋层01是注入并推结形成的连通埋层,或者是注入不推结形成的仅包围在各个纵向浮空场板底部的独立埋层。
作为优选方式,改变深埋层01的注入能量,使得深埋层01紧贴在纵向浮空场板底部,或者距离纵向浮空场板底部有0-3μm的距离。
作为优选方式,所述纵向浮空场板通过一次刻蚀得到,刻蚀之后进行一次埋层注入,得到单埋层结构。
作为优选方式,所述纵向浮空场板通过多次刻蚀得到,每次刻蚀之后都进行一次埋层注入,得到多埋层结构。
作为优选方式,距离源极和漏极等距离的浮空场板多晶硅电极41之间通过金属条51相连。
本发明还提供一种所述器件的制造方法,包括如下步骤:
步骤1:选择第一类导电类型半导体衬底11;
步骤2:进行高能离子注入第二导电类型杂质,并高温推进形成第二导电类型漂移区21,或通过外延得到第二导电类型漂移区21;
步骤3:通过光刻以及刻蚀形成深槽;
步骤4:通过槽孔高能离子注入深埋层杂质;
步骤5:高温推结,形成连通的深埋层01;
步骤6:在深槽内形成第一介质氧化层31;
步骤7:淀积多晶并刻蚀至硅平面,形成浮空场板多晶硅电极41;
步骤8:高能离子注入第一导电类型杂质并推结,形成第一导电类型阱区12,再通高能离子注入第二导电类型杂质并推结,形成第二导电类型阱区22;
步骤9:形成第二介质氧化层32,再形成第三介质氧化层33;
步骤10:淀积多晶硅并刻蚀,形成控制栅多晶硅电极42;
步骤11:高能注入形成第一导电类型半导体接触区13与第二导电类型半导体接触区23;
步骤12:刻蚀第三介质氧化层33形成接触孔,接着淀积并刻蚀金属条51,形成表面金属条。
进一步的,第一介质氧化层31和浮空场板多晶硅电极41的截面形貌可以是矩形,也可以是圆形、椭圆形、六边形等其他形貌;
进一步的,所提出的纵向浮空场板阵列可以应用于体硅器件、SOI器件以及IGBT等常见器件的漂移区中。
本发明的有益效果为:本发明根据纵向浮空场板的结构与工艺特点,在器件的第二导电类型漂移区21或第一导电类型半导体衬底11中引入深度达到3-20μm的深埋层01,且该深埋层RESURF技术能够与现有RESURF技术充分兼容,进一步调制漂移区电场,降低器件的比导通电阻。
附图说明
图1为实施例1的具有深埋层的纵向浮空场板器件结构示意图;
图2为实施例1的具有深埋层的纵向浮空场板器件结构示意图;其中(a)器件结构正视图(b)漂移区结构侧视图;
图3为实施例2的具有深埋层的纵向浮空场板器件结构示意图;其中(a)器件结构正视图(b)漂移区结构侧视图;
图4为实施例3的具有深埋层的纵向浮空场板器件结构示意图;其中(a)器件结构正视图(b)漂移区结构侧视图;
图5为实施例4的具有深埋层的纵向浮空场板器件结构示意图;其中(a)器件结构正视图(b)漂移区结构侧视图;
图6为实施例5的具有深埋层的纵向浮空场板器件结构示意图;其中(a)器件结构正视图(b)漂移区结构侧视图;
图7(a)-7(l)为实施例1所述器件的工艺流程示意图;
01为深埋层,11为第一导电类型半导体衬底、12为第一导电类型阱区、13为第一导电类型半导体接触区,21为第二导电类型漂移区、22为第二导电类型阱区、23为第二导电类型半导体接触区,31为第一介质氧化层、32为第二介质氧化层、33为第三介质氧化层,41为浮空场板多晶硅电极、42为控制栅多晶硅电极,51为金属条。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
实施例1
实施例1所述的一种具有深埋层的纵向浮空场板器件,如图1和图2所示,具体包括:
包括:深埋层01,第一导电类型半导体衬底11、第一导电类型阱区12、第一导电类型半导体接触区13、第二导电类型漂移区21、第二导电类型阱区22、第二导电类型半导体接触区23、第一介质氧化层31、第二介质氧化层32、第三介质氧化层33、浮空场板多晶硅电极41、控制栅多晶硅电极42,金属条51;
其中,第二导电类型漂移区21位于第一导电类型半导体衬底11上方,第一导电类型阱区12位于第二导电类型漂移区21的左侧,第二导电类型阱区22位于第二导电类型漂移区21的右侧,第一导电类型接触区13和第二导电类型接触区23位于第一导电类型阱区12中,且均采用重掺杂以降低电阻;第二介质氧化层32和第三介质氧化层33位于器件表面,控制栅多晶硅电极42左边界位于第二导电类型半导体接触区23的右边界左侧,控制栅多晶硅电极42右边界位于第二导电类型漂移区21的左边界右侧;第一介质氧化层31和浮空场板多晶硅电极41构成纵向浮空场板,且第一介质氧化层31包围浮空场板多晶硅电极41,纵向浮空场板分布在整个第二导电类型漂移区21中,形成纵向浮空场板阵列;
深埋层01是在刻槽之后利用槽孔进行注入结得到的,纵向浮空场板均匀地分布在整个第二导电类型漂移区21中,深埋层01均匀分布在整个第二导电类型漂移区21中。
本实施例中,纵向浮空场板不***第一导电类型半导体衬底11,所以深埋层01为第一导电类型半导体材料。
其基本工作原理如下:以第一导电类型半导体材料为P型为例,当栅极偏置电压Vg大于阈值电压时,第一导电类型阱区12靠近第二介质氧化层32的表面出现反型层电子,在漏端偏置电压Vd的作用下,电子沿所述纵向浮空场板的间隙从源端向漏端移动。由于浮空场板多晶硅电极41的电位高于左侧第二导电类型漂移区21,纵向浮空场板左侧表面的第二导电类型漂移区将出现反型层,增加电子浓度。在栅极偏置电压Vg为0时,第二导电类型漂移区21与第一导电类型阱区12以及第一导电类型半导体衬底11构成的PN结在反向电压Vd作用下开始耗尽。浮空场板多晶硅电极41的电位低于其右侧第二导电类型漂移区21,高于第一导电类型半导体衬底11,同时在N型漂移区和P型衬底上引入耗尽区。本发明引入的深埋层01能够进一步优化电荷平衡,调制电场分布,能够在保持耐压不变的条件下,提高漂移区掺杂浓度,降低比导通电阻。
如图7所示,为本发明实施例1的工艺流程示意图,具体包括以下步骤:
步骤1:选择第一类导电类型半导体衬底11,如图7(a)所示;
步骤2:进行高能离子注入第二导电类型杂质,并高温推进形成第二导电类型漂移区21,或通过外延得到第二导电类型漂移区21,如图7(b)所示;
步骤3:通过光刻以及刻蚀形成深槽,如图7(c)所示;
步骤4:通孔槽孔高能离子注入深埋层杂质,如图7(d)所示;
步骤5:高温推结,形成连通的深埋层01,如图7(e)所示;
步骤6:在深槽内形成第一介质氧化层31,如图7(f)所示;
步骤7:淀积多晶并刻蚀至硅平面,形成浮空场板多晶硅电极41,如图7(g)所示;
步骤8:高能离子注入第一导电类型杂质并推结,形成第一导电类型阱区12,再通高能离子注入第二导电类型杂质并推结,形成第二导电类型阱区22,图7(h)所示;
步骤9:形成第二介质氧化层32,再形成第三介质氧化层33,如图7(i);
步骤10:淀积多晶硅并刻蚀,形成控制栅多晶硅电极42,如图7(j);
步骤11:高能注入形成第一导电类型半导体接触区13与第二导电类型半导体接触区23,如图7(k)所示;
步骤12:刻蚀第三介质氧化层33形成接触孔,接着淀积并刻蚀金属条51,形成表面金属条,如图7(l)所示。
需要注意的是:
所述的一种制造方法,步骤2中通过高能注入并推结形成的第二导电类型漂移区21也可以通过外延的方法得到;
所述的一种制造方法,步骤6中通过高能注入并推结而得到的第一导电类型阱区12与第二导电类型阱区22,也可以通过多次不同能量的高能注入并激活来形成;
所述的一种制造方法,步骤7中热生长得到的第二介质氧化层32与第三介质氧化层33也可以通过淀积并刻蚀得到。
优选的,深埋层01的深度为3-20μm。
优选的,改变深埋层01的注入能量,使得深埋层01紧贴在纵向浮空场板底部;
优选的,所述纵向浮空场板通过一次刻蚀得到,刻蚀之后进行一次埋层注入,得到单埋层结构。
优选的,所述纵向浮空场板通过多次刻蚀得到,每次刻蚀之后都进行一次埋层注入,得到多埋层结构。
优选的,距离源极和漏极等距离的浮空场板多晶硅电极41之间通过金属条51相连。
实施例2
如图3所示,为实施例2的一种具有深埋层的纵向浮空场板器件构示意图,本例与实施例1的不同之处在于,所述纵向浮空场板的深度增加,***第一导电类型半导体衬底11中,深埋层01为第二导电类型半导体材料,其工作原理与实施例1基本相同。
实施例3
如图4所示,为实施例3的一种具有深埋层的纵向浮空场板器件构示意图,本例与实施例1的不同之处在于,所述深埋层01是在刻槽之后利用槽孔进行注入得到的,并未进行推结,所形成的是包围在每个纵向浮空场板底部的独立埋层,其工作原理与实施例1基本相同。
实施例4
如图5所示,为实施例4的一种具有深埋层的纵向浮空场板器件构示意图,本例与实施例1的不同之处在于,所述深埋层01的注入能量增大,使得所形成的深埋层01距离纵向浮空场板底部有0-3μm的距离,其工作原理与实施例1基本相同。
实施例5
如图6所示,为实施例5的一种具有深埋层的纵向浮空场板器件构示意图,本例与实施例1的不同之处在于,所述纵向浮空场板通过两次刻蚀得到,每次刻蚀之后都进行一次埋层注入,然后再进行一次推结,得到双埋层结构,进一步增强RESURF技术的效果,其工作原理与实施例1基本相同。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.一种具有深埋层的纵向浮空场板器件,其特征在于包括:深埋层(01),第一导电类型半导体衬底(11)、第一导电类型阱区(12)、第一导电类型半导体接触区(13)、第二导电类型漂移区(21)、第二导电类型阱区(22)、第二导电类型半导体接触区(23)、第一介质氧化层(31)、第二介质氧化层(32)、第三介质氧化层(33)、浮空场板多晶硅电极(41)、控制栅多晶硅电极(42),金属条(51);
其中,第二导电类型漂移区(21)位于第一导电类型半导体衬底(11)上方,第一导电类型阱区(12)位于第二导电类型漂移区(21)的左侧,第二导电类型阱区(22)位于第二导电类型漂移区(21)的右侧,第一导电类型接触区(13)和第二导电类型接触区(23)位于第一导电类型阱区(12)中,且均采用重掺杂以降低电阻;第二介质氧化层(32)和第三介质氧化层(33)位于器件表面,控制栅多晶硅电极(42)左边界位于第二导电类型半导体接触区(23)的右边界左侧,控制栅多晶硅电极(42)右边界位于第二导电类型漂移区(21)的左边界右侧;第一介质氧化层(31)和浮空场板多晶硅电极(41)构成纵向浮空场板,且第一介质氧化层(31)包围浮空场板多晶硅电极(41),纵向浮空场板分布在整个第二导电类型漂移区(21)中,形成纵向浮空场板阵列;
深埋层(01)是在刻槽之后利用槽孔进行注入结得到的,纵向浮空场板均匀地分布在整个第二导电类型漂移区(21)中,深埋层(01)均匀分布在整个第二导电类型漂移区(21)中。
2.根据权利要求1所述的具有深埋层的纵向浮空场板器件,其特征在于:深埋层(01)的深度为3-20μm。
3.根据权利要求1所述的具有深埋层的纵向浮空场板器件,其特征在于:纵向浮空场板***第一导电类型半导体衬底(11),深埋层(01)为第二导电类型半导体材料。
4.根据权利要求1所述的具有深埋层的纵向浮空场板器件,其特征在于:纵向浮空场板不***第一导电类型半导体衬底(11),深埋层(01)为第一导电类型半导体材料。
5.根据权利要求1所述的具有深埋层的纵向浮空场板器件,其特征在于:深埋层(01)是注入并推结形成的连通埋层,或者是注入不推结形成的仅包围在各个纵向浮空场板底部的独立埋层。
6.根据权利要求1所述的具有深埋层的纵向浮空场板器件,其特征在于:改变深埋层(01)的注入能量,使得深埋层(01)紧贴在纵向浮空场板底部,或者距离纵向浮空场板底部有0-3μm的距离。
7.根据权利要求1所述的具有深埋层的纵向浮空场板器件,其特征在于:所述纵向浮空场板通过一次刻蚀得到,刻蚀之后进行一次埋层注入,得到单埋层结构。
8.根据权利要求1所述的具有深埋层的纵向浮空场板器件,其特征在于:所述纵向浮空场板通过多次刻蚀得到,每次刻蚀之后都进行一次埋层注入,得到多埋层结构。
9.根据权利要求1所述的具有深埋层的纵向浮空场板器件,其特征在于:距离源极和漏极等距离的浮空场板多晶硅电极(41)之间通过金属条(51)相连。
10.权利要求1至9任意一项所述器件的制造方法,其特征在于包括如下步骤:
步骤1:选择第一类导电类型半导体衬底(11);
步骤2:进行高能离子注入第二导电类型杂质,并高温推进形成第二导电类型漂移区(21),或通过外延得到第二导电类型漂移区(21);
步骤3:通过光刻以及刻蚀形成深槽;
步骤4:通过槽孔高能离子注入深埋层杂质;
步骤5:高温推结,形成连通的深埋层(01);
步骤6:在深槽内形成第一介质氧化层(31);
步骤7:淀积多晶并刻蚀至硅平面,形成浮空场板多晶硅电极(41);
步骤8:高能离子注入第一导电类型杂质并推结,形成第一导电类型阱区(12),再通高能离子注入第二导电类型杂质并推结,形成第二导电类型阱区(22);
步骤9:形成第二介质氧化层(32),再形成第三介质氧化层(33);
步骤10:淀积多晶硅并刻蚀,形成控制栅多晶硅电极(42);
步骤11:高能注入形成第一导电类型半导体接触区(13)与第二导电类型半导体接触区(23);
步骤12:刻蚀第三介质氧化层(33)形成接触孔,接着淀积并刻蚀金属条(51),形成表面金属条。
CN201910819950.XA 2019-08-31 2019-08-31 具有深埋层的纵向浮空场板器件及制造方法 Expired - Fee Related CN110459599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910819950.XA CN110459599B (zh) 2019-08-31 2019-08-31 具有深埋层的纵向浮空场板器件及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910819950.XA CN110459599B (zh) 2019-08-31 2019-08-31 具有深埋层的纵向浮空场板器件及制造方法

Publications (2)

Publication Number Publication Date
CN110459599A true CN110459599A (zh) 2019-11-15
CN110459599B CN110459599B (zh) 2021-03-16

Family

ID=68490323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910819950.XA Expired - Fee Related CN110459599B (zh) 2019-08-31 2019-08-31 具有深埋层的纵向浮空场板器件及制造方法

Country Status (1)

Country Link
CN (1) CN110459599B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816707A (zh) * 2020-08-28 2020-10-23 电子科技大学 消除体内曲率效应的等势降场器件及其制造方法
CN111969042A (zh) * 2020-08-28 2020-11-20 电子科技大学 具有高深宽比体内超结的横向高压器件及其制造方法
CN112164719A (zh) * 2020-08-28 2021-01-01 电子科技大学 具有等势浮空槽的低阻器件及其制造方法
CN112382658A (zh) * 2020-08-28 2021-02-19 电子科技大学 具有阶梯分立屏蔽槽的低栅电荷器件及其制造方法
CN113078204A (zh) * 2021-03-25 2021-07-06 电子科技大学 一种氮化镓3d-resurf场效应晶体管及其制造方法
CN113611750A (zh) * 2021-08-19 2021-11-05 电子科技大学 Soi横向匀场高压功率半导体器件及制造方法和应用
CN113659009A (zh) * 2021-08-19 2021-11-16 电子科技大学 体内异性掺杂的功率半导体器件及其制造方法
CN113659008A (zh) * 2021-08-19 2021-11-16 电子科技大学 具有电场钳位层的匀场器件及其制造方法和应用
CN113658999A (zh) * 2021-08-19 2021-11-16 电子科技大学 具有无结终端技术功率半导体器件及制造方法和应用
CN114695511A (zh) * 2020-12-30 2022-07-01 无锡华润上华科技有限公司 一种横向扩散金属氧化物半导体器件及其制造方法
CN114823872A (zh) * 2022-04-26 2022-07-29 电子科技大学 一种全隔离衬底耐压功率半导体器件及其制造方法
CN115084231A (zh) * 2022-07-19 2022-09-20 浙江大学 一种二极管及其制造方法
WO2023284481A1 (zh) * 2021-07-16 2023-01-19 无锡华润上华科技有限公司 体栅横向双扩散金属氧化物半导体场效应管及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410987A (zh) * 2006-03-28 2009-04-15 Nxp股份有限公司 用于集成电路的功率半导体器件结构及其制造方法
CN104716183A (zh) * 2013-12-13 2015-06-17 电力集成公司 具有圆柱形区域的纵向晶体管器件结构
CN105993073A (zh) * 2013-10-03 2016-10-05 德克萨斯仪器股份有限公司 沟槽栅极沟槽场板垂直mosfet
CN207217547U (zh) * 2017-09-28 2018-04-10 无锡紫光微电子有限公司 一种提高耐压的屏蔽栅mosfet终端结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410987A (zh) * 2006-03-28 2009-04-15 Nxp股份有限公司 用于集成电路的功率半导体器件结构及其制造方法
CN105993073A (zh) * 2013-10-03 2016-10-05 德克萨斯仪器股份有限公司 沟槽栅极沟槽场板垂直mosfet
CN104716183A (zh) * 2013-12-13 2015-06-17 电力集成公司 具有圆柱形区域的纵向晶体管器件结构
CN207217547U (zh) * 2017-09-28 2018-04-10 无锡紫光微电子有限公司 一种提高耐压的屏蔽栅mosfet终端结构

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112164719B (zh) * 2020-08-28 2022-03-08 电子科技大学 具有等势浮空槽的低阻器件及其制造方法
CN111816707A (zh) * 2020-08-28 2020-10-23 电子科技大学 消除体内曲率效应的等势降场器件及其制造方法
CN112382658A (zh) * 2020-08-28 2021-02-19 电子科技大学 具有阶梯分立屏蔽槽的低栅电荷器件及其制造方法
CN112382658B (zh) * 2020-08-28 2021-08-24 电子科技大学 具有阶梯分立屏蔽槽的低栅电荷器件及其制造方法
CN111969042A (zh) * 2020-08-28 2020-11-20 电子科技大学 具有高深宽比体内超结的横向高压器件及其制造方法
CN111816707B (zh) * 2020-08-28 2022-03-08 电子科技大学 消除体内曲率效应的等势降场器件及其制造方法
CN112164719A (zh) * 2020-08-28 2021-01-01 电子科技大学 具有等势浮空槽的低阻器件及其制造方法
CN114695511A (zh) * 2020-12-30 2022-07-01 无锡华润上华科技有限公司 一种横向扩散金属氧化物半导体器件及其制造方法
CN114695511B (zh) * 2020-12-30 2023-11-24 无锡华润上华科技有限公司 一种横向扩散金属氧化物半导体器件及其制造方法
WO2022142532A1 (zh) * 2020-12-30 2022-07-07 无锡华润上华科技有限公司 一种横向扩散金属氧化物半导体器件及其制造方法
CN113078204A (zh) * 2021-03-25 2021-07-06 电子科技大学 一种氮化镓3d-resurf场效应晶体管及其制造方法
CN113078204B (zh) * 2021-03-25 2022-05-17 电子科技大学 一种氮化镓3d-resurf场效应晶体管及其制造方法
WO2023284481A1 (zh) * 2021-07-16 2023-01-19 无锡华润上华科技有限公司 体栅横向双扩散金属氧化物半导体场效应管及其制作方法
CN113611750A (zh) * 2021-08-19 2021-11-05 电子科技大学 Soi横向匀场高压功率半导体器件及制造方法和应用
CN113658999A (zh) * 2021-08-19 2021-11-16 电子科技大学 具有无结终端技术功率半导体器件及制造方法和应用
CN113659008A (zh) * 2021-08-19 2021-11-16 电子科技大学 具有电场钳位层的匀场器件及其制造方法和应用
CN113658999B (zh) * 2021-08-19 2023-03-28 电子科技大学 具有无结终端技术功率半导体器件及制造方法和应用
CN113611750B (zh) * 2021-08-19 2023-05-26 电子科技大学 Soi横向匀场高压功率半导体器件及制造方法和应用
CN113659009B (zh) * 2021-08-19 2023-05-26 电子科技大学 体内异性掺杂的功率半导体器件及其制造方法
CN113659009A (zh) * 2021-08-19 2021-11-16 电子科技大学 体内异性掺杂的功率半导体器件及其制造方法
CN114823872A (zh) * 2022-04-26 2022-07-29 电子科技大学 一种全隔离衬底耐压功率半导体器件及其制造方法
CN114823872B (zh) * 2022-04-26 2023-10-03 电子科技大学 一种全隔离衬底耐压功率半导体器件及其制造方法
CN115084231A (zh) * 2022-07-19 2022-09-20 浙江大学 一种二极管及其制造方法

Also Published As

Publication number Publication date
CN110459599B (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
CN110459599A (zh) 具有深埋层的纵向浮空场板器件及制造方法
CN110459602A (zh) 具有纵向浮空场板的器件及其制造方法
CN105702676A (zh) 与mosfet集成的增强型耗尽积累/反转通道器件
CN110518059A (zh) 具有电荷平衡耐压层的纵向浮空场板器件及其制造方法
CN103887331B (zh) 高压igbt器件的vld终端及其制备方法
CN109037337A (zh) 一种功率半导体器件及制造方法
US11888022B2 (en) SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof
CN112382658B (zh) 具有阶梯分立屏蔽槽的低栅电荷器件及其制造方法
CN104299991A (zh) 半导体装置
CN108321193A (zh) 一种沟槽栅电荷存储型igbt及其制作方法
CN109103257A (zh) 高可靠性深沟槽功率mos器件
CN114050187A (zh) 一种低特征导通电阻的集成型沟槽栅功率半导体晶体管
CN109273534A (zh) 一种新型屏蔽栅功率mos的器件
CN104638024B (zh) 一种基于soi的横向恒流二极管及其制造方法
CN108155225A (zh) 恒流器件及其制造方法
CN104638021A (zh) 一种横向恒流二极管及其制造方法
CN110164975A (zh) 一种积累型碳化硅功率mosfet器件
CN109244128A (zh) 一种半封闭式屏蔽栅iegt器件结构及其制作方法
CN108389895A (zh) 基于超结的集成功率器件及其制造方法
CN104638022B (zh) 一种soi横向恒流二极管及其制造方法
CN104253154A (zh) 一种具有内置二极管的igbt及其制造方法
CN105702720B (zh) 一种绝缘栅双极型晶体管的关断性能提升方法
CN105529370A (zh) 一种mos触发负阻二极管及其制造方法
CN206672934U (zh) 集成肖特基二极管的SiCJFET器件
CN106409895B (zh) 一种绝缘栅双极晶体管及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210316

Termination date: 20210831

CF01 Termination of patent right due to non-payment of annual fee