CN110327913B - Nano-flake tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof - Google Patents

Nano-flake tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof Download PDF

Info

Publication number
CN110327913B
CN110327913B CN201910706959.XA CN201910706959A CN110327913B CN 110327913 B CN110327913 B CN 110327913B CN 201910706959 A CN201910706959 A CN 201910706959A CN 110327913 B CN110327913 B CN 110327913B
Authority
CN
China
Prior art keywords
graphene oxide
core
shell structure
structure material
tungsten oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910706959.XA
Other languages
Chinese (zh)
Other versions
CN110327913A (en
Inventor
王文静
刘柏雄
万长茂
王子璇
孙强
陈宜
戴天翔
程斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201910706959.XA priority Critical patent/CN110327913B/en
Publication of CN110327913A publication Critical patent/CN110327913A/en
Application granted granted Critical
Publication of CN110327913B publication Critical patent/CN110327913B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/33
    • B01J35/39
    • B01J35/397
    • B01J35/398

Abstract

A nano flaky tungsten oxide/graphene oxide core-shell structure material, a preparation method and application thereof. Uniformly mixing tungsten powder and sodium fluoride to obtain mixed powder A; get H2O2And HNO3Uniformly mixing to obtain a mixed solution B; adding a graphene oxide aqueous solution into the mixed solution B to obtain a mixed solution C; slowly adding the mixed powder A into the mixed solution C to obtain a solution E; and (3) placing the solution E in a hydrothermal reaction kettle for hydrothermal reaction, cooling, washing, collecting and drying to obtain the nano flaky tungsten oxide/graphene oxide core-shell structure material. The core-shell structure material is of a square single-layer lamellar structure, an inner-layer core is a square tungsten oxide nanosheet, an outer layer is graphene oxide, the thickness of the tungsten oxide single-layer lamellar is 10-30 nm, the length and the width are 100-250 nm, and the coating thickness of the outer-layer graphene oxide is 5-20 nm. The material is applied to the fields of sodium/lithium/magnesium ion batteries, supercapacitors and photocatalysis, and shows excellent performance.

Description

Nano-flake tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof
Technical Field
The invention relates to a preparation method of a core-shell structure nanosheet layer material, and particularly relates to a preparation method of an in-situ synthesized nano flaky tungsten oxide/graphene oxide core-shell structure material.
Background
Tungsten trioxide is a stable n-type semiconductor material and is widely applied to photocatalysis, electrochemical catalysis and the like. In recent years, with the intensive research on lithium/sodium ion batteries, tungsten trioxide has also been widely used in electrochemical energy storage, and has been studied mainly as a negative electrode material for lithium/sodium ion batteries. However, the nanometer tungsten trioxide has the defects of slow charge transfer rate, few surface reaction active sites, easy recombination of photo-generated electron hole pairs and the like, and the application field of the nanometer tungsten trioxide is greatly limited. Graphene oxide, as a novel two-dimensional carbon material, has a large specific surface area, excellent electrical conductivity, good mechanical properties, and high chemical and thermal stability, and is widely used in the electrochemical field.
In recent years, although tungsten trioxide/graphene oxide composite materials have been extensively studied by researchers as battery negative electrode materials, few reports have been made on two-dimensional nanocomposite materials in which tungsten trioxide is used as a core and graphene oxide is used as a shell.
Disclosure of Invention
The invention aims to provide the preparation method for in-situ synthesis of the nano flaky tungsten oxide/graphene oxide core-shell structure material, which is simple to operate, low in reaction temperature and short in reaction period, and the prepared tungsten oxide/graphene oxide core-shell structure material is single in structure and high in purity.
In order to achieve the purpose, the invention adopts the following technical scheme:
1) uniformly mixing tungsten powder and sodium fluoride according to the mass ratio of 10: 1-10: 3 to obtain mixed powder A;
2) respectively taking 5-15 ml of H with the mass concentration of 30%2O2And 5-15 ml of HNO with the mass concentration of 69%3Uniformly mixing to obtain a mixed solution B;
3) adding 2-6 ml of graphene oxide aqueous solution with the mass concentration of 0.05% -0.15% into the mixed solution B to obtain a mixed solution C;
4) slowly adding 1-8 g of the mixed powder A into the mixed solution C, and stirring until the mixed powder A is fully dissolved to obtain a solution E;
5) and (3) placing the solution E in a hydrothermal reaction kettle for hydrothermal reaction at 120-200 ℃, and after the reaction is finished, cooling, washing, collecting and drying to obtain the nano flaky tungsten oxide/graphene oxide core-shell structure material.
The size of the tungsten powder is 2-3 mu m.
The graphene oxide is of a micron-sized single-layer graphene oxide structure.
The stirring is magnetic stirring or ultrasonic dispersion.
The filling ratio of the solution E in the hydrothermal reaction kettle is 35-75%.
The reaction time is 20-35 h.
The washing is carried out for 3-5 times by adopting absolute ethyl alcohol for centrifugal washing, and the collection is centrifugal collection.
The drying temperature is 50-80 ℃, and the drying time is 12-16 h.
The core-shell structure material prepared by the preparation method is of a square single-layer lamellar structure, the inner-layer core is a square tungsten oxide nanosheet, the outer layer is graphene oxide, the thickness of the tungsten oxide single-layer lamellar is 10-30 nm, the length and the width are 100-250 nm, and the coating thickness of the outer-layer graphene oxide is 5-20 nm.
The nano flaky tungsten oxide/graphene oxide core-shell structure material prepared by the preparation method is applied to the fields of sodium/lithium/magnesium ion batteries, supercapacitors and photocatalysis.
Compared with the prior art, the invention has at least the following beneficial effects:
the method adopts in-situ one-step synthesis of the tungsten oxide/graphene oxide core-shell structure nano powder, does not need large-scale equipment and harsh reaction conditions, does not need a morphology control agent, has easily obtained raw materials, low cost and high yield, does not need post-treatment, is environment-friendly, and can be suitable for large-scale production.
The tungsten oxide/graphene oxide core-shell structure nano powder prepared by the method has a core-shell structure with tungsten oxide as a core and graphene oxide as a shell. The nano powder with the core-shell structure is applied to the fields of sodium/lithium/magnesium ion batteries and photocatalysis, and shows excellent performance.
Drawings
Fig. 1 is an X-ray diffraction (XRD) pattern of the nano-flake tungsten oxide/graphene oxide core-shell structure material powder prepared in example 1 of the present invention;
fig. 2 and 3 are Scanning Electron Microscope (SEM) photographs and Transmission Electron Microscope (TEM) photographs of the nano-flake tungsten oxide/graphene oxide core-shell structure material powder prepared in example 1 of the present invention.
Detailed Description
The present invention will be described in further detail with reference to the accompanying drawings and examples.
Example 1:
1) uniformly mixing 2-3 mu m tungsten powder and sodium fluoride according to a mass ratio of 10:1 to obtain mixed powder A;
2) respectively taking 5ml of H with the mass concentration of 30 percent2O2And 5ml of HNO with the mass concentration of 69 percent3Mixing evenly to obtain a mixed solution B;
3) adding 2ml of a 0.05 mass% micron-sized graphene oxide aqueous solution with a single-layer structure into the mixed solution B to obtain a mixed solution C;
4) slowly adding 1g of the mixed powder A into the mixed solution C, and obtaining a solution E after the mixed powder A is fully dissolved by magnetic stirring;
5) and (3) placing the solution E in a hydrothermal reaction kettle according to the filling ratio of 35% for hydrothermal reaction at 160 ℃ for 22 hours, cooling after the reaction is finished, centrifugally washing for 3 times by adopting absolute ethyl alcohol, centrifugally collecting, and drying at 50 ℃ for 12 hours to obtain the nano flaky tungsten oxide/graphene oxide core-shell structure material.
The core-shell structure material synthesized in situ by the method is a square single-layer lamellar structure, the inner-layer core is a square tungsten oxide nanosheet, the outer layer is graphene oxide, the thickness of the tungsten oxide single-layer lamellar is 10-30 nm, the length and the width are 100-250 nm, and the coating thickness of the outer-layer graphene oxide is 5-20 nm. The core-shell material is applied to the fields of sodium/lithium/magnesium ion batteries and photocatalysis. Especially when applied to a sodium ion battery, the electrolyte shows excellent electrochemical performance.
As can be seen from fig. 1, the prepared composite material is a composite material of tungsten trioxide and graphene oxide.
As clearly shown in FIG. 2, the prepared nano-powder is a single-layer sheet structure with uniform size, the size of 100-200nm and the thickness of about 20-30 nm.
As can be further seen from fig. 3, the prepared nano monolayer sheet is tungsten oxide with the length and width of about 100nm, and the outer layer is uniformly coated with a graphene oxide layer with the thickness of about 15 nm. Further proves that the prepared material has a core-shell structure.
Example 2:
1) uniformly mixing 2-3 mu m tungsten powder and sodium fluoride according to a mass ratio of 10:1.5 to obtain mixed powder A;
2) respectively taking 8ml of H with the mass concentration of 30 percent2O2And 8ml of HNO with the mass concentration of 69 percent3Uniformly mixing to obtain a mixed solution B;
3) adding 2.5ml of a 0.1 mass percent micron-sized graphene oxide aqueous solution into the mixed solution B to obtain a mixed solution C;
4) slowly adding 2.5g of the mixed powder A into the mixed solution C, and performing ultrasonic dispersion to obtain a solution E after the mixed powder A is fully dissolved;
5) and (3) placing the solution E in a hydrothermal reaction kettle according to a filling ratio of 75% for hydrothermal reaction at 180 ℃ for 24 hours, cooling after the reaction is finished, centrifugally washing for 3 times by adopting absolute ethyl alcohol, centrifugally collecting, and drying at 60 ℃ for 14 hours to obtain the nano flaky tungsten oxide/graphene oxide core-shell structure material.
Example 3:
1) uniformly mixing 2-3 mu m tungsten powder and sodium fluoride according to a mass ratio of 10:3 to obtain mixed powder A;
2) 10ml of H with the mass concentration of 30 percent are respectively taken2O2And 10ml of HNO with the mass concentration of 69 percent3Uniformly mixing to obtain a mixed solution B;
3) adding 4ml of a 0.13 mass% micron-sized graphene oxide aqueous solution into the mixed solution B to obtain a mixed solution C;
4) slowly adding 5.2g of the mixed powder A into the mixed solution C, and obtaining a solution E after the mixed powder A is fully dissolved by magnetic stirring;
5) and (3) placing the solution E in a hydrothermal reaction kettle according to the filling ratio of 35% for hydrothermal reaction at 160 ℃ for 30 hours, cooling after the reaction is finished, centrifugally washing for 5 times by adopting absolute ethyl alcohol, centrifugally collecting, and drying at 80 ℃ for 16 hours to obtain the nano flaky tungsten oxide/graphene oxide core-shell structure material.
Example 41:
1) uniformly mixing 2-3 mu m tungsten powder and sodium fluoride according to a mass ratio of 10:2 to obtain mixed powder A;
2) respectively taking 15ml of H with the mass concentration of 30 percent2O2And 12ml of HNO with the mass concentration of 69 percent3Uniformly mixing to obtain a mixed solution B;
3) adding 5ml of a 0.08 mass percent micron-sized graphene oxide aqueous solution into the mixed solution B to obtain a mixed solution C;
4) slowly adding 8g of the mixed powder A into the mixed solution C, and performing ultrasonic dispersion to obtain a solution E after the mixed powder A is fully dissolved;
5) and (3) placing the solution E in a hydrothermal reaction kettle according to the filling ratio of 50% for hydrothermal reaction at 120 ℃ for 35 hours, cooling after the reaction is finished, centrifugally washing for 4 times by adopting absolute ethyl alcohol, centrifugally collecting, and drying at 70 ℃ for 13 hours to obtain the nano flaky tungsten oxide/graphene oxide core-shell structure material.
Example 5:
1) uniformly mixing 2-3 mu m tungsten powder and sodium fluoride according to a mass ratio of 10:2.5 to obtain mixed powder A;
2) 12ml of H with the mass concentration of 30 percent are respectively taken2O2And 15ml of HNO with the mass concentration of 69 percent3Uniformly mixing to obtain a mixed solution B;
3) adding 6ml of a 0.15 mass% micron-sized graphene oxide aqueous solution into the mixed solution B to obtain a mixed solution C;
4) slowly adding 6g of the mixed powder A into the mixed solution C, and performing ultrasonic dispersion to obtain a solution E after the mixed powder A is fully dissolved;
5) and (3) placing the solution E in a hydrothermal reaction kettle according to the filling ratio of 60% for hydrothermal reaction at 200 ℃ for 20 hours, cooling after the reaction is finished, centrifugally washing for 5 times by adopting absolute ethyl alcohol, centrifugally collecting, and drying at 80 ℃ for 12 hours to obtain the nano flaky tungsten oxide/graphene oxide core-shell structure material.
Compared with the prior art, the invention at least has the following beneficial effects:
the method adopts in-situ one-step synthesis of the tungsten oxide/graphene oxide core-shell structure nano powder, does not need large-scale equipment and harsh reaction conditions, does not need a morphology control agent, has easily obtained raw materials, low cost and high yield, does not need post-treatment, is environment-friendly, and can be suitable for large-scale production.
The tungsten oxide/graphene oxide core-shell structure nano powder prepared by the method has a core-shell structure with tungsten oxide as a core and graphene oxide as a shell. The nano powder with the core-shell structure is applied to the fields of sodium/lithium/magnesium ion batteries and photocatalysis, and shows excellent performance.

Claims (10)

1. A preparation method of a nano flaky tungsten oxide/graphene oxide core-shell structure material is characterized by comprising the following steps:
1) uniformly mixing tungsten powder and sodium fluoride according to the mass ratio of 10: 1-10: 3 to obtain mixed powder A;
2) respectively taking 5-15 ml of H with the mass concentration of 30%2O2And 5-15 ml of HNO with the mass concentration of 69%3Uniformly mixing to obtain a mixed solution B;
3) adding 2-6 ml of graphene oxide aqueous solution with the mass concentration of 0.05% -0.15% into the mixed solution B to obtain a mixed solution C;
4) slowly adding 1-8 g of the mixed powder A into the mixed solution C, and stirring until the mixed powder A is fully dissolved to obtain a solution E;
5) placing the solution E in a hydrothermal reaction kettle for hydrothermal reaction at 120-200 ℃, cooling, washing, collecting and drying after the reaction is finished, and obtaining the nano flaky tungsten oxide/graphene oxide core-shell structure material;
the core-shell structure material is of a square single-layer lamellar structure, an inner-layer core is a square tungsten oxide nanosheet, an outer layer is graphene oxide, the thickness of the tungsten oxide single-layer lamellar is 10-30 nm, the length and the width are 100-250 nm, and the coating thickness of the outer-layer graphene oxide is 5-20 nm.
2. The preparation method of the nano flaky tungsten oxide/graphene oxide core-shell structure material according to claim 1, which is characterized in that: the size of the tungsten powder is 2-3 mu m.
3. The preparation method of the nano flaky tungsten oxide/graphene oxide core-shell structure material according to claim 1, which is characterized in that: the graphene oxide is of a micron-sized single-layer graphene oxide structure.
4. The preparation method of the nano flaky tungsten oxide/graphene oxide core-shell structure material according to claim 1, which is characterized in that: the stirring is magnetic stirring.
5. The preparation method of the nano flaky tungsten oxide/graphene oxide core-shell structure material according to claim 1, which is characterized in that: the filling ratio of the solution E in the hydrothermal reaction kettle is 35-75%.
6. The preparation method of the nano flaky tungsten oxide/graphene oxide core-shell structure material according to claim 1, which is characterized in that: the reaction time is 20-35 h.
7. The preparation method of the nano flaky tungsten oxide/graphene oxide core-shell structure material according to claim 1, which is characterized in that: the washing is carried out for 3-5 times by adopting absolute ethyl alcohol for centrifugal washing, and the collection is centrifugal collection.
8. The preparation method of the nano flaky tungsten oxide/graphene oxide core-shell structure material according to claim 1, which is characterized in that: the drying temperature is 50-80 ℃, and the drying time is 12-16 h.
9. The nano flaky tungsten oxide/graphene oxide core-shell structure material prepared by the preparation method according to claim 1, which is characterized in that: the core-shell structure material is of a square single-layer lamellar structure, an inner-layer core is a square tungsten oxide nanosheet, an outer layer is graphene oxide, the thickness of the tungsten oxide single-layer lamellar is 10-30 nm, the length and the width are 100-250 nm, and the coating thickness of the outer-layer graphene oxide is 5-20 nm.
10. The nano flaky tungsten oxide/graphene oxide core-shell structure material prepared by the preparation method according to claim 1, which is characterized in that: the nano flaky tungsten oxide/graphene oxide core-shell structure material is applied to the field of supercapacitors or photocatalysis.
CN201910706959.XA 2019-08-01 2019-08-01 Nano-flake tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof Active CN110327913B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910706959.XA CN110327913B (en) 2019-08-01 2019-08-01 Nano-flake tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910706959.XA CN110327913B (en) 2019-08-01 2019-08-01 Nano-flake tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof

Publications (2)

Publication Number Publication Date
CN110327913A CN110327913A (en) 2019-10-15
CN110327913B true CN110327913B (en) 2022-05-10

Family

ID=68148375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910706959.XA Active CN110327913B (en) 2019-08-01 2019-08-01 Nano-flake tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN110327913B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111974377B (en) * 2020-09-01 2022-11-18 陕西科技大学 High-activity high-stability tungsten oxide hydrogen production catalyst with carbon-coated defects and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805023A (en) * 2010-04-01 2010-08-18 中国科学院宁波材料技术与工程研究所 Method for preparing tungstic oxide nano-sheets
CN106872063B (en) * 2017-01-17 2019-03-26 中国电子科技集团公司第四十九研究所 A kind of preparation method and application of tubulose tungsten oxide-graphene composite material
CN108855047A (en) * 2018-08-29 2018-11-23 河南师范大学 A kind of flower-shaped tungstic acid/graphene composite photocatalyst and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H2O2氧化-水热结晶法合成纳米WO3的研究;黎先财等;《稀有金属》;20050630;第29卷(第3期);摘要、引言、第2.2节和图2 *
石墨烯基复合材料的合成及相关电化学性能研究;黄猛;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20140915(第09期);第3.3.2节和第3.5节 *
纳米三氧化钨的制备及其光催化性能研究;谷一冉;《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅰ辑》;20170315(第3期);摘要、第2.2.2节和第3.2.1节 *

Also Published As

Publication number Publication date
CN110327913A (en) 2019-10-15

Similar Documents

Publication Publication Date Title
Nzereogu et al. Anode materials for lithium-ion batteries: A review
Aslam et al. A Mini-Review: MXene composites for sodium/potassium-ion batteries
Huang et al. Application of polyoxometalate derivatives in rechargeable batteries
Javed et al. Recent progress in the design of advanced MXene/metal oxides-hybrid materials for energy storage devices
Qiu et al. MXenes nanocomposites for energy storage and conversion
Lei et al. Tailoring MXene-based materials for sodium-ion storage: synthesis, mechanisms, and applications
Chang et al. Recent developments in advanced anode materials for lithium-ion batteries
US9868105B2 (en) Spinel-type lithium titanium oxide/graphene composite and method of preparing the same
CN110272035B (en) Method for preparing carbon nanocages by catalyzing organic ligands with metal ions, carbon nanocages prepared by method and application of carbon nanocages
CN109286009B (en) Preparation method of nano-sheet self-assembled three-dimensional nano-flower tin sulfide/graphitized carbon nitride lithium ion battery cathode material
KR101478160B1 (en) Nano particle-graphene-carbon composites containing internally-formed graphene network, method for preparing the composite, and application thereof
CN110212165B (en) Sb2O5Preparation method of/GO/carbon cloth sodium ion battery cathode material
CN108987729B (en) Lithium-sulfur battery positive electrode material, preparation method thereof and lithium-sulfur battery
CN110707301A (en) Vanadium trioxide/carbon composite material with nanosphere structure and preparation method and application thereof
Xiao et al. Research progress of nano-silicon-based materials and silicon-carbon composite anode materials for lithium-ion batteries
Fang et al. Novel hierarchical three-dimensional ammonium vanadate nanowires electrodes for lithium ion battery
CN111769272A (en) Bi @ C hollow nanosphere composite material and preparation method and application thereof
Wang et al. Progress of transition metal sulfides used as the lithium-ion battery anodes
Ren et al. Facile synthesis of hierarchical porous ZnMn2O4 rugby-balls on Ni foam for lithium-ion batteries with enhanced electrochemical properties
CN114284477A (en) TiO preparation based on two colloidal solution self-assembly methods2Method and use of/MXene heterostructure
Han et al. Facile assembly of α-Fe2O3 nanorings@ reduced graphene oxide composites with high lithium storage performance
Han et al. Dual carbon-confined Sb 2 Se 3 nanoparticles with pseudocapacitive properties for high-performance lithium-ion half/full batteries
CN113178571B (en) Hierarchical porous Fe3Se4@ NC @ CNTs composite material and preparation method and application thereof
CN110327913B (en) Nano-flake tungsten oxide/graphene oxide core-shell structure material and preparation method and application thereof
Liu et al. SnO 2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant