CN110417373A - 一种频率可调的横向场激励薄膜体声波谐振器及制备方法 - Google Patents

一种频率可调的横向场激励薄膜体声波谐振器及制备方法 Download PDF

Info

Publication number
CN110417373A
CN110417373A CN201910675732.3A CN201910675732A CN110417373A CN 110417373 A CN110417373 A CN 110417373A CN 201910675732 A CN201910675732 A CN 201910675732A CN 110417373 A CN110417373 A CN 110417373A
Authority
CN
China
Prior art keywords
acoustic wave
bulk acoustic
thin film
piezoelectric substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910675732.3A
Other languages
English (en)
Inventor
章秀银
薛艳梅
吴子莹
周长见
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910675732.3A priority Critical patent/CN110417373A/zh
Publication of CN110417373A publication Critical patent/CN110417373A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02102Means for compensation or elimination of undesirable effects of temperature influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02086Means for compensation or elimination of undesirable effects
    • H03H9/02149Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02157Dimensional parameters, e.g. ratio between two dimension parameters, length, width or thickness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/131Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials consisting of a multilayered structure
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/174Membranes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H2003/023Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks the resonators or networks being of the membrane type

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

本发明公开了一种频率可调的横向场激励薄膜体声波谐振器及制备方法,由上至下依次包括电极铝、压电基片钽酸锂、温度补偿层二氧化硅及衬底硅;所述衬底设有空腔,空腔与贯穿于温度补偿层、压电基片的释放通孔相通,所述压电基片为单晶材料。本发明在不改变压电基片的厚度情况下,谐振器的中心频率随着电极对激励方向的改变而发生变化。

Description

一种频率可调的横向场激励薄膜体声波谐振器及制备方法
技术领域
本发明涉及微电子技术,具体涉及一种频率可调的横向场激励薄膜体声波谐振器及制备方法。
背景技术
薄膜体声波谐振器因其高Q值、体积小、可集成化等特点而引起了很多研究关注,并且随着移动通信技术的飞速发展,薄膜体声波谐振器不仅在射频前端中得到大量应用,也在传感器检测应用中表现出很大的潜力,比如生物化学检测,力学检测等。
薄膜体声波器件的激励方式主要分为两种,一种是采用厚度场激励模式,两个电极分别在压电基片的两面,电场沿着基片的厚度方向;另一种是采用横向场激励模式,两个电极在压电基片的同一面,这种体声波器件的制作方法和声表面波器件相似。在实际应用中,这两种激励模式都会引起压电基片体内的质点产生厚度剪切振动,它产生的声波在基片内传播,属于体声波。
相较于厚度场激励模式的体声波器件,横向场激励模式的体声波器件具有以下优点:晶体振动活力最强的部分没有电极,使老化效率降低;应用于液体环境中,可获得更高Q值;电极在同一主表面,制作相对容易。
现有主流的体声波器件都是采用多晶压电材料,如AlN、ZnO薄膜,相比单晶材料,多晶材料具有各向同性的特性,所以一般都认为电极在压电基片上的性能与电极方向无关。此外,多晶薄膜结构存在大量的晶界和缺陷,声波在其中传播时会被晶界和缺陷散射系数,造成能量损耗,降低机电耦合效率。
一般体声波滤波器由多个谐振频率的谐振器按照一定结构相连构成。体声波谐振频率主要通过改变压电基片的厚度实现,基片厚度越薄,谐振频率越高,所以一种厚度的压电基片一般只能做一种谐振频率的体声波器件,制作一个体声波滤波器便需要多种不同厚度的压电基片,这极大地增加了滤波器的制作难度。如果可以使压电基片厚度一致,谐振频率不一致,那便仅需要一块压电基片,就可以制作体声波滤波器,这提高了设计效率,降低滤波器生产成本。
发明内容
为了克服现有技术存在的缺点与不足,本发明首要目的是提供一种频率可调的横向场激励薄膜体声波谐振器,是基于Y-42切钽酸锂单晶材料,提出在不改变电极尺寸、压电薄膜厚度的情况下,通过改变电极对与压电基片的相对方向,即电场激励角度,实现了一种中心频率可调的体声波谐振器。
本发明的次要目的是提供一种频率可调的横向场激励薄膜体声波谐振器的制备方法。
本发明采用如下技术方案:
一种频率可调的横向场激励薄膜体声波谐振器,由上至下依次包括电极铝、压电基片、温度补偿层及衬底;
所述衬底设有空腔,空腔与贯穿于温度补偿层、压电基片的释放通孔相通。
所述压电基片为单晶材料。
所述单晶材料具体为42度Y切向单晶钽酸锂。
所述电极铝由两条平行电极构成。
所述温度补偿层厚度为1.5μm,衬底厚度为300μm,压电基片的厚度为670nm。
所述电极的厚度为100nm。
一种横向场激励薄膜体声波谐振器的制备方法,包括如下步骤:
S1,在位于晶片最上层的压电材料上面光刻释放通孔,定义通孔形状;
S2,采用感应耦合等离子体干法刻蚀压电基片及温度补偿层,同时保护不需要刻蚀的区域,刻蚀完成后,形成贯穿压电基片及温度补偿层的通孔,在刻蚀窗口内露出衬底;
S3,在压电基片上表面光刻、蒸镀电极铝;
S4,使用气体XeF2通过释放通孔进行衬底刻蚀,形成空腔结构,完成制备。
本发明的有益效果:
(1)本发明基于COMSOL仿真,得出谐振频率随电极对方向的变化规律,根据单晶压电衬底材料调整电极对方向,在不改变电极尺寸、压电薄膜厚度的情况下获得谐振频率可调的谐振器;
(2)本发明频率可调薄膜体谐振器可以在,同一压电基片上实现片上体声波滤波器,有利于减少器件体积和制作成本;
(3)现有制备工艺多通过磁控溅射得到多晶压电薄膜材料,由于多晶材料中存在晶界和缺陷,会造成对体声波的吸收或散射,增加声波传输损耗。本发明压电层采用钽酸锂单晶材料,有利于提升器件的耦合系数,品质因数和滤波性能;
(4)本发明的薄膜体声波谐振器,电极在同一个主表面,结构相对简单,制作更容易,同时由于晶体振动活力最强的部分没有电极,降低器件的老化率。
附图说明
图1是本发明的Comsol仿真模型立体结构图;
图2是本发明的剖面图;
图3是本发明的制备方法流程图;
图4(a)是本发明电极旋转角度为0度示意图;
图4(b)是图4(a)在中心谐振频率2.06GHz的等效阻抗Y11的仿真结果图;
图4(c)是本发明电极旋转角度为45度示意图;
图4(d)是图4(c)在中心谐振频率2.22GHz的等效阻抗Y11的仿真结果图;
图4(e)是本发明电极旋转角度为-45度示意图;
图4(f)是图4(e)在中心谐振频率2.21GHz的等效阻抗Y11仿真结果图;
图4(g)是本发明电极旋转角度为90度示意图;
图4(h)是图4(g)在中心谐振频率2.10GHz的等效阻抗Y11仿真结果图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
图1为本发明中仿真的横向场激励薄膜体声波谐振器的立体结构图,包括从上往下依次放置的电极铝1、压电基片2、温度补偿层3,本实施例中压电基片选用Y-42切单晶钽酸锂材料,温度补偿层选用二氧化硅。
图2所示横向场激励薄膜体声波谐振器的剖面图,温度补偿层设置在衬底上,所述衬底5设有空腔4,空腔关于衬底纵向中线对称,由上边沿向下延伸。温度补偿层介于压电基板与衬底之间,电极铝位于压电基板同一表面,释放通孔6与空腔相通,通孔贯穿压电基片、温度补偿层及空腔,空腔的尺寸形状及通孔尺寸形状根据实际情况确定。
本发明谐振器在工作时,电信号加载到电极铝上,钽酸锂单晶压电薄膜激励的电场方向,平行于晶体基板的主表面方向,即横向场激励模式。如果改变电极对与压电基片的相对方向,由于单晶材料各向异性,晶体离子发生不同的振动,宏观上表现为谐振器谐振频率发生变化;
本发明针对单晶材料温度系数大,器件频率会存在温漂的问题,在薄膜结构中添加了一层具有正温度系数的二氧化硅作为温度补偿层,减少复合膜层的温度系数,增强器件的温度稳定性。
本发明的铝电极由两条平行的电极构成,通过改变电极激励角度,谐振器的中心频率随着电极对激励方向的改变而变化。
本实施例中将铝电极对的激励角度设置为0°、+45°、-45°、90°,其仿真结果对应于图4(a)-图4(h),谐振器的中心频率随着电极对激励方向的改变而发生变化,因此,在同一个压电基片上,在不改变晶片厚度的情况下,可设计多个不同谐振频率的谐振器,通过合适的耦合拓扑结构相连,这为实现片上滤波器提供了可能性。
请参阅图3,图3是本发明薄膜体声波谐振器结构的制造方法流程图。本发明薄膜体声波谐振器制造方法包括步骤:
S1、在位于晶片最上层的压电材料上面光刻释放通孔,定义通孔形状;
S2、采用感应耦合等离子体干法刻蚀压电基片及温度补偿层,同时保护不需要刻蚀的区域,刻蚀完成后,形成贯穿压电基片及温度补偿层的通孔,在刻蚀窗口内露出衬底;
S3、在压电基片上表面光刻、蒸镀电极铝;
S4、使用气体XeF2通过释放通孔进行衬底刻蚀,形成空腔结构,完成制备。
所述横向激励薄膜体声波器件参数设置,所述上表面激励的电极厚度为100nm,所述Y-42切钽酸锂薄膜层的厚度为670nm,所述温度补偿层二氧化硅的厚度为1.5μm,所述衬底硅为300μm。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种频率可调的横向场激励薄膜体声波谐振器,其特征在于,由上至下依次包括电极铝、压电基片、温度补偿层及衬底;
所述衬底设有空腔,空腔与贯穿于温度补偿层、压电基片的释放通孔相通。
2.根据权利要求1所述的横向场激励薄膜体声波谐振器,其特征在于,所述压电基片为单晶材料。
3.根据权利要求2所述的横向场激励薄膜体声波谐振器,其特征在于,所述单晶材料具体为42度Y切向单晶钽酸锂。
4.根据权利要求1所述的横向场激励薄膜体声波谐振器,其特征在于,所述电极铝由两条平行电极构成。
5.根据权利要求1所述的横向场激励薄膜体声波谐振器,其特征在于,所述温度补偿层厚度为1.5μm,衬底厚度为300μm。
6.根据权利要求4所述的横向场激励薄膜体声波谐振器,其特征在于,所述电极的厚度为100nm。
7.根据权利要求1所述的横向场激励薄膜体声波谐振器,其特征在于,所述压电基片的厚度为670nm。
8.一种如权利要求1-7任一项所述的横向场激励薄膜体声波谐振器的制备方法,其特征在于,包括如下步骤:
S1、在位于晶片最上层的压电基片上面光刻释放通孔,定义通孔形状;
S2、采用感应耦合等离子体干法刻蚀压电基片及温度补偿层,同时保护不需要刻蚀的区域,刻蚀完成后,形成贯穿压电基片及温度补偿层的通孔,在刻蚀窗口内露出衬底;
S3、在压电基片上表面光刻、蒸镀电极铝;
S4、使用气体XeF2通过释放通孔进行衬底刻蚀,形成空腔结构,完成制备。
CN201910675732.3A 2019-07-25 2019-07-25 一种频率可调的横向场激励薄膜体声波谐振器及制备方法 Pending CN110417373A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910675732.3A CN110417373A (zh) 2019-07-25 2019-07-25 一种频率可调的横向场激励薄膜体声波谐振器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910675732.3A CN110417373A (zh) 2019-07-25 2019-07-25 一种频率可调的横向场激励薄膜体声波谐振器及制备方法

Publications (1)

Publication Number Publication Date
CN110417373A true CN110417373A (zh) 2019-11-05

Family

ID=68363078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910675732.3A Pending CN110417373A (zh) 2019-07-25 2019-07-25 一种频率可调的横向场激励薄膜体声波谐振器及制备方法

Country Status (1)

Country Link
CN (1) CN110417373A (zh)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110880922A (zh) * 2019-11-18 2020-03-13 武汉大学 一种二维超高频谐振器
CN111224637A (zh) * 2020-01-21 2020-06-02 武汉大学 一种带有新型释放结构的谐振器及其制备方法
CN112039483A (zh) * 2020-03-23 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器
US20210119603A1 (en) * 2018-06-15 2021-04-22 Resonant Inc. Wide bandwidth time division duplex transceiver
CN113285687A (zh) * 2021-03-05 2021-08-20 天津大学 温度补偿型薄膜体声波谐振器及其形成方法、电子设备
CN113381724A (zh) * 2021-07-02 2021-09-10 中国科学院上海微***与信息技术研究所 体声波谐振器及其制备方法
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11881834B2 (en) 2018-06-15 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US11967942B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic filters with symmetric layout
US11967943B2 (en) 2020-05-04 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US12015393B2 (en) 2018-06-15 2024-06-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US12028040B2 (en) 2020-07-18 2024-07-02 Murata Manufacturing Co., Ltd. Acoustic resonators and filters with reduced temperature coefficient of frequency
US12028049B2 (en) 2020-02-28 2024-07-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator filters with sub-resonators having different mark and pitch
US12034428B2 (en) 2018-06-15 2024-07-09 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic filter using pitch to establish frequency separation between resonators
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US12040783B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Low loss transversely-excited film bulk acoustic resonators and filters
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113720A1 (en) * 2002-12-11 2004-06-17 Tdk Corporation Piezoelectric resonant filter and duplexer
JP2007159123A (ja) * 2005-11-30 2007-06-21 Agilent Technol Inc 温度補償型薄膜バルク音響共振器デバイス
CN101477083A (zh) * 2009-01-09 2009-07-08 重庆大学 具有主动抑制声能损失功能的薄膜体声波传感器及方法
CN101800524A (zh) * 2010-01-05 2010-08-11 浙江大学 一种非对称结构的剪切模式fbar
KR20110041749A (ko) * 2009-10-16 2011-04-22 주식회사 엠에스솔루션 박막 벌크 음향 공진기 및 그 제조 방법
US20130234805A1 (en) * 2012-03-07 2013-09-12 Taiyo Yuden Co., Ltd. Resonator, frequency filter, duplexer, electronic device, and method of manufacturing resonator
CN103427778A (zh) * 2013-08-27 2013-12-04 张家港恩达通讯科技有限公司 基于铁电材料的薄膜体声波谐振器的制备方法、谐振器
CN107453729A (zh) * 2017-06-28 2017-12-08 中国电子科技集团公司第五十五研究所 一种基于复合结构的温度补偿薄膜体声波谐振器
CN210431367U (zh) * 2019-07-25 2020-04-28 华南理工大学 一种频率可调的横向场激励薄膜体声波谐振器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040113720A1 (en) * 2002-12-11 2004-06-17 Tdk Corporation Piezoelectric resonant filter and duplexer
JP2007159123A (ja) * 2005-11-30 2007-06-21 Agilent Technol Inc 温度補償型薄膜バルク音響共振器デバイス
CN101477083A (zh) * 2009-01-09 2009-07-08 重庆大学 具有主动抑制声能损失功能的薄膜体声波传感器及方法
KR20110041749A (ko) * 2009-10-16 2011-04-22 주식회사 엠에스솔루션 박막 벌크 음향 공진기 및 그 제조 방법
CN101800524A (zh) * 2010-01-05 2010-08-11 浙江大学 一种非对称结构的剪切模式fbar
US20130234805A1 (en) * 2012-03-07 2013-09-12 Taiyo Yuden Co., Ltd. Resonator, frequency filter, duplexer, electronic device, and method of manufacturing resonator
CN103427778A (zh) * 2013-08-27 2013-12-04 张家港恩达通讯科技有限公司 基于铁电材料的薄膜体声波谐振器的制备方法、谐振器
CN107453729A (zh) * 2017-06-28 2017-12-08 中国电子科技集团公司第五十五研究所 一种基于复合结构的温度补偿薄膜体声波谐振器
CN210431367U (zh) * 2019-07-25 2020-04-28 华南理工大学 一种频率可调的横向场激励薄膜体声波谐振器

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11929731B2 (en) 2018-02-18 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode mark, and pitch
US12034428B2 (en) 2018-06-15 2024-07-09 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic filter using pitch to establish frequency separation between resonators
US11984868B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Filter using piezoelectric film bonded to high resistivity silicon substrate with trap-rich layer
US12015393B2 (en) 2018-06-15 2024-06-18 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with diaphragm support pedestals
US20210119603A1 (en) * 2018-06-15 2021-04-22 Resonant Inc. Wide bandwidth time division duplex transceiver
US12040781B2 (en) 2018-06-15 2024-07-16 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator package
US12021504B2 (en) 2018-06-15 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a front-side dielectric layer and optimized pitch and mark
US11824520B2 (en) 2018-06-15 2023-11-21 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11881834B2 (en) 2018-06-15 2024-01-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11923821B2 (en) 2018-06-15 2024-03-05 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11996822B2 (en) * 2018-06-15 2024-05-28 Murata Manufacturing Co., Ltd. Wide bandwidth time division duplex transceiver
US11929727B2 (en) 2018-06-15 2024-03-12 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with reduced spurious modes
US11936361B2 (en) 2018-06-15 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonators
US12021502B2 (en) 2018-06-15 2024-06-25 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with multi-mark electrodes and optimized electrode thickness
US11942922B2 (en) 2018-06-15 2024-03-26 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with optimized electrode thickness, mark, and pitch
US11990888B2 (en) 2018-06-15 2024-05-21 Murata Manufacturing Co., Ltd. Resonator using YX-cut lithium niobate for high power applications
US11984872B2 (en) 2018-06-15 2024-05-14 Murata Manufacturing Co., Ltd. Film bulk acoustic resonator fabrication method
US11949399B2 (en) 2018-06-15 2024-04-02 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited film bulk acoustic resonator with diamond layers in Bragg reflector stack
US11967945B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd. Transversly-excited film bulk acoustic resonators and filters
US11967942B2 (en) 2018-06-15 2024-04-23 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic filters with symmetric layout
US11955952B2 (en) 2019-06-24 2024-04-09 Murata Manufacturing Co., Ltd. Solidly-mounted transversely-excited bulk acoustic resonator split ladder filter
US12009804B2 (en) 2019-08-28 2024-06-11 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
US11949403B2 (en) 2019-08-28 2024-04-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with interdigital transducer with varied mark and pitch
CN110880922A (zh) * 2019-11-18 2020-03-13 武汉大学 一种二维超高频谐振器
CN110880922B (zh) * 2019-11-18 2020-10-13 武汉大学 一种二维超高频谐振器
CN111224637A (zh) * 2020-01-21 2020-06-02 武汉大学 一种带有新型释放结构的谐振器及其制备方法
US11967946B2 (en) 2020-02-18 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with a bonding layer and an etch-stop layer
US11996826B2 (en) 2020-02-18 2024-05-28 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with thermally conductive etch-stop layer
US12028049B2 (en) 2020-02-28 2024-07-02 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator filters with sub-resonators having different mark and pitch
CN112039483A (zh) * 2020-03-23 2020-12-04 中芯集成电路(宁波)有限公司 一种薄膜体声波谐振器
US12040779B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Small transversely-excited film bulk acoustic resonators with enhanced Q-factor
US12040783B2 (en) 2020-04-20 2024-07-16 Murata Manufacturing Co., Ltd. Low loss transversely-excited film bulk acoustic resonators and filters
US11967943B2 (en) 2020-05-04 2024-04-23 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with etched conductor patterns
US11996825B2 (en) 2020-06-17 2024-05-28 Murata Manufacturing Co., Ltd. Filter using lithium niobate and rotated lithium tantalate transversely-excited film bulk acoustic resonators
US12028040B2 (en) 2020-07-18 2024-07-02 Murata Manufacturing Co., Ltd. Acoustic resonators and filters with reduced temperature coefficient of frequency
US11949402B2 (en) 2020-08-31 2024-04-02 Murata Manufacturing Co., Ltd. Resonators with different membrane thicknesses on the same die
US12003226B2 (en) 2020-11-11 2024-06-04 Murata Manufacturing Co., Ltd Transversely-excited film bulk acoustic resonator with low thermal impedance
US11936358B2 (en) 2020-11-11 2024-03-19 Murata Manufacturing Co., Ltd. Transversely-excited film bulk acoustic resonator with low thermal impedance
CN113285687A (zh) * 2021-03-05 2021-08-20 天津大学 温度补偿型薄膜体声波谐振器及其形成方法、电子设备
CN113381724B (zh) * 2021-07-02 2024-05-24 中国科学院上海微***与信息技术研究所 体声波谐振器及其制备方法
CN113381724A (zh) * 2021-07-02 2021-09-10 中国科学院上海微***与信息技术研究所 体声波谐振器及其制备方法

Similar Documents

Publication Publication Date Title
CN110417373A (zh) 一种频率可调的横向场激励薄膜体声波谐振器及制备方法
CN210431367U (zh) 一种频率可调的横向场激励薄膜体声波谐振器
US11309861B2 (en) Guided surface acoustic wave device providing spurious mode rejection
CN104202010B (zh) 一种镂空空腔型薄膜体声波谐振器及其制作方法
US20180337654A1 (en) Surface acoustic wave device having a piezoelectric layer on a quartz substrate and methods of manufacturing thereof
CN102122941B (zh) 可调谐的预设空腔型soi基片薄膜体声波谐振器及制作方法
CN104242864B (zh) 具有温度补偿和谐振频率修调功能的fbar及滤波器
CN110113026B (zh) 一种二维兰姆波谐振器
CN111697943B (zh) 一种高频高耦合系数压电薄膜体声波谐振器
CN207939485U (zh) 一种频率可调的薄膜体声波谐振器
CN207339804U (zh) 一种压电谐振器
US8829764B2 (en) HBAR resonator with high temperature stability
US20150303895A1 (en) Transducer with bulk waves surface-guided by synchronous excitation structures
US7320164B2 (en) Method of manufacturing an electronic component
CN113193846B (zh) 一种带混合横向结构特征的薄膜体声波谐振器
CN111010127B (zh) 一种薄膜体声波谐振器及其制备方法
JP2021503229A (ja) 圧電共振器および圧電共振器の製造方法
Yandrapalli et al. Fabrication and Analysis of Thin Film Lithum Niobate Resonators for 5GHz Frequency and Large K t 2 Applications
CN207869080U (zh) 一种体声波谐振器与表面声波谐振器的混合式声波谐振器
CN106160691A (zh) 一种基于Si基的高频SAW器件及其制备方法
Pang et al. Micromachined acoustic wave resonator isolated from substrate
CN102084590B (zh) 具有高集成度的hbar共振器
Zhu et al. High-Q low impedance UHF-band AlN-on-Si MEMS resonators using quasi-symmetrical lamb wave modes
JP5786393B2 (ja) 水晶デバイスの製造方法
Ueda et al. Film bulk acoustic resonator using high-acoustic-impedance electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination