CN110402507A - 涂覆氧化物材料的方法 - Google Patents

涂覆氧化物材料的方法 Download PDF

Info

Publication number
CN110402507A
CN110402507A CN201880016339.7A CN201880016339A CN110402507A CN 110402507 A CN110402507 A CN 110402507A CN 201880016339 A CN201880016339 A CN 201880016339A CN 110402507 A CN110402507 A CN 110402507A
Authority
CN
China
Prior art keywords
lithiumation
metal
cobalt
alkyl
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880016339.7A
Other languages
English (en)
Other versions
CN110402507B (zh
Inventor
F·克莱内耶格尔
T·利布施
M·舍恩赫尔
D·加莱拉
F·塞蒂纳
H·佐默
M·阿尔夫
D·勒夫勒
R·福格尔桑
J·哈格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of CN110402507A publication Critical patent/CN110402507A/zh
Application granted granted Critical
Publication of CN110402507B publication Critical patent/CN110402507B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

本发明涉及一种制备涂覆的氧化物材料的方法,所述方法包括以下步骤:(a)提供选自锂化镍钴铝氧化物、锂化钴锰氧化物和锂化层状镍钴锰氧化物的颗粒材料,(b)用金属醇盐或金属氨基化物或烷基金属化合物处理所述阴极活性材料,(c)用水分处理步骤(b)中获得的材料,并且,任选地重复步骤(b)和(c)的序列,其中步骤(b)和(c)在将混合能量机械地引入颗粒材料中的混合器中进行,或者借助移动床或固定床进行,以及其中步骤(b)和(c)在比常压高5毫巴至1巴的压力下进行。

Description

涂覆氧化物材料的方法
本发明涉及一种涂覆氧化物材料的方法,所述方法包括以下步骤:
(a)提供选自锂化镍钴铝氧化物、锂化钴锰氧化物和锂化层状镍钴锰氧化物的颗粒材料,
(b)用金属醇盐或金属氨基化物或烷基金属化合物处理所述阴极活性材料,
(c)用水分处理步骤(b)中获得的材料,
并且,任选地重复步骤(b)和(c)的序列,
其中步骤(b)和(c)在将混合能量机械地引入颗粒材料中的混合器中进行,或者借助移动床或固定床进行,以及
其中步骤(b)和(c)在比常压高5毫巴至1巴的压力下进行。
锂离子二次电池组是用于储存能量的现代设备。已经并且正在设想许多应用领域,从诸如移动电话和笔记本电脑的小型设备到汽车电池组和用于电动交通(e-mobility)的其他电池组。电池组的各种组分如电解质、电极材料和隔膜在电池组性能方面具有决定性作用。对阴极材料给予了特别的关注。已经提出了数种材料,例如磷酸铁锂,锂钴氧化物和锂镍钴锰氧化物。尽管已经进行了广泛的研究,但迄今为止发现的解决方案仍有待改进。
锂离子电池组的一个问题在于阴极活性材料表面上的不希望的反应。该反应可为电解质或溶剂或二者的分解。因此,已尝试了在不妨碍充放电期间的锂交换的情况下保护表面。实例是试图用例如氧化铝或氧化钙涂覆阴极活性材料,参见例如US 8,993,051。
然而,该方法的效率可能仍有待改善。尤其是在颗粒具有附聚倾向的实施方案中,效率有时在反应时间和包覆颗粒的百分比以及颗粒的包覆百分比方面留有改进的空间。
因此,本发明的目的是提供一种方法,通过该方法可在不过长的反应时间的情况下涂覆颗粒材料,其中该颗粒材料具有形成附聚物的倾向。另一目的是提供一种用于实施该方法的反应器。
因此,已发现了开头所定义的方法,下文也称为本发明的方法或根据(本)发明的方法。本发明的方法是一种涂覆颗粒材料的方法。
在本发明上下文中获得的经涂覆的材料是指一批颗粒材料的至少80%的颗粒被涂覆,并且各颗粒的至少75%表面被涂覆,例如75-99.99%,优选80-90%。
该涂层的厚度可非常低,例如0.1-5nm。在其他实施方案中,厚度可为6-15nm。在其他实施方案中,该涂层的厚度为16-50nm。在该上下文中,厚度是指通过计算每个颗粒表面的厚度量并假设100%转化率在数学上确定的平均厚度。
不希望受任何理论束缚,据信由于颗粒的特定化学性质,颗粒的未涂覆部分不反应,例如由于化学反应性基团的密度,例如但不限于羟基、具有化学约束的氧化物结构部分、或吸附的水。
在本发明的一个实施方案中,颗粒材料的平均粒径(D50)为3-20μm,优选为5-16μm。平均粒径可例如通过光散射或激光衍射测定。颗粒通常由初级颗粒的附聚物组成,并且上述粒径是指次级颗粒直径。
在本发明的一个实施方案中,颗粒材料的BET表面积为0.1-1m2/g。BET表面积可在将样品在200℃下脱气30分钟或更长时间后通过氮吸附并且此外根据DIN ISO 9277:2010来测定。
本发明的方法包括三个步骤(a)、(b)和(c),在本发明的上下文中也称为步骤(a)、步骤(b)和步骤(c)。
步骤(a)包括提供选自锂化镍钴铝氧化物和锂化钴锰氧化物的颗粒材料。锂化层状钴锰氧化物的实例为Li1+x(CoeMnfM4 d)1-xO2。层状镍钴锰氧化物的实例为通式Li1+x(NiaCobMncM4 d)1-xO2的化合物,其中M4选自Mg、Ca、Ba、Al、Ti、Zr、Zn、Mo、V和Fe,其他变量定义如下:
0≤x≤0.2,
0.1≤a≤0.8,
0≤b≤0.5,
0.1≤c≤0.6,
0≤d≤0.1,a+b+c+d=1。
在优选实施方案中,在通式(I)的化合物中:
Li(1+x)[NiaCobMncM4 d](1-x)O2 (I)
M4选自Ca、Mg、Al和Ba,
其他变量如上所定义。
在Li1+x(CoeMnfM4 d)1-xO2中,e为0.2-0.8,f为0.2-0.8,变量M4和d和x如上所定义,并且e+f+d=1。
锂化镍钴铝氧化物的实例为通式Li[NihCoiAlj]O2+r的化合物。r、h、i和j的典型值为:
h为0.8-0.90,
i为0.05-0.19,
j为0.01-0.05,
r为0-0.4。
特别优选的是Li(1+x)[Ni0.33Co0.33Mn0.33](1-x)O2、Li(1+x)[Ni0.5Co0.2Mn0.3](1-x)O2、Li(1+x)[Ni0.6Co0.2Mn0.2](1-x)O2、Li(1+x)[Ni0.7Co0.2Mn0.1](1-x)O2和Li(1+x)[Ni0.8Co0.1Mn0.1](1-x)O2,各自具有如上所定义的x。
所述颗粒材料优选在不含任何添加剂如导电碳或粘合剂下提供,而是作为自由流动的粉末提供。
在本发明的一个实施方案中,颗粒材料如锂化镍钴铝氧化物或层状锂过渡金属氧化物的颗粒分别是粘结的。这意味着根据Geldart分组,所述颗粒材料难以流化,因此符合Geldart C区域的要求。然而,在本发明的过程中,并非在所有实施方案中都不需要机械搅拌。
粘结产品的其他实例是具有根据Jenike的流动性因子ffc≤7,优选1<ffc≤7(ffc=σ1c;σ1—主要主应力,σc—无侧限屈服强度)的那些,或具有Hausner比fH≥1.1,优选1.6≥fH≥1.1(fH=ρ振实/ρ堆积;ρ振实—在振动容积计中1250次行程后测得的振实密度,ρ堆积—根据DIN EN ISO 60的堆积密度)的那些。
在本发明方法的步骤(b)中,用金属醇盐或金属氨基化物或烷基金属化合物处理步骤(a)中提供的颗粒材料。所述处理将在下文更详细地描述。
本发明方法的步骤(b)和(c)在一个容器或至少两个容器的级联中进行,所述容器或级联—如果适用的话—在本发明的上下文中也称为反应器。优选地,步骤(b)和(c)在同一容器中进行。
在本发明方法的一个实施方案中,步骤(b)在15-1000℃,优选15-500℃,更优选20-350℃,甚至更优选150-200℃的温度下进行。优选在步骤(b)中选择金属醇盐或金属氨基化物或烷基金属化合物(视情况而定)处于气相中的温度。
步骤(b)在高于常压的压力下进行。因此,步骤(b)在比常压高5毫巴至1巴的压力下进行,优选比常压高10-150毫巴,更优选比常压高10-560毫巴。在本发明的上下文中,常压为1大气压或1013毫巴。
在本发明的优选实施方案中,烷基金属化合物或金属醇盐或金属氨基化物相应选自M1(R1)2、M2(R1)3、M3(R1)4-yHy、M1(OR2)2、M2(OR2)3、M3(OR2)4、M3[NR2)2]4和甲基铝氧烷,其中:
R1不同或相同,并且选自直链或支化C1-C8烷基,
R2不同或相同,并且选自直链或支化C1-C4烷基,
M1选自Mg和Zn,
M2选自Al和B,
M3选自Si、Sn、Ti、Zr和Hf,优选Sn和Ti,
变量y选自0-4,尤其是0和1。
金属醇盐可选自如下的C1-C4醇盐:碱金属,优选钠和钾,碱土金属,优选镁和钙,铝,硅和过渡金属。优选的过渡金属为钛和锆。醇盐的实例为甲醇化物(下文也称为甲醇盐)、乙醇化物(下文也称为乙醇盐)、丙醇化物(下文也称为丙醇盐)和丁醇化物(下文也称为丁醇盐)。丙醇盐的具体实例为正丙醇盐和异丙醇盐。丁醇盐的具体实例为正丁醇盐、异丁醇盐、仲丁醇盐和叔丁醇盐。醇盐的组合也是可行的。
碱金属醇盐的实例为NaOCH3、NaOC2H5、NaO-异-C3H7、KOCH3、KO-异-C3H7和K-O-C(CH3)3
金属C1-C4醇盐的优选实例为Si(OCH3)4、Si(OC2H5)4、Si(O-正-C3H7)4、Si(O-异-C3H7)4、Si(O-正-C4H9)4、Ti[OCH(CH3)2]4、Ti(OC4H9)4、Zn(OC3H7)2、Zr(OC4H9)4、Zr(OC2H5)4、Al(OCH3)3、Al(OC2H5)3、Al(O-正-C3H7)3、Al(O-异-C3H7)3、Al(O-仲-C4H9)3和Al(OC2H5)(O-仲-C4H9)2
选自锂、钠和钾的碱金属的金属烷基化合物的实例,特别优选烷基锂化合物,例如甲基锂、正丁基锂和正己基锂。碱土金属的烷基化合物的实例为二正丁基镁和正丁基正辛基镁(“BOMAG”)。烷基锌化合物的实例为二甲基锌和二乙基锌。
烷基铝化合物的实例为三甲基铝、三乙基铝、三异丁基铝和甲基铝氧烷。
金属氨基化物有时也称为金属亚氨基化物(metal imide)。金属氨基化物的实例为Na[N(CH3)2]、Li[N(CH3)2]和Ti[N(CH3)2]4
特别优选的化合物选自金属C1-C4醇盐和金属烷基化合物,甚至更优选三甲基铝。
在本发明的一个实施方案中,金属醇盐或金属氨基化物或烷基金属化合物的量为0.1-1g/kg颗粒材料。
优选地,金属醇盐或金属氨基化物或烷基金属化合物的量分别计算为每循环颗粒材料上单分子层的80-200%的量。
在本发明的优选实施方案中,步骤(b)的持续时间为1秒钟至2小时,优选为1秒钟至10分钟。
在第三任选步骤(在本发明的上下文中,也称为步骤(c))中,用水分处理步骤(b)中获得的材料。
在本发明的一个实施方案中,步骤(c)在50-250℃的温度下进行。
步骤(c)在高于常压的压力下进行。因此,步骤(c)在比常压高5毫巴至1巴的压力下进行,优选比常压高10-50毫巴。在本发明的上下文中,常压为1大气压或1013毫巴。
步骤(b)和(c)可在相同压力或不同压力下进行,优选在相同压力下进行。
所述水分可例如通过用水分饱和的惰性气体处理根据步骤(b)获得的材料来引入,例如用水分饱和的氮气或水分饱和的惰性气体,例如氩气。饱和可指代正常条件或步骤(c)中的反应条件。
尽管所述步骤(c)可由150-600℃,优选250-450℃的温度下的热处理代替,然而优选如上所述地实施所述步骤。
在本发明的一个实施方案中,步骤(c)的持续时间为10秒钟至2小时,优选为1秒钟至10分钟。
在一个实施方案中,步骤(b)和(c)的序列仅实施一次。在优选实施方案中,重复步骤(b)和(c)的序列,例如1次或2次或至多40次。优选实施步骤(b)和(c)的序列2-6次。
本发明方法的步骤(b)和(c)可连续或间歇进行。
在本发明的一个实施方案中,在步骤(b)和(c)之间用惰性气体冲洗或吹扫实施本发明方法的反应器,例如用干燥氮气或用干燥氩气。合适的冲洗—或吹扫—时间为1秒钟至30分钟,优选为1-10分钟。优选惰性气体的量足以将反应器的内容物交换1-15次。通过该冲洗或吹扫,可避免产生副产物,例如金属醇盐或金属氨基化物或烷基金属化合物各自与水的反应产物的单独颗粒。在三甲基铝和水偶合的情况下,该副产物是不沉积在颗粒材料上的甲烷和氧化铝或三甲基铝,其中后者是不希望的副产物。
反应器设计的各种实施方案可实施本发明方法的步骤(b)和(c)。步骤(b)和(c)在将混合能量机械地引入颗粒材料中的混合器中进行,例如强制混合器和自由下落混合器。自由下落混合器利用重力来移动颗粒,而强制混合器利用运动,特别是安装在混合室中的旋转混合元件来工作。在本发明的上下文中,混合室是反应器内部。强制混合器的实例为犁铧式混合器(在德国也称为混合器)、桨式混合器和铲式混合器。优选犁铧式混合器。犁铧式混合器可竖直或水平安装的,术语水平或竖直分别是针对混合元件围绕其旋转的轴的。优选水平安装。优选地,本发明的方法在根据投掷和旋转原理的犁铧式混合器中进行。
在本发明的另一实施方案中,本发明的方法可在自由下落混合器中进行。自由下落混合器利用重力来实现混合。在优选的实施方案中,本发明方法的步骤(b)和(c)在围绕其水平轴旋转的鼓或管形容器中进行。在更优选的实施方案中,本发明方法的步骤(b)和(c)在具有挡板的旋转容器中进行。
在本发明的一个实施方案中,容器或其至少部分以5-500转/分钟(“rpm”)的速度旋转,优选为5-60rpm。在使用自由下落混合器的实施方案中,更优选为5-25rpm,甚至更优选为5-10rpm。在使用犁铧式混合器的实施方案中,优选为50-400rpm,甚至更优选为100-250rpm。
在本发明的另一实施方案中,步骤(b)和(c)通过移动床或固定床进行。在固定床方法中,将步骤(a)中提供的颗粒材料置于多孔区域,例如筛板上。因此,步骤(a)中提供的颗粒材料形成床。在步骤(b)中,介质,尤其是含有金属醇盐或金属氨基化物或烷基金属化合物的惰性气体从上至下地流过床,并且在步骤(c)中,水分(例如呈潮湿的氮气或潮湿的空气形式)从下至上或从上至下地流过床。
在移动床方法中,将步骤(a)中提供的颗粒材料引入管式反应器的顶部,从而自动形成颗粒床。含有金属醇盐或金属氨基化物或烷基金属化合物的气流从下至上地流过所述床,其中气体速度不足以使颗粒床保持稳态。相反,颗粒床与气流逆流地移动(步骤(b))。步骤(c)相应地用水分代替金属醇盐或金属酰胺或烷基金属进行。
在允许气动输送所述颗粒材料的本发明优选方案中,施加至多4巴的压力差。涂覆的颗粒可将从反应器中吹出或通过抽吸移除。
在本发明的一个实施方案中,入口压力高于但接近所需的反应器压力。必须补偿进气口和移动床或固定床(如果适用)的压降。
在本发明方法的过程中,由于反应器的形状而将强剪切力引入流化床中,附聚物中的颗粒经常交换,这允许整个颗粒表面的可接近性。通过本发明的方法,可在短时间内涂覆颗粒材料,特别是可非常均匀地涂覆粘结颗粒。
在本发明的优选实施方案中,本发明的方法包括通过气动对流(例如20-100m/s)从一个容器中或分别从多个容器中移除涂覆的材料的步骤。
在本发明的一个实施方案中,废气用压力高于常压的水处理,甚至更优选略低于实施步骤(b)和(c)的反应器中的压力,例如比常压高2毫巴至1巴,优选比常压高4-25毫巴。升高的压力有利于补偿废气管线中的压力损失。
将反应器和废气处理容器与环境隔离所需的密封有利地配备有氮气冲洗。
在本发明的一个实施方案中,气体入口和出口位于用于本发明方法的容器的相对位置。
通过本发明的方法,可在短时间内涂覆颗粒材料,特别是可非常均匀地涂覆粘结颗粒。本发明的方法具有良好的安全性,因为可容易地避免任何可燃性或者甚至***性气氛。
可通过质谱法控制本发明方法的进展。

Claims (11)

1.一种涂覆氧化物材料的方法,所述方法包括以下步骤:
(a)提供选自锂化镍钴铝氧化物、锂化钴锰氧化物和锂化层状镍钴锰氧化物的颗粒材料,
(b)用金属醇盐或金属氨基化物或烷基金属化合物处理所述阴极活性材料,
(c)用水分处理步骤(b)中获得的材料,
并且,任选地重复步骤(b)和(c)的序列,
其中步骤(b)和(c)在将混合能量机械地引入颗粒材料中的混合器中进行,或者借助移动床或固定床进行,以及
其中步骤(b)和(c)在比常压高5毫巴至1巴的压力下进行。
2.根据权利要求1的方法,其中混合器选自强制混合器和自由下落混合器。
3.根据权利要求1或2的方法,其中烷基金属化合物或金属醇盐或金属氨基化物相应选自M1(R1)2、M2(R1)3、M3(R1)4-yHy、M1(OR2)2、M2(OR2)3、M3(OR2)4、M3[NR2)2]4和甲基铝氧烷,其中:
R1不同或相同,并且选自直链或支化C1-C8烷基,
R2不同或相同,并且选自直链或支化C1-C4烷基,
M1选自Mg和Zn,
M2选自Al和B,
M3选自Si、Sn、Ti、Zr和Hf,
变量y选自0-4。
4.根据前述权利要求中任一项的方法,其中锂化层状镍钴锰氧化物为通式(I)的材料:
Li(1+x)[NiaCobMncM4 d](1-x)O2 (I)
其中:
M4选自Mg、Ca、Ba、Al、Ti、Zr、Zn、Mo、V和Fe,
0≤x≤0.2,
0.1≤a≤0.8,
0≤b≤0.5,
0.1≤c≤0.6,
0≤d≤0.1,
a+b+c+d=1。
5.根据前述权利要求中任一项的方法,其中步骤(b)和(c)在具有挡板的旋转容器中进行。
6.根据前述权利要求中任一项的方法,其中在高于常压的压力下用水处理废气。
7.根据权利要求6的方法,其中在比常压高5毫巴至1巴的压力下用水处理废气。
8.根据前述权利要求中任一项的方法,其中锂化镍钴铝氧化物或锂化层状镍钴锰氧化物的颗粒分别是粘结的。
9.根据前述权利要求中任一项的方法,其中步骤(b)在15-350℃的温度下进行。
10.根据前述权利要求中任一项的方法,其中在步骤(b)和(c)之间用惰性气体冲洗反应器。
11.根据前述权利要求中任一项的方法,包括通过气动对流从一个容器中或分别从多个容器中移除涂覆材料的步骤。
CN201880016339.7A 2017-03-08 2018-02-21 涂覆氧化物材料的方法 Active CN110402507B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17159830 2017-03-08
EP17159830.3 2017-03-08
PCT/EP2018/054214 WO2018162232A1 (en) 2017-03-08 2018-02-21 Process for coating an oxide material

Publications (2)

Publication Number Publication Date
CN110402507A true CN110402507A (zh) 2019-11-01
CN110402507B CN110402507B (zh) 2023-07-18

Family

ID=58454844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880016339.7A Active CN110402507B (zh) 2017-03-08 2018-02-21 涂覆氧化物材料的方法

Country Status (6)

Country Link
US (1) US11515525B2 (zh)
EP (1) EP3593391A1 (zh)
JP (1) JP7112172B2 (zh)
KR (1) KR102651214B1 (zh)
CN (1) CN110402507B (zh)
WO (1) WO2018162232A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200119795A (ko) 2018-02-09 2020-10-20 바스프 에스이 부분 코팅된 전극 활물질의 제조 방법, 및 전극 활물질
EP3802911A1 (en) * 2018-06-06 2021-04-14 Basf Se Process for at least partially coating redox-active materials
US20220223842A1 (en) * 2019-06-25 2022-07-14 Basf Se Process for making a coated electrode active material
WO2021110692A1 (en) * 2019-12-06 2021-06-10 Basf Se Process for manufacturing a coated electrode active material
CA3192551A1 (en) * 2020-09-25 2022-03-31 Basf Se Process for the manufacture of a coated cathode active material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155590A1 (en) * 2007-12-12 2009-06-18 Technische Universiteit Delft Method for Covering Particles, Especially a Battery Electrode Material Particles, and Particles Obtained with Such Method and a Battery Comprising Such Particle
US20110236575A1 (en) * 2010-03-23 2011-09-29 King David M Semi-Continuous Vapor Deposition Process for the Manufacture of Coated Particles
KR20140006420A (ko) * 2012-07-05 2014-01-16 (주)씨엔원 파우더 코팅 장치 및 코팅 방법
US20160351973A1 (en) * 2015-06-01 2016-12-01 Energy Power Systems LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3136603A (en) * 1960-12-05 1964-06-09 Stauffer Chemical Co Coated p2o5 and its method of manufacture
US4048351A (en) * 1974-11-06 1977-09-13 Olin Corporation Granular calcium hypochlorite coated with a low melting inorganic salt by spray graining
IT1130853B (it) * 1980-01-11 1986-06-18 Montedison Spa Biossido di titanio post-trattato e procedimento per ottenerlo
US5227195A (en) * 1989-04-04 1993-07-13 Sri International Low temperature method of forming materials using one or more metal reactants and a halogen-containing reactant to form one or more reactive intermediates
KR100696619B1 (ko) * 2000-09-25 2007-03-19 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 그 제조 방법
US7638106B2 (en) * 2006-04-21 2009-12-29 Edwards Limited Method of treating a gas stream
US8187746B2 (en) 2008-05-16 2012-05-29 Uchicago Argonne, Llc Surface modification agents for lithium batteries
US9951419B2 (en) 2011-09-03 2018-04-24 Ying-Bing JIANG Apparatus and method for making atomic layer deposition on fine powders
JP6036162B2 (ja) * 2011-12-28 2016-11-30 トヨタ自動車株式会社 複合活物質の製造方法、被覆装置、複合活物質および全固体電池
US20140302392A1 (en) 2013-04-09 2014-10-09 Envia Systems, Inc. Uniform stabilization nanocoatings for lithium rich complex metal oxides and atomic layer deposition for forming the coating
US9700837B2 (en) * 2013-07-18 2017-07-11 General Electric Technology Gmbh Wet scrubber nozzle system and method of use for cleaning a process gas
US9598769B2 (en) 2013-07-24 2017-03-21 Uchicago Argonne, Llc Method and system for continuous atomic layer deposition
WO2016021614A1 (ja) * 2014-08-04 2016-02-11 新神戸電機株式会社 リチウムイオン電池及びリチウムイオン電池の不良判別方法
EP3224203B1 (en) * 2014-11-26 2018-10-17 Basf Se Process for making a lithiated transition metal oxide
WO2016205242A1 (en) 2015-06-15 2016-12-22 Ald Nanosolutions, Inc. Continuous spatial atomic layer deposition process and apparatus for applying films on particles
EP3491168A1 (en) 2016-07-27 2019-06-05 Basf Se Apparatus for coating particles, and process
KR20190125323A (ko) 2017-03-08 2019-11-06 바스프 에스이 옥사이드 재료의 코팅 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090155590A1 (en) * 2007-12-12 2009-06-18 Technische Universiteit Delft Method for Covering Particles, Especially a Battery Electrode Material Particles, and Particles Obtained with Such Method and a Battery Comprising Such Particle
US20110236575A1 (en) * 2010-03-23 2011-09-29 King David M Semi-Continuous Vapor Deposition Process for the Manufacture of Coated Particles
KR20140006420A (ko) * 2012-07-05 2014-01-16 (주)씨엔원 파우더 코팅 장치 및 코팅 방법
US20160351973A1 (en) * 2015-06-01 2016-12-01 Energy Power Systems LLC Nano-engineered coatings for anode active materials, cathode active materials, and solid-state electrolytes and methods of making batteries containing nano-engineered coatings

Also Published As

Publication number Publication date
JP7112172B2 (ja) 2022-08-03
JP2020512258A (ja) 2020-04-23
CN110402507B (zh) 2023-07-18
EP3593391A1 (en) 2020-01-15
US11515525B2 (en) 2022-11-29
US20190393494A1 (en) 2019-12-26
WO2018162232A1 (en) 2018-09-13
KR20190125332A (ko) 2019-11-06
KR102651214B1 (ko) 2024-03-25

Similar Documents

Publication Publication Date Title
CN110402507A (zh) 涂覆氧化物材料的方法
Kim et al. Prospect and reality of Ni‐rich cathode for commercialization
CN110383544A (zh) 涂覆氧化物材料的方法
CA2778286C (en) Nickel-cobalt-manganese-based compound particles and process for producing the nickel-cobalt-manganese-based compound particles, lithium composite oxide particles and process for producing the lithium composite oxide particles, and non-aqueous electrolyte secondary battery
JP2006265086A (ja) 水酸化ニッケル粒子の製造方法及び製造装置
JP2021513203A (ja) 部分的にコーティングした電極活物質の製造方法、及び電極活物質
JP2021513202A (ja) 部分的にコーティングした電極活物質の製造方法、及び電極活物質
KR102614841B1 (ko) 캐소드 재료의 제조 방법, 및 상기 방법을 수행하는데 적합한 반응기
JP5634828B2 (ja) スピネル型リチウム・マンガン系複合酸化物粒子の製造方法ならびに用途
JP7072405B2 (ja) 水酸化リチウム粉末の製造方法、リチウム二次電池用正極活物質の製造方法、及びパッケージ
JP2000268821A (ja) リチウム2次電池正極活物質用リチウム含有複合酸化物の製造方法
WO2019039582A1 (ja) リチウム金属硫化物及びその製造方法
CN112673495B (zh) 涂覆氧化物材料的方法
CN110911666A (zh) 一种用于锂电池负极的含氮的碳包覆铌酸钛材料合成方法
CN112673496A (zh) 涂覆氧化物材料的方法
WO2021110692A1 (en) Process for manufacturing a coated electrode active material
JP6739981B2 (ja) ニッケルリチウム金属複合酸化物の製造方法
Yoshinaga et al. Microwave Synthesis and Electrochemical Properties of Ultrafine SnO2 Nanoparticles
EP3624239A1 (en) Process for coating an oxide material
CN115768926A (zh) 经至少部分涂覆的电极活性材料、其制备和用途
CN116143165A (zh) 铟基异质复合体、制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant