CN110416563B - 一种燃料电池用PdRh合金电催化剂的制备方法及应用 - Google Patents

一种燃料电池用PdRh合金电催化剂的制备方法及应用 Download PDF

Info

Publication number
CN110416563B
CN110416563B CN201910636101.0A CN201910636101A CN110416563B CN 110416563 B CN110416563 B CN 110416563B CN 201910636101 A CN201910636101 A CN 201910636101A CN 110416563 B CN110416563 B CN 110416563B
Authority
CN
China
Prior art keywords
solution
pdrh
reaction
fuel cell
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910636101.0A
Other languages
English (en)
Other versions
CN110416563A (zh
Inventor
张荣华
胡青云
陈迪
周新文
郭逸飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201910636101.0A priority Critical patent/CN110416563B/zh
Publication of CN110416563A publication Critical patent/CN110416563A/zh
Application granted granted Critical
Publication of CN110416563B publication Critical patent/CN110416563B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种燃料电池用PdRh合金电催化剂的制备方法,称取P123溶于去离子水中,加入络合剂PEI,搅拌,并向其中加入甲醛溶液,得到混合溶液A;将氯亚钯酸钾和氯化铑粉末溶于去离子水中,得到的橙黄色溶液B;将橙黄色溶液B滴加到混合溶液A中,待溶液已经完全变成灰黑色浑浊溶液,得到前躯液;在室温条件下,将前躯液转移至聚四氟乙烯高压反应釜中,放置在烘箱中反应;反应结束后,自然冷却至室温,离心洗涤,即得到燃料电池PdRh合金电催化剂。本发明中使用PEI为络合剂,与前驱体离子发生络合作用,减缓了反应速率,PdRh合金各向异性生长具有更加开放的结构。所制备的合金催化剂具有良好的甲醇氧化性能,在直接甲醇燃料电池中有较广阔的发展前景。

Description

一种燃料电池用PdRh合金电催化剂的制备方法及应用
技术领域
本发明属于燃料电池技术领域,涉及阳极催化剂的制备方法,尤其是涉及了一种直接甲醇燃料电池PdRh合金电催化剂的制备方法。
背景技术
质子交换膜燃料电池(PEMFC)作为未来电动汽车的主要动力源,是缓解能源危机和环境问题的重要途径。由于PEMFC 具有高效、高能量密度和零排放等特点,已经成功地应用于电动汽车和笔记本电脑、手机等移动电源。铂(Pt)作为一种高效的催化剂,在直接甲醇燃料电池(DMFC)等许多重要领域得到了广泛的应用。然而,铂的高价格、稀缺性、易被含碳中间体毒害等内在特性对燃料电池的进一步发展构成了重大挑战。在这种情况下,Pd具有相似的催化活性、更丰富的贮存量和更好的抗中毒性能,可以作为DMFC的良好候选材料。
近年来,Pd基催化剂由于在碱性介质中对甲醇氧化反应(MOR)具有良好的催化活性,作为铂基催化剂的良好替代品在DMFC中得到了广泛的发展和深入的探索。Pd基合金催化剂具有独特的协同作用和拉伸应变效应,引入其他元素可降低Pd的用量,提高催化活性和耐久性。增加Pd的利用率的另一种方法是将传统的实心结构转化内部中空、空心框架、外壁多孔等更加开放的结构。这种特殊的结构通常具有更大的比表面积,更多的反应活性位点和更高的催化活性。
目前,合成具有复杂形貌的催化剂方法都比较复杂,且产率不高,可能还需要采用模板法来制备复杂形貌的纳米粒子,使得晶体在表面各向异性生长。本发明的技术方案简单易操作,产率高。
发明内容
本发明的目的在通过控制形貌控制来提高催化剂的催化性能,制备一种具有优良甲醇催化性能的燃料电池PdRh纳米电催化剂。采用络合还原法,通过简单水热还原反应,以聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物(P123)为保护剂,以聚乙烯亚胺(PEI)为络合剂,以HCHO为还原剂,制备形貌可控的二元合金PdRh的纳米催化剂。
本发明实现上述目的所采用的技术方案如下:
(1)A溶液:称取保护剂:聚环氧乙烷-聚环氧丙烷-聚环氧乙烷三嵌段共聚物溶于去离子水中,加入络合剂聚乙烯亚胺,超声分散均匀,在室温下搅拌,并向其中加入甲醛溶液,得到无色透明的混合溶液A;
B溶液:将氯亚钯酸钾和氯化铑粉末溶于去离子水中,超声混合得到均一透明的橙黄色溶液B;
(2)将橙黄色溶液B滴加到混合溶液A中,待溶液已经完全变成灰黑色浑浊溶液,伴有絮状沉淀生成,即可得到前躯液;
(3) 在室温条件下,将前躯液转移至聚四氟乙烯高压反应釜中,放置在烘箱中,维持反应温度120 ~ 180℃,保温时间1 ~ 12 h。
(4) 反应结束后,自然冷却至室温,在8000 ~ 10000 rpm/min下离心,用去离子水和无水乙醇分别离心洗涤3 ~ 4次,即得到燃料电池PdRh合金电催化剂。
步骤(1)中P123的质量浓度为0.01 ~ 1 g/mL,PEI的摩尔浓度为1 ~ 10 mmol/L,甲醛溶液的质量分数为30-40%,优选质量分数为37%。
步骤(2)的混合溶液中氯亚钯酸钾溶液的浓度是0.1~1 mmol/L,氯化铑溶液中的浓度是0.1~10 mmol/mL。
所述的前躯液中的元素钯与元素铑的摩尔比为 1 : (0.3 ~ 3)。
所述的前躯液与保护剂P123的摩尔比为1 : (1~10)。
所述前躯液与络合剂PEI的摩尔比为1 : (0.3 ~ 3)。
步骤(3)转移至反应釜中混合溶液的总体积为10 ~ 60mL。
本发明的技术方案中P123为保护剂,PEI为络合剂,以H2O为溶剂。在离心洗涤过程中,先用去离子水洗涤3 ~ 4次,然后用无水乙醇洗涤3 ~ 4次,目的是将未反应完全的反应物,保护剂和络合剂从催化剂表面除去。
所制备得到的燃料电池PdRh合金电催化剂中Pd的质量百分含量为5% ~ 95%。且燃料电池PdRh合金电催化剂的质量活性为100-1000 mAmg-1
所述燃料电池PdRh合金电催化剂具有多种特征的形貌,纳米结构分散性良好,尺寸均一。
所述燃料电池PdRh合金电催化剂具有特征的纳米片花状结构,有效改善了PdRh纳米电催化剂的催化性能。
本发明的技术方案中,通过制备形貌各异的PdRh合金纳米催化剂,有效提高了纯Pd纳米粒子的催化性能。由于Rh元素的引入,合金效应使催化剂具有更好的活性,根据Rh本身的属性,在反应过程中可吸附环境中大量含氧物质,促进甲醇氧化反应过程中产生的含碳物质的氧化,从而促进Pd活性位的释放,有效改善了纯Pd的催化性能。特殊的片状结构为催化反应过程提供了更多可能的活性位点,更加开放结构也便于物质快速转移和交换。由于催化反应主要是在表面进行,开放的片状结构提供了较多的表面活性位点。
本发明所涉及的一种燃料电池用PdRh合金电催化剂及其制备方法有以下显著特点:
(1) 制备方法为一锅水热法,操作工艺简单,反应温度较低,所需能耗较少,制备产率高。
(2) H2O作溶剂,未使用表面活性剂,成本低廉,实现经济性。
(3) 该体系使用PEI为络合剂,与前驱体离子发生络合作用,减缓了反应速率,PdRh合金各向异性生长具有更加开放的结构。
(4) 所制备的合金催化剂具有良好的甲醇氧化性能,在直接甲醇燃料电池中有较广阔的发展前景。
附图说明
图1为实施例1所制备的燃料电池PdRh电催化剂的透射电镜图。
图2为实施例1所制备的燃料电池PdRh电催化剂电催化氧化甲醇的循环伏安曲线图。
图3为实施例2所制备的燃料电池Pd3Rh电催化剂的透射电镜图。
图4为实施例2所制备的燃料电池用Pd3Rh电催化剂电催化氧化甲醇的循环伏安曲线图。
图5为实施例2所制备的燃料电池PdRh3电催化剂的透射电镜图。
图6为实施例3所制备的燃料电池用PdRh3催化剂电催化氧化甲醇的循环伏安曲线图。
图7为实施例1、2、3所制备的燃料电池用PdRh电催化剂与商业Pd黑电催化氧化甲醇的循环伏安活性对比图。
具体实施方式
以下将结合附图和具体实施案例,进一步阐述本发明,在此需要声明的是,这些实施案例仅用于说明本发明而不是用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对各种等价形式的修改均落于本申请所附权利 要求所限定的范围。
实施例1
(1) 称取 0.5 g 的P123 于 50 ml 的烧杯中,向烧杯中加入 25 ml H2O,超声搅拌溶解,用移液枪移取0.1ml 的0.5M PEI溶液加入混合液中,超声混合均匀后,再加入2ml37%的甲醛溶液,在室温下进行一定强度的磁力搅拌。
(2) 分别称取9.79 mg K2PdCl4和6.28 mg RhCl3到25 ml的烧杯中,向烧杯中加入15 ml H2O,超声混合均匀后,采用恒压滴液漏斗,控制以每秒一滴的流速滴入混合液A中,在室温下进行一定强度的磁力搅拌,搅拌0.5 h后。
(3) 将混合液转移至聚四氟乙烯反应釜中,维持烘箱反应温度为120℃,保温反应12 h。
(4) 自然冷却至室温,保持静置,将反应后得到的黑色浊液在10000 r/min下进行离心分离,先用去离子水洗涤4次,再用无水乙醇洗涤4次,最后所得产物加入无水乙醇分散保护即得到燃料电池PdRh合金电催化剂。
图1为本实施例所制备得到的燃料电池PdRh合金电催化剂的透射电镜图(TEM),由图中1可以看出,所制备的纳米催化剂,尺寸均匀,纳米粒子尺寸大约13.68 nm,呈纳米雪花片状结构,雪花片由纳米碎片自组装而成。特殊的片状结构给催化反应提供了更多的反应位点,加快了电子的转移和质子的交换。
将本实施案例制备所得的PdRh合金电催化剂在玻碳电极上进行修饰制得工作电极,对其进行循环伏安测试,测试条件:扫描范围为-1.1 - 0.5 V (vs. SCE),扫描速度为50 mV/s,溶液为氮气饱和的1 mol/L NaOH+1 mol/LCH3OH溶液,测试结果如图2所示。
由图2可以看出,所制备得到的PdRh-1合金电催化剂在 -0.12 V 的电位下出现最高甲醇氧化峰电流密度,约为566.5 mAmg-1,表现出优异的甲醇氧化活性。
实施例2
称取 0.5 g 的P123 于 50 ml 的烧杯中,向烧杯中加入 25 ml H2O,超声搅拌溶解,用移液枪移取0.1ml的0.5M PEI溶液加入混合液中,超声混合均匀后,再加入2ml 37%的甲醛溶液,在室温下进行一定强度的磁力搅拌。
(2) 分别称取9.79 mg K2PdCl4 和2.10mg RhCl3到25 ml 的烧杯中,向烧杯中加入15 ml H2O,超声混合均匀后,采用恒压滴液漏斗,控制以每秒一滴的流速滴入混合液A中,在室温下进行一定强度的磁力搅拌,搅拌0.5 h后。
(3) 将混合液转移至聚四氟乙烯反应釜中,维持烘箱反应温度为120℃,保温反应12 h。
(4) 自然冷却至室温,保持静置,将反应后得到的黑色浊液在10000 r/min下进行离心分离,先用去离子水洗涤4次,再用无水乙醇洗涤4次,最后所得产物加入无水乙醇分散保护即得到燃料电池Pd3Rh合金电催化剂。
图3本实施案例所制备得到的燃料电池Pd3Rh合金电催化剂的透射电镜图(TEM),由图中3可以看出,所制备的催化剂呈梭形结构,梭形的横截面宽约44.10 nm,纳米粒子分散性良好,分布均匀,尺寸均一。由图3可以清晰的观察到梭形结构的纳米催化剂表面粗糙,表面是由单个晶体聚集,岛状生长,然后形成梭形结构。
将本实施例制备所得的Pd3Rh合金电催化剂在玻碳电极上进行修饰制得工作电极,对其进行循环伏安测试,测试条件:扫描范围为-1.1 - 0.5 V (vs. SCE),扫描速度为50 mV/s,溶液为氮气饱和的1 mol/L NaOH+1 mol/LCH3OH溶液,测试结果如图4所示。
由图4可以看出,所制备得到的Pd3Rh合金电催化剂在 0.06 V的电位下出现最高甲醇氧化峰电流密度,约为338.5 mAmg-1,表现出良好的甲醇电氧化活性。
实施例3
(1) 称取 0.5 g 的P123 于 50 ml 的烧杯中,向烧杯中加入 25 ml H2O,超声搅拌溶解,用移液枪移取0.1ml 0.5M PEI溶液加入混合液中,超声混合均匀后,再加入2ml37%的甲醛溶液,在室温下进行一定强度的磁力搅拌。
(2) 分别称取9.79 mg K2PdCl4 和18.83 mg RhCl3到25 ml 的烧杯中,向烧杯中加入15 ml H2O,超声混合均匀后,采用恒压滴液漏斗,控制以每秒一滴的流速滴入混合液A中,在室温下进行一定强度的磁力搅拌,搅拌0.5 h后。
(3) 将混合液转移至聚四氟乙烯反应釜中,维持烘箱反应温度为120℃,保温反应12 h。
(4) 自然冷却至室温,保持静置,将反应后得到的黑色浊液在10000 r/min下进行离心分离,先用去离子水洗涤4次,再用无水乙醇洗涤4次,最后所得产物加入无水乙醇分散保护即得到燃料电池PdRh3合金电催化剂。
图5为为本实施案例所制备得到的燃料电池PdRh3合金电催化剂的透射电镜图(TEM),由图中5可以看出,所制备的纳米催化剂,分布比较均一,催化剂的尺寸大约在21.40nm,纳米花状结构由纳米片组成。
将本实施例制备所得的PdRh3合金电催化剂在玻碳电极上进行修饰制得工作电极,对其进行循环伏安测试,测试条件:扫描范围为-0.9 - 0.4 V (vs. SCE),扫描速度为50 mV/s,溶液为氮气饱和的1 mol/L NaOH+1 mol/LCH3OH溶液,测试结果如图6所示。
由图6可以看出,所制备得到的PdRh3合金电催化剂在 -0.18V 的电位下出现最高甲醇氧化峰电流密度,约为 206.2 mAmg-1,具有甲醇氧化活性。
图7为实施例1、2、3所制备的燃料电池PdRh合金电催化剂与商业Pd/C催化剂电催化氧化甲醇的活性对比图,从图中也可以直观的看出实施例1的电催化氧化甲醇活性明显优于实施例2、实施例3和商业Pd/C纳米催化剂,其甲醇氧化质量活性最高,约为实施例2的1.67倍,实施例3的2.75倍,是商业Pd/C的3.10倍。

Claims (1)

1.一种燃料电池用PdRh合金电催化剂的制备方法,其特征在于,包括如下步骤:
(1) 称取0.5 g的P123于50 ml 的烧杯中,向烧杯中加入25 ml H2O,超声搅拌溶解得到混合物,用移液枪移取0.1ml的0.5M PEI溶液加入混合液中,超声混合均匀后,再加入2ml质量浓度为 37%的甲醛溶液,在室温下进行磁力搅拌,得到混合液A;
(2) 分别称取9.79mg K2PdCl4和6.28mg RhCl3到25 ml的烧杯中,向烧杯中加入15mlH2O,超声混合均匀后,采用恒压滴液漏斗,控制以每秒一滴的流速滴入混合液A中,在室温下进行磁力搅拌,搅拌0.5 h后得到混合液B;
(3) 将混合液B转移至聚四氟乙烯反应釜中,维持反应温度为120℃,保温反应12 h;
(4) 自然冷却至室温,保持静置,将反应后得到的黑色浊液在10000 r/min下进行离心分离,先用去离子水洗涤4次,再用无水乙醇洗涤4次,最后所得产物加入无水乙醇分散保护即得到燃料电池PdRh合金电催化剂。
CN201910636101.0A 2019-07-15 2019-07-15 一种燃料电池用PdRh合金电催化剂的制备方法及应用 Active CN110416563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910636101.0A CN110416563B (zh) 2019-07-15 2019-07-15 一种燃料电池用PdRh合金电催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910636101.0A CN110416563B (zh) 2019-07-15 2019-07-15 一种燃料电池用PdRh合金电催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN110416563A CN110416563A (zh) 2019-11-05
CN110416563B true CN110416563B (zh) 2022-06-03

Family

ID=68361472

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910636101.0A Active CN110416563B (zh) 2019-07-15 2019-07-15 一种燃料电池用PdRh合金电催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN110416563B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361487B (zh) * 2021-12-20 2024-03-15 三峡大学 燃料电池PdAg/AgCl合金电催化剂及应用
CN114789052A (zh) * 2022-06-06 2022-07-26 济南大学 一种一锅法制备RuIr(Pt,Pd,Rh)空心胶体球电催化剂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013476A (zh) * 2015-06-26 2015-11-04 陕西师范大学 一种化学功能化Pd纳米线的制备方法
CN105618784A (zh) * 2016-01-08 2016-06-01 浙江大学 一种枝状的铜钯纳米晶合金的制备方法及其产物
CN105810958A (zh) * 2016-04-18 2016-07-27 陕西师范大学 一种用于碱性直接甲醇燃料电池的Rh纳米花电催化剂的制备方法
WO2017015204A1 (en) * 2015-07-17 2017-01-26 Cornell University Copper palladium compositions as oxidation and reduction catalysts
CN108500256A (zh) * 2018-05-07 2018-09-07 南京师范大学 一种中空多孔的PdRh纳米碗制备方法及其所得材料和应用
CN109802143A (zh) * 2019-01-18 2019-05-24 三峡大学 一种燃料电池3D网状结构PdRh合金电催化剂的制备方法及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105013476A (zh) * 2015-06-26 2015-11-04 陕西师范大学 一种化学功能化Pd纳米线的制备方法
WO2017015204A1 (en) * 2015-07-17 2017-01-26 Cornell University Copper palladium compositions as oxidation and reduction catalysts
CN105618784A (zh) * 2016-01-08 2016-06-01 浙江大学 一种枝状的铜钯纳米晶合金的制备方法及其产物
CN105810958A (zh) * 2016-04-18 2016-07-27 陕西师范大学 一种用于碱性直接甲醇燃料电池的Rh纳米花电催化剂的制备方法
CN108500256A (zh) * 2018-05-07 2018-09-07 南京师范大学 一种中空多孔的PdRh纳米碗制备方法及其所得材料和应用
CN109802143A (zh) * 2019-01-18 2019-05-24 三峡大学 一种燃料电池3D网状结构PdRh合金电催化剂的制备方法及应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Facile aqueous phase synthesis of 3D-netlike PdeRh nanocatalysts for methanol oxidation";Qing-Yun Hu等;《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》;20190621;第44卷(第31期);第1153-1159页 *
"Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction";Qi Xue等;《Journal of Energy Chemistry》;20170712;第26卷(第6期);第16287-16296页 *

Also Published As

Publication number Publication date
CN110416563A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
CN102489314B (zh) 用于甲醇、乙醇燃料电池的石墨烯负载双金属纳米粒子及制备方法
CN101641816B (zh) 用于基于聚合物电解质的燃料电池的电化学催化剂的方法
CN107342424B (zh) 一种燃料电池用PtPdCu电催化剂的制备方法及应用
CN111987324A (zh) 一种用于甲醇燃料电池的纳米线结构的电催化剂的制备方法
CN111883785B (zh) 一种Co-N共掺杂鼓状多孔碳催化剂及其制备方法与应用
CN110416563B (zh) 一种燃料电池用PdRh合金电催化剂的制备方法及应用
CN112349921A (zh) 一种氮掺杂石墨烯空心球催化剂、制备方法及应用
CN112002915B (zh) 一种氧电极双功能催化剂、制备方法及应用
CN103191757B (zh) 一种PdNiW/C三元合金纳米催化剂及其制备方法
CN112736257A (zh) 一种嵌入式多孔Fe-Nx@Pd-NC纳米棒的制备方法及其制备的纳米棒和应用
CN109876800A (zh) 一种制备铂/碳纳米催化剂的制备方法
CN100386910C (zh) 一种高效直接甲醇燃料电池阴极催化剂及其制备方法
Salarizadeh et al. Comparison of methanol oxidation reaction process for NiCo2O4/X (X= rGO, MWCNTs, HCNs) nanocatalyst
CN109802143B (zh) 一种燃料电池3D网状结构PdRh合金电催化剂的制备方法及应用
CN106953104B (zh) 一种以还原氧化石墨烯为载体的Ni@Au@Pd三层核壳结构的电催化剂及其制备方法
CN108892773B (zh) 一种卟啉聚合物纳米材料、其制备方法及应用
CN111063902A (zh) 一种纳米金属插层水滑石材料电极催化剂的制备方法
CN110661007A (zh) 一种燃料电池用石墨烯负载型PtCu催化剂的合成方法
JP2005166409A (ja) 電極触媒、触媒担持電極、燃料電池用meaおよび燃料電池
CN111211334A (zh) 一种PtNi/C合金催化剂及其制备方法与应用
CN115155554B (zh) 一种纳米中空介孔碳球负载铂纳米颗粒催化剂及制备方法
CN111668498B (zh) 多枝晶Au@GQDs@PtPb核壳结构纳米复合材料的制备及应用
CN111530499B (zh) 一种结构可控的核-壳合金电催化剂合成方法
CN111987328A (zh) 一种用于甲醇燃料电池的纳米粒结构的电催化剂的制备方法
CN111969216A (zh) 一种高效低铂膜电极上催化剂层的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant